
Estimating Completeness in Streaming Graphs

Malay Bhattacharyya
Department of C.S.E.
University of Kalyani

malaybhattacharyya
@klyuniv.ac.in

Supratim Bhattacharya
Department of C.S.E.
University of Kalyani

bhattacharya.supratim
@gmail.com

Sanghamitra

Bandyopadhyay
⇤

Machine Intelligence Unit
Indian Statistical Institute

sanghami@isical.ac.in

ABSTRACT

Finding the completeness of a graph is important from vari-
ous aspects. Considering the massive growth and dynamics
of real-life networks, we readdress this problem in a stream-
ing setting. We approach the problem of verifying the com-
pleteness of a graph by estimating the eigen values of a
sketch of its adjacency matrix. Here, we provide the first
approximation algorithm for estimating the completeness of
a bipartite graph in the streaming model. The approach is
further generalized for any arbitrary simple graph. We em-
ploy some useful recent results on `

1

heavy eigen-hitters to
construct the algorithms working in linear time and consum-
ing sublinear space. The implementation of the algorithms
have also been done and tested on a couple of networks.
We illustrate the e↵ectiveness of the proposed approaches
in analyzing social, biological and other real-life networks.

Categories and Subject Descriptors

E.1 [Data Structures]: Graphs and Networks; F.2 [Analysis
of Algorithms and Problem Complexity]: Nonnumeri-
cal Algorithms and Problems; G.2.2 [Discrete Mathemat-
ics]: Graph Theory

General Terms

Theory, Design, Analysis

Keywords

Streaming model, complete graphs, heavy eigen-hitter

1. INTRODUCTION
Graphs and networks are suitable descriptors of various

real-life environments like social activity, professional collab-
oration, web activity, etc. [12, 16]. They reflect local and
global relationships between the objects, which they model.

⇤Corresponding author.

(c) 2014, Copyright is with the authors. Published in the Workshop Pro-
ceedings of the EDBT/ICDT 2014 Joint Conference (March 28, 2014,
Athens, Greece) on CEUR-WS.org (ISSN 1613-0073). Distribution of this
paper is permitted under the terms of the Creative Commons license CC-
by-nc-nd 4.0.

Studying how these objects interact with each other is use-
ful from di↵erent perspectives. A graph is complete if all
of its objects are connected to each other [5]. We are often
interested to find out whether a graph is complete or not.
Verifying the completeness of a graph consumes quadratic
space and time with respect to its order. Considering the
massive growth and dynamics of real-life networks, this be-
comes time/space ine�cient. Therefore, designing sublinear
algorithms is very important in massive data analytics [15].

Due to the explosive growth of volume of the real-life
datasets (the emergence of big data), many of the computa-
tional problems have been redefined to overcome the bottle-
necks of time/space complexity. In this paper, we readdress
the problem of verifying the completeness of a graph in a
streaming model. In streaming models, the data are avail-
able as a sequence of items (stream) and the data cannot
be stored entirely [20]. Therefore, we have to examine the
data within a few passes (may be single) as the available
memory is also limited. Again, the processing time per item
has to be sublinear. This imposes a new kind of uncertainty
in computing beyond approximation and randomization.

Here, we consider that the adjacency matrix of a graph
is available as a stream. Adopting a turnstile model, we
estimate completeness of the corresponding graph based on
the `

1

norm. Initially, we study the problem for a bipartite
graph in the streaming model and generalize it further for
any arbitrary simple graph. We employ some recent approx-
imation results on `

1

heavy eigen-hitters to find out top k
eigen values, respectively [3]. The proposed algorithms run
in linear time and consumes space proportional to k2 and
the error parameters. We also demonstrate the e↵ective-
ness of the approaches in analyzing social and other real-life
networks.

The current paper is organized as follows. Some back-
ground details and motivating applications are included in
section 2 and section 3, respectively. Section 4 describes
the state-of-the-art. Some theoretical results are provided
in section 5 and based on this the proposed method is pre-
sented in section 6. Section 7 and section 8 cover some em-
pirical results and discussions. Finally, section 9 concludes
the paper.

2. PRELIMINARIES
Let us introduce some formal notations and standard def-

initions that will be used throughout the paper. We assume
that |S| denotes the size (cardinality) of a set S. A graph
is a doublet G = (V, E), where V denotes the set of vertices
and E ✓ V ⇥ V denotes the set of edges. The term graph

294



Figure 1: A complete bipartite graph with the sets
of disjoint vertices {v

1

, v
2

} and {v
3

, v
4

, v
5

, v
6

}.

is used to refer to a simple graph (without self-loops or par-
allel edges [7]) that is undirected and labeled. Suppose the
adjacency matrix of a graph G is denoted as AG. A sub-
graph of a graph contains a subset of the vertices and edges.
A subgraph is said to be induced by a vertex set if it has
exactly the edges that appear in the original graph over the
same vertex set. A graph is complete if all of its vertices
are connected to each other, i.e. E = V ⇥ V . A clique is
a complete subgraph (often restricted to be maximal) of a
graph [5]. A graph is said to be bipartite if its vertices can
be segregated into two disjoint subsets, say V

1

, V
2

, such that
V

1

\ V
2

= �, V
1

[ V
2

= V and E ✓ V
1

⇥ V
2

. A complete
bipartite graph has exactly |V

1

| ⇥ |V
2

| edges (see Fig. 1).
The other notations and graph-theoretic terminologies have
their usual meaning, unless specified otherwise.

