
Similarity Recognition in the Web of Data

Alfio Ferrara
Dipartimento di Informatica

Università degli Studi di Milano
Via Comelico 39

20135 - Milano, Italy
alfio.ferrara@unimi.it

Lorenzo Genta
Dipartimento di Informatica

Università degli Studi di Milano
Via Comelico 39

20135 - Milano, Italy
lorenzo.genta@unimi.it

Stefano Montanelli
Dipartimento di Informatica

Università degli Studi di Milano
Via Comelico 39

20135 - Milano, Italy
stefano.montanelli@unimi.it

ABSTRACT
In the web of data, similarity recognition is the basis for
a variety of resource-consuming activities and applications,
including data recommendation, data aggregation, and data
analysis. In this paper, we propose HMatch4, a novel in-
stance matching algorithm for similarity recognition, which
has been developed on the ground of our experience with
HMatch3 [3].

1. INTRODUCTION
In the web of data, the capability to recognize the degree of
similarity between di↵erent descriptions of web resources is
getting more and more crucial for a number of purposes [2,
5]. Focused techniques specifically conceived for the web of
data are required to address the peculiar aspects of similarity
evaluation in such a context. Two main issues need to be
considered.

Similarity is not identity. In the literature, traditional
approaches/tools for similarity recognition are based on the
idea of comparing resources by analyzing their features. In
these solutions, the goal is to recognize the identity between
two resources, namely the capability to detect when the two
descriptions refer to the same real object. From this perspec-
tive, identity is seen as a special case of similarity character-
ized by a high similarity value (i.e., high number of shared
features). Low similarity values are usually interpreted as
a non-identity result, meaning that the two considered re-
source descriptions refer to di↵erent real objects. Consider
the following example:

tiger woods
profession: golfer
nationality: united states

arnold schwarzenegger
profession: bodybuilder
profession: politician
nationality: united states

In this case, the degree of similarity between tiger woods
and arnold schwarzenegger is quite low, because they ac-

(c) 2014, Copyright is with the authors. Published in the Workshop Pro-
ceedings of the EDBT/ICDT 2014 Joint Conference (March 28, 2014,
Athens, Greece) on CEUR-WS.org (ISSN 1613-0073). Distribution of this
paper is permitted under the terms of the Creative Commons license CC-
by-nc-nd 4.0

tually have only one feature in common (i.e., nationality).
According to traditional instance matching approaches, the
similarity value between the two resources is discarded, con-
cluding that they do not represent the same person. Such
a behavior is correct, however, matching techniques for the
web of data have to be capable of capturing and preserving
the correct degree of similarity both when the considered re-
sources are identical or very similar and when they are only
quite similar or even completely di↵erent. This can be useful
in many application scenarios, like for example in web data
classification where the goal can be to aggregate resources
based on the similarity over one (or few) specific features
(see for example [4]).

The scale as a key issue. In the web of data, matching
usually involves very large data collections, potentially com-
posed by hundred of thousands of web resources described by
millions of features. In this scenario, the intrinsic limitation
of existing instance matching approaches to similarity evalu-
ation is due to the cost of directly comparing all the pairs of
resource items in order to compute their degree of similarity
within a considered dataset. In a classical comparison-based
matching approach, this means that a matching operation
is required to calculate the similarity degree for each pos-
sible pair of items. For a dataset of n items, this means
that O(n2) matching operations are required in the worst
case to compare each item against all the other items in
the dataset. Optimization strategies have been proposed in
the literature to reduce the number of comparison opera-
tions and to increase the performance of the overall match-
ing process [5]. However, to the best of our knowledge, the
currently available instance matching tools are still a↵ected
by severe limitations in terms of scalability, which usually
means that in real systems the similarity recognition task
need to be executed o✏ine in case of very large collections
of data.

In this paper, we propose HMatch4, a novel instance match-
ing algorithm for similarity recognition, which has been de-
veloped on the ground of our experience with HMatch3 [3].
HMatch4 is natively conceived for working in the web of
data, where the above matching issues are properly consid-
ered and addressed. In the following, we first describe the
HMatch4 techniques and related algorithm (Section 2 and 3).
Then, we provide the results of a preliminary evaluation ob-
tained by comparing HMatch4 against HMatch3 and other
popular tools for instance matching, namely LogMap [7] and
SLINT+ [8] (Section 4). Related work and concluding re-

263

marks are finally discussed (Section 5 and 6).

2. THE HMATCH4 PROCESS
We first describe our model for representation of the web-of-
data resources, and then we present the HMatch4 matching
process.

2.1 Modeling web resource items
In HMatch4, we rely on the use of an internal data model
called web resource item (wri) for representation of the re-
sources to match. A wri element is featured by a set of
feature-value pairs and it is defined as follows:

wri = {(f, v)
1

. . . (f, v)k}

where each pair (f, v) 2 wri represents a feature-name f
and the corresponding feature-value v.

Wrapping resources to the wri model. The wri model
has been conceived to support matching of di↵erent kinds
of web-of-data resources, like for example social data (e.g.,
Facebook, Twitter resources) and linked data (e.g., Freebase,
DBpedia resources). The idea of modeling resources as sets
of feature-value pairs is motivated by the need to deal with
a number of di↵erent native formats that are commonly em-
ployed for description of web-of-data resources. Appropri-
ate wrapping operations are required to transform the na-
tive web resource representation into a wri-based represen-
tation. In general, this wrapping step is straightforward. A
feature-value pair (f, v) 2 wri is created for each property
and corresponding value within the native description of the
considered resource. For instance, in case of a social data re-
source like a tweet, a feature-value pair is defined in the wri
representation for each tweet field (e.g., id, text, user, lang,
place, created at, entities). A similar approach is enforced
to generate a wri representation when a linked data resource
URI extracted from a repository R is considered. In partic-
ular, a feature-value pair is created for each property name
and corresponding property value that is directly connected
with URI in the RDF specification extracted from the repos-
itory R. In case that URI has a property name p associated
with multiple property values v

1

. . . vm, a feature-value pair
(p, vj) is created in the wri description for each value vj with
j 2 [1, m].

Example. As an example, we show the wri description for
a linked data resource featuring the famous athlete muham-

mad ali. Such a description is extracted from the Freebase

repository by only considering the properties profession, type,
and nationality.

muhammad ali

(profession, athlete),

(profession, professional boxer),

(type, olympic athlete),

(nationality, United States of America).

2.2 Matching process
HMatch4 works on a dataset D of wri elements to match and
it produces a similarity matrix as a result.

Spirit of HMatch4. The idea is to measure the similar-
ity degree between two items by calculating their number

of common feature-value pairs in the wri representations.
Given wri

1

and wri
2

, this can be determined by calculat-
ing the set of pairs (f, v) that belong to both the consid-
ered items (i.e., wri

1

\ wri
2

). As a di↵erence with classical
comparison-based approaches, HMatch4 proposes a sort of
index-based matching approach where the similarity degree
of two items is the result of an indexing operation and a
“pair-by-pair” comparison between wri elements is not re-
quired. The key idea of HMatch4 is to consider each single
wri in the dataset and to index all the possible subsets of
feature-value pairs belonging to wri that can be relevant for
detecting a similarity with other wri elements. Two items
wri

1

and wri
2

are similar if they share the same entry in the
index, meaning that they have a common subset of feature-
value pairs in their wri representations (i.e., the feature value
pairs of the index entry). The similarity degree is assessed
by measuring the size (i.e., cardinality) of the shared subset
of feature-value pairs.

Matching process. The matching process of HMatch4 is
articulated in three main steps, namely configuration, exe-
cution, and assessment (see Figure 1). The configuration
step defines the setup of the matching execution and it spec-
ifies the requirements to be satisfied by two items wri

1

and
wri

2

for being considered as similar. We call feature-set F
the set of all the features involved in the specification of wri
elements within the considered dataset D, namely:

F = {

n[

i=1

fs(wrii)}

where n = |D| is the number of items within the dataset
D and fs(wri) = {fj | (fj , v) 2 wri} is the set of features
characterizing the feature-value pairs of wri. Then, we cal-
culate the power set P(F) containing all the possible subsets
of features over F . Then, we define the set F ⇢ F as follows:

F = {rfs | rfs 2 F ^

| rfs |

| F |

� ths}

where ths 2 (0, 1] is a similarity threshold and it determines
the minimum similarity degree that is required to consider
two items as matching items. A set rfs 2 F is called relevant
feature-set and it represents a combination of features to be
considered for similarity recognition. The rationale of our
matching process is that two items wri

1

and wri
2

are similar
i↵ they share a set of feature-value pairs where the features
coincides with a set rfs 2 F .

The execution step creates an index structure I containing
entries for the combinations of feature-value pairs within wri
descriptions that are relevant for similarity recognition. An
index entry ie 2 I has the form ie = hrfs, fvl, wpi, where
rfs 2 F is a relevant feature-set, fvl is a list of feature-
value pairs, and wp is a set of wri elements belonging to D.
Given an index entry ie and the associated relevant feature-
set rfs = {f

1

, . . . , fs}, the corresponding list of feature-
value pairs fvl has the form fvl = (f

1

, v
1

) | . . . | (fs, vs), and
wp contains the wri elements that provide fvl in their wri
representation. For each item wri 2 D, we create an entry
in the index I for those combinations of feature-value pairs
of wri that are based on a relevant feature-set belonging to
F . Details about the HMatch4 algorithm for creating the
index I are presented in Section 3.

264

(f1, v1) | (f2, v3) wri1, wri2

feature-value list (fvl) wri of
provenance (wp)

(f1, v1) | (f2, v5)

(f1, v1) | (f3, v4)

(f1, v2) | (f3, v4)

{ f1, f2 }

(f2, v3) | (f3, v4)

(f1, v1) | (f2, v3) | (f3, v4)

(f1, v2) | (f2, v3)

(f1, v2) | (f2, v3) | (f3, v4)

wri2

wri1, wri3

{ f1, f3 } wri1

wri1, wri3

{ f2, f3 } wri1, wri3

{ f1, f2, f3 } wri1

wri1, wri3

relevant
feature-sets (rfs)

wri
dataset

wri1 (f1, v1)
(f1, v2)
(f2, v3)
(f3, v4)

wri2 (f1, v1)
(f2, v3)
(f2, v5)

wri3 (f1, v2)
(f2, v3)
(f3, v4)

Configuration
(feature-set composition)

Execution
(indexing of feature-value pairs)

Assessment
(similarity matrix construction)

wri1

wri2

wri3

wri1

wri11

wri2 wri3

wri1

wri1

wri1

wri1

wri1

wri1

wri1

wri1

-

-

1

1

1

-

-

0.8

similarity
matrix

feature-set (F)
(ths = 0.5)

{ f1, f2, f3 }

Power-set of the
feature-set P(F)

{ }
{ f1 }
{ f2 }
{ f3 }
{ f1, f2 }
{ f1, f3 }
{ f2, f3 }
{ f1, f2, f3 }

Figure 1: The similarity recognition process of HMatch4

The assessment step generates the similarity matrix M

for the wri items of the dataset D. Given two items wri
1

and wri
2

, their similarity value sim(wri
1

, wri
2

) is deter-
mined by querying the index I and by extracting the index
entry shared by wri

1

and wri
2

(if it exists). Given an in-
dex entry ie where wri

1

, wri
2

2 wp, the similarity value
sim(wri

1

, wri
2

) is calculated through the Dice’s coe�cient
formula:

sim(wri
1

, wri
2

) =
2· | rfs |

| fs(wri
1

) | + | fs(wri
2

) |

where fs(wri) is the set of features characterizing the feature-
value pairs of wri and rfs is the relevant feature-set associ-
ated with the index entry ie, meaning that the items wri

1

and wri
2

share feature-value pairs for all the features in
rfs. According to this definition, the similarity values com-
puted by HMatch4 are symmetric (i.e., sim(wri

1

, wri
2

) =
sim(wri

2

, wri
1

)) and thus the resulting matrix M is upper
triangular. It is possible that two items wri

1

and wri
2

have
not a shared entry in the index structure. In HMatch4, this
means that sim(wri

1

, wri
2

) = 0. It is also possible that two
or more index entries are shared by two items wri

1

and wri
2

,
meaning that the two items have more relevant feature-sets
in common. In this case, the entry with max(| rfs |) is
selected for calculating sim(wri

1

, wri
2

).

Example. We consider the wri about muhammad ali previ-
ously introduced and the following wri descriptions about
michael jordan and george foreman.

michael jordan

(profession, athlete),

(type, olympic athlete),

(type, celebrity).

george foreman

(profession, professional boxer),

(type, olympic athlete),

(nationality, United States of America).

According to these descriptions, the feature-set F = { pro-

fession, type, nationality } is generated. By setting a similarity
threshold ths = 0.5, we obtain the relevant feature-sets F =
{{profession, type}, {profession, nationality}, {type, nationality},
{profession, type, nationality}}. The resulting index structure
is shown in Figure 2. Thus, the similarity matrix generated
in the assessment step is the following:

m. ali m. jordan g. foreman

m. ali 1.0 0.8 1.0

m. jordan - 1.0 0.0

g. foreman - - 1.0

For calculation of sim(m. ali,m. jordan), we consider the first
entry in the index structure of Figure 2 that is shared by
m. ali and m. jordan (see column wp). Thus, we obtain:
sim(m.ali, m.jordan) = (2 · 2)/(3 + 2) = 0.8. Moreover, we
note that sim(m.jordan, g.foreman) = 0.0. This is due to
the fact that m. jordan and g. foreman only share the feature-
value pair type, olympic athlete that does not coincide with a
relevant feature-set, meaning that the similarity between m.

jordan and g. foreman is not su�cient for being recognized in
the current HMatch4 configuration (ths = 0.5).

3. THE HMATCH4 ALGORITHM
In this section, we present the HMatch4 algorithm used in
the execution step for creation of the index structure I. The
algorithm is shown in Figure 3. The algorithm is imple-
mented by the function Indexing(D, F), which takes the
dataset D and the relevant feature-set F as input. The func-
tion initializes the index I as a map where keys are numeric
values and values are sets of wri (line 2). Then, it takes into
account all the wri in D. For each wri and for each relevant
relevant feature-set rfs in F , we first initialize an empty set
of values V (line 5). As an example, let us take into account
the wri

1

of Figure 1, which is composed by the feature-value
pairs {(f

1

, v
1

), (f
1

, v
2

), (f
2

, v
3

), (f
3

, v
4

)}, and the relevant
feature-set {f

1

, f
2

}. For each feature fi in rfs, we insert
into V all the feature-values pairs having fi as feature (lines
7-8). In our example, the set V at the end of this pro-
cess is composed by the elements V = { {(f

1

, v
1

), (f
1

, v
2

)},

265

Relevant feature-set rfs Feature-value list fvl wri wp

{profession, type} (profession, athlete) (type, olympic athlete) m ali, m. jordan

(profession, athlete) (type, celebrity) m. jordan

(profession, professional boxer) | (type, olympic athlete) m. ali, g. foreman

{profession, nationality} (profession, athlete) | (nationality, United States of America) m ali

(profession, professional boxer) | (nationality, United States of America) m. ali, , g. foreman

{type, nationality} (type, olympic athlete) | (nationality, United States of America) m.ali, g. foreman

{profession, type, nationality} (profession, athlete) | (type, olympic athlete) | (nationality, United States of America) m ali

(profession, professional boxer) | (type, olympic athlete) | (nationality, United States of America) m ali, g. foreman

Figure 2: Index structure for the wri descriptions about muhammad ali, micheal jordan, and george foreman

1: function Indexing(D, F)
2: I a key-value map of the form <number: set>
3: for all wri 2 D do
4: for all rfs 2 F do
5: V {}
6: for all f 2 rfs do
7: F {(fi, vi) | (fi, vi) 2 wri ^ fi = f}
8: add F to V

9: end for
10: X v

1

⇥ v

2

⇥ . . .⇥ v

|V |

| vi 2 V

11: for all x 2 X do
12: h hash(x)
13: if h 2 keys(I) then
14: add wri to I[h]
15: else
16: I[h] {wri}
17: end if
18: end for
19: end for
20: end for
21: return I
22: end function

Figure 3: The HMatch4 execution algorithm

{(f
2

, v
3

)}}. Now, we process each element in the cartesian
product X of the sets in V , which are {(f

1

, v
1

), (f
2

, v
3

)} and
{(f

1

, v
2

), (f
2

, v
3

)} (lines 10-11). The idea behind this step
is that features having more than one value, such as f

1

in
the example, are considered separately and in combination
with all the other feature values. For each element x of X,
we insert a new entry in the index I. In particular, we ob-
tain a numerical index key as the hash-value of x. We note
that, in this paper, we assume to have just a simple hashing
function capable of providing a unique value for each com-
bination of feature-value pairs. The development of a more
powerful hashing function is one of the goals of our future
work. According to this procedure (lines 12-16), the index
I will contain one entry for each combination of values in
the relevant feature-set rfs. In our example, given all the
feature-sets of Figure 1, we generate 7 entries, 3 for {f

1

, f
2

},
2 for {f

1

, f
3

}, 1 for {f
2

, f
3

}, and 2 for {f
1

, f
2

, f
3

}. In such
a way, when a subsequent wrij is processed, if it has one or
more combinations of feature-value pairs that are equal to
those of wri, it will be inserted in the same set of wri in the
index, denoting the fact that there is a similarity between
wrij and wri.

4. EXPERIMENTAL RESULTS
The goal of our experimentation is to evaluate HMatch4 in
terms of i) the quality of similarity recognition measured
by precision and recall; ii) the scalability of HMatch4 when
matching a growing number of web resources. Considering
the quality assessment, we performed a comparison against

a ground-truth set of mappings produced by human users.
The scalability evaluation is performed on both time and
space consumption in comparison with the matching tools
LogMap and SLINT+ [7, 8]. These tools have been chosen
for their known e�ciency and for the availability of a work-
ing prototype. The scalability tests are performed on an
automatically produced dataset based on multiple replica-
tions of a base dataset. Both the quality and scalability tests
have been performed by comparing HMatch4 and HMatch3
[3], our previous version of matching tool.

4.1 Experiment setup
In this section, we discuss quality assessment and scalability
evaluation.

Quality assessment. The ground truth has been produced
by exploiting a novel crowdsourcing approach called Liquid
Crowd. A crowdsourcing approach consists in reducing a
problem in a set of elementary units of work that are dis-
tributed to a (possibly) large number of human workers.
Each worker participates giving the solution for one or more
work units and receives a reward (e.g., money, personal sat-
isfaction or other benefits) proportional to the completed
amount of work. The main idea behind Liquid Crowd is
to change the definition of worker from a single user to a
group of users. A work unit is considered accepted only if
the assigned group reaches a consensus on the produced an-
swer (i.e., the qualified majority of users converge on the
same answer). In our experimentation, the ground truth for
quality assessment is built on 58 individuals from Freebase
repository with a total number of 275 feature-value pairs.
Thus, the work units have been structured as a blind eval-
uation of a pair of web resources. For instance, the users
have to evaluate the similarity of the given resources only
knowing their features and features-values without knowing
their identifiers (i.e., the names of the resources): this is
done to avoid that users exploit their personal knowledge in
evaluating the similarity.
In order to complete a work unit, the user has to choose be-
tween 4 possible answers: equal (E), very similar (VS), quite
similar(QS), unequal (U). Thus, the final mappings pro-
duced are in the form m(wrix, wriy) = {E|V S|QS|U}. As a
result from the proposed set of work units, the human work-
ers produced 1136 mappings (work units that reached the
consensus) with the following distribution: U = 653, QS =
317, V S = 151, E = 15. On this dataset we produced 1653
work units. The crowdsourcing session was open for 7 days
to any volunteer: 82 persons took part to the experiment
with a result of 1136 completed tasks.

Scalability evaluation. For this test, we performed di↵er-

266

ent executions of the 4 matching tools by replicating K times
the dataset used for quality assessment, for K between 1 and
1461. The number of resources of the performed tests is be-
tween 58 (426 RDF triples) and 85144 (888293 RDF triples)
and each resource has a mean of 4 feature-value pairs. The
time measurements has been performed by evaluating time
between the execution of the considered tool and its termi-
nation, while the memory measurement has been done by
polling the used memory and catching the greatest value
during the execution of each tool.

4.2 Results
For quality assessment, we compare the results of HMatch4
and HMatch3 against the ground truth produced by the hu-
man users of our crowdsourcing system. The decision to
exclude LogMap and SLINT+ arises from the fact that they
are proposed to find di↵erent representations of the same
resource and not to perform similarity recognition, which
means that i) the produced values are a representation of
identity or candidate identity and ii) each resource appears
in the results only compared to its best match. In order to
make the results produced by HMatch4 and HMatch3 com-
parable to the ground truth, we converted the continuous
values of our tools to the four similarity classes produced by
the crowdsourcing system. This has been done creating 4 in-
tervals and 4 association rules mapping each interval to the
corresponding similarity class: [0, 0.17) ! U, [0.17, 0.5) !

QS, [0.5, 0.8) ! V S, [0.8, 1] ! E.

The comparison between HMatch4 and HMatch3 is based
on 3 measures: precision, recall and F-measure (Figure 4).
Given the set of mappings in a specific class produced by the
automatic tool as T and the set of mappings of the ground
truth in the same class as G, the precision value is com-
puted as T\G

T
and recall value is computed as T\G

G
, while F-

measure is the harmonic mean between precision and recall.
The obtained results show that HMatch4 and HMatch3 are
very similar in both precision and recall values. We note that
both tools behave exactly as humans on inequality recogni-
tion, while they have di↵erent perceptions on the other sim-
ilarity classes. This is probably due to human evaluation of
similarity that tends to discriminate the importance of sim-
ilarity based on the name of the feature. We also considered
a di↵erent comparison approach by converting the classes of
the crowdsourcing system to values in the interval [0, 1], in
order to perform an overall accuracy measure. This measure
has been computed as the inverse of the mean distance of the
results produced by our tools against the ground truth. The
results of the crowdsourcing system have been converted as
follows: E ! 1, V S ! 0.66, QS ! 0.33, U ! 0. The ac-
curacy values obtained are 0.886 for HMatch3 and 0.890 for
HMatch4. Also in this case the results are almost the same.

Finally, we present the results of the scalability evaluation.
All the tests have been executed on a 4-core Intel(R) Xeon(R)
processor (model E5-1620) with a frequency of 3.60GHz and
16 GB of total RAM memory. The results shown in Figure
5 (execution time) represent the trend of the 4 considered
tools for the time consumption: the y-axis is the log-scale of
the required time while the x-axis is the size of the dataset
represented by the maximum number of possible compar-
isons (i.e., for a dataset of N resources the x-axis shows
N · N).

Figure 5: Execution time and memory usage for
HMatch3, HMatch4, LogMap, and SLINT+

In Figure 5 (memory usage) the memory consumption of the
4 considered tools is shown. In this case, the y-axis shows
the occupied memory in bytes while the x-axis represents
the size of the dataset (intended again as the greatest num-
ber of possible comparisons). We note that the HMatch3
tool is executed just until the 161th replication due to the
excessive required time and memory. In all the executed test
cases HMatch4 performed as the best tool between the con-
sidered counterparts. In the largest test case, we matched
N · N resources with N = 85144 (401775 features, 888293
triples): SLINT+ required 2697 seconds, LogMap required
166 seconds and HMatch4 completed the comparison in 24
seconds.

5. RELATED WORK
In the recent years, a lot of research e↵ort has been fo-
cused on data matching with a specific attention to instance
matching in the framework of the Semantic Web. Most of
the existing solutions have been conceived to deal with the
so-called identity-recognition problem, where the target is
to detect when di↵erent descriptions extracted from inde-

267

Figure 4: Precision, Recall and F-measure of HMatch3 and HMatch4

pendent web repositories refer to the same individual. On
this research line, a reference survey of existing techniques
and tools can be found in [5]. The creation of an instance-
matching track within the context of the well-known OAEI
initiative1 is a further message that emphasizes the grow-
ing attention about the data matching issues. Examples of
interesting tools that have been emerging from the OAEI
competition are LogMap [7] and SLINT+ [8]. Yet, the focus
of these proposed tools is the capability to recognize identi-
ties (i.e., same-as links) between pairs of web objects.
Approaches based on feature similarity are also relevant with
respect to our HMatch4. In this kind of solutions, the objects
to match are described through (numeric) feature vectors
and the similarity degree is calculated in terms of distances
in a n-dimensional space by relying on vector calculus op-
erations. Vector-based matching techniques are usually em-
ployed in image similarity recognition and in nearest neigh-
bor search where the items to compare are characterized by
feature vectors with n numeric coordinates and the mapping
within a n-dimensional space is straightforward [9]. For ap-
plication of vector-based techniques to web-of-data match-
ing, a transformation of (string-based) feature-value pairs
into (numeric) feature vectors is required, but such a kind
of transformation is not straightforward.
Finally, the possibility to use hashing solutions to index the
object features to match is not completely new in the liter-
ature about data matching [6]. The capability to create an
e�cient data structure for storing similar values in neigh-
bor positions of the index is promising and solutions in this
direction are currently appearing [1]. We plan to integrate
the use of hashing data structures into HMatch4. We will
investigate this issue in the next-future research activities
to further increase the performance of execution and assess-
ment steps of the HMatch4 process (see Section 6).

Original contribution. With respect to all the above so-
lutions, the peculiarity of HMatch4 is on the goal of the
matching process rather than on the novelty of the proposed
techniques. In HMatch4, the target is similarity recognition,
based on evaluating the relevance of shared subset of feature-
values in the di↵erent wri specifications. The use of an index
structure is adopted to avoid a direct pair-by-pair compari-
son of all the items to match, with the aim at improving the
overall performance of the matching process.

1http://oaei.ontologymatching.org/.

6. CONCLUDING REMARKS
In this paper, we presented HMatch4 and related techniques
for similarity recognition. HMatch4 has been conceived for
application in those contexts where the goal is to evaluate
the similarity degree among description of di↵erent individu-
als like for example dimension-based data classification and
web data summarization [4]. In future work, we plan to
investigate the extension of HMatch4 to support approxi-
mate matching. The idea is to enforce hashing techniques
that preserve “near” index positions when“near” feature val-
ues are recognized. The investigation of hashing techniques
based on tree structures is also in the research agenda of
HMatch4 for e�cient indexing of feature-value pairs.

7. REFERENCES
[1] A. Andoni and P. Indyk. Near-optimal Hashing

Algorithms for Approximate nearest Neighbor in high
Dimensions. In Proc. of the 47th IEEE FOCS, 2006.

[2] D. Bianchini, C. Cappiello, V. De Antonellis, and
B. Pernici. P2S: A Methodology to Enable
Inter-organizational Process Design through Web
Services. In Proc. of the 21st Int. CAiSE, 2009.

[3] S. Castano, A. Ferrara, S. Montanelli, and G. Varese.
Ontology and Instance Matching. In Knowledge-driven
multimedia information extraction and ontology
evolution. Springer, 2011.

[4] A. Ferrara, L. Genta, and S. Montanelli. Linked Data
Classification: a Feature-based Approach. In Proc. of
the 3rd EDBT LWDM Workshop, 2013.

[5] Ferrara, A. and Nikolov, A. and Schar↵e, F. Data
Linking for the Semantic Web. Int. Journal on
Semantic Web and Information Systems, 7(3), 2011.

[6] A. Gionis, P. Indyk, and R. Motwani. Similarity Search
in High Dimensions via Hashing. In Proc. of the 25th
VLDB Conference, 1999.

[7] E. Jiménez-Ruiz, B. C. Grau, Y. Zhou, and I. Horrocks.
Large-scale Interactive Ontology Matching: Algorithms
and Implementation. In Proc. of the 20th ECAI, 2012.

[8] K. Nguyen, R. Ichise, and B. Le. SLINT: A
Schema-Independent Linked Data Interlinking System.
In Proc. of the 7th Int. Workshop on Ontology
Matching, 2012.

[9] Y. Tao, K. Yi, C. Sheng, and P. Kalnis. Quality and
E�ciency in high Dimensional nearest Neighbor Search.
In Proc. of ACM SIGMOD, 2009.

268

	Message from the Chairs
	Algorithms for MapReduce and Beyond (BeyondMR)
	Scheduling MapReduce Jobs on Unrelated Processors
	Binary Theta-Joins using MapReduce: Efficiency Analysis and Improvements
	On the design space of MapReduce ROLLUP aggregates
	Determining the k in k-means with MapReduce
	Tagged Dataflow: a Formal Model for Iterative Map-Reduce
	Processing Regular Path Queries on Giraph
	Graph-Parallel Entity Resolution using LSH & IMM
	Modular Data Clustering - Algorithm Design beyond MapReduce

	Bidirectional Transformations (BX)
	Preface to the Third International Workshop on Bidirectional Transformations
	Implementing a Bidirectional Model Transformation Language as an Internal DSL in Scala
	Towards a Framework for Multidirectional Model Transformations
	Formalizing Semantic Bidirectionalization with Dependent Types
	BenchmarX
	Towards a Repository of Bx Examples
	Intersection Schemas as a Dataspace Integration Technique
	Bidirectional Transformations in Database Evolution: A Case Study ``At Scale''
	Entangled State Monads
	Spans of lenses

	Energy Data Management (EnDM)
	Pipeline Production Data Model
	Renewable Energy Data Sources in the Semantic Web with OpenWatt
	A Generic Ontology for Prosumer-Oriented Smart Grid
	Computing Electricity Consumption Profiles from Household Smart Meter Data
	ECAST: A Benchmark Framework for Renewable Energy Forecasting Systems
	Energy Data Management: Where Are We Headed? (panel)

	Exploratory Search in Databases and the Web (ExploreDB)
	Exploratory Search in Databases and the Web
	Exploring Big Data using Visual Analytics
	On the Suitability of Skyline Queries for Data Exploration
	Hippalus: Preference-enriched Faceted Exploration
	The DisC Diversity Model
	Exploring RDF/S Evolution using Provenance Queries
	Skyline Ranking à la IR
	Multi-Engine Search and Language Translation

	Querying Graph Structured Data (GraphQ)
	An Event-Driven Approach for Querying Graph-Structured Data Using Natural Language
	GraphMCS: Discover the Unknown in Large Data Graphs
	Graph-driven Exploration of Relational Databases for Efficient Keyword Search
	Implementing Iterative Algorithms with SPARQL
	A Map-Reduce algorithm for querying linked data based on query decomposition into stars
	Performance optimization for querying social network data
	Frequent Pattern Mining from Dense Graph Streams

	Linked Web Data Management (LWDM)
	Quantifying the Connectivity of a Semantic Warehouse
	Scalable Numerical SPARQL Queries over Relational Databases
	Similarity Recognition in the Web of Data
	Mining of Diverse Social Entities from Linked Data
	TripleGeo: an ETL Tool for Transforming Geospatial Data into RDF Triples

	Multimodal Social Data Management (MSDM)
	Social Data and Multimedia Analytics for News and Events Applications
	Event Identification and Tracking in Social Media Streaming Data
	Recommendation of Multimedia Objects for Social Network Applications
	Estimating Completeness in Streaming Graphs

	Mining Urban Data (MUD)
	Mining Trajectory Data for Discovering Communities of Moving Objects
	Mobile Sensing Data for Urban Mobility Analysis: A Case Study in Preprocessing
	Crowd Density Estimation for Public Transport Vehicles
	Traffic Incident Detection Using Probabilistic Topic Model
	Predictive Trip Planning – Smart Routing in Smart Cities
	Addressing the Sparsity of Location Information on Twitter
	Efficient Dissemination of Emergency Information using a Social Network
	Crowdsourcing turning restrictions for OpenStreetMap
	Big data analytics for smart mobility: a case study
	Smart Applications for Smart City: a Contribution to Innovation
	Analysis of Relationships Between Road Traffic Volumes and Weather: Exploring Spatial Variation
	SiCi Explorer: Situation Monitoring of Cities in Social Media Streaming Data
	A Cascading Wavelet-Feed Forward Neural Network Approach for Forecasting Traffic Flow
	Combining a Gauss-Markov model and Gaussian process for traffic prediction in Dublin city center
	Sensing Urban Soundscapes

	Privacy and Anonymity in the Information Society (PAIS)
	A Hybrid Approach for Privacy-preserving Record Linkage
	Clustering-based Multidimensional Sequence Data Anonymization
	Efficient Multi-User Indexing for Secure Keyword Search
	Community Detection in Anonymized Social Networks
	Secure Multi-Party linear Regression
	Data Anonymization: The Challenge from Theory to Practice
	A Privacy Preserving Model for Ownership Indexing in Distributed Storage Systems