In this study, we assume that graphs are available under
a streaming setting. In conventional data streaming models,
the input stream < s

1

, s
2

, · · · > arrives sequentially (item-
wise) and describes an underlying signal [11]. The stream-
ing models vary one from the other depending upon how the
si’s represent the signal. Here, we consider a turnstile model
where the underlying signal S is a one-dimensional function
S : [1 . . . N ] ! R, R denoting the real space, where the si’s
are updates to S[j]’s [20]. Note that in case of streaming
graphs, represented as a real symmetric adjacency matrix,
we obtain a strict turnstile model by default where S[j]’s
are always non-negative. Inspired from the earlier formal-
izations [9], we define a streaming graph in a strict turnstile
model as follows.

Definition 1. A streaming graph in a strict turnstile model
is a simple graph on n vertices V = {v

1

, v
2

, . . . , vn} with
edges E = {(vi, vj) : sk = (i, j) for some k 2 [m]}, where
the data items sk 2 [n]⇥ [n] are available as an input stream
S =< s

1

, s
2

, . . . , sm > pursuing a strict turnstile model.

In this paper, we address a stronger version of the stream-
ing problems involving linear time and sublinear space. To
formalize, we would like the per-item processing time, stor-
age and overall computing time to be simultaneously O(N, t),
preferably polylog(N, t), at any time instant t in the data
stream. A sketch is often necessary to map the original
space to a reduced space, retaining the necessary proper-
ties, to achieve this. We formally define a sketch as follows.

Definition 2. A sketch  of a data set x, with respect to
some function f , is a projection of x !  from which one
can compute f(x).

Our proposed algorithms and the related theoretical re-
sults are mainly based on approximating the heavy eigen-
hitters in a streaming graph. We include the definition of
heavy eigen-hitters below.

Definition 3. The �-heavy eigen-hitters of a graph G are
the eigen values that are at least �-fraction of the total mass
of all the eigen values of the matrix AG.

In Definition 3, the total mass of eigen values represents,
in a simpler understanding, the summation of all the eigen
values. A norm is a function that assigns a strictly positive
length (or size) to each vector in a vector space, other than
the zero vectors (having a length zero). In general, we define
the `p norm as follows.

Definition 4. For any non-zero vector x, the `p norm is
defined as

||x||p = (
nX

i

|x|

p)1/p, (1)

where p � 1 denotes a real constant.

Definition 5. The `
1

heavy eigen-hitters are the heavy
eigen-hitter values based on the total mass in `

1

norm.

We discuss some real-life applications of estimating com-
pleteness in a streaming graph in the subsequent section.

3. MOTIVATING APPLICATIONS
Recent e↵orts in analyzing the available massive volume

of data have assisted in both productivity growth and in-
novation in the industry and academia. It has immense
potential in understanding the World Wide Web (WWW),
financial sectors, medical analytics, public service domains,
etc. Graphs can highlight large-scale global relations in ef-
fective ways for streaming data. Therefore, many futuristic
applications are addressable with graph problems. Our tar-
get problem of estimating the completeness of a graph in a
streaming model is also of high importance. We foresee a
number of applications of this problem in various emerging
areas of big data. Three of these are highlighted below.

• Social network analysis: Social communication at
large-scale, rooted in WWW, has enabled the model-
ing of trillions of interactions between various social
groups (e.g., researchers, students, actors, etc.). For
the last decade or so, there is a massive growth of
un-analyzed data in this area. Various other social
communication methods like social networking web-
sites (Facebook, Twitter, etc.), smart phones, multi-
media applications, etc. are also contributing to these
growing volumes of networked data. This increases
the amount of dataflow per unit time and area. In
accordance with this growth of data, analyses started
with representing a network as a graph where the ver-
tices are the elements and the edges denote their re-
lations. Studying such large-scale graphs and their
topologies might provide important features about the
participating elements. Analyzing the dynamics of so-
cial networks is also interesting from di↵erent perspec-
tives. Completeness can be verified for a portion of the
streaming data so as to ensure whether the correspond-
ing set of vertices (or a subgraph) arriving currently is

295



forming a clique or not. Again, the completeness of
bipartite graphs may reveal interactions at the maxi-
mum scale between two di↵erent social groups. These
are very important in a streaming setting. A recent
attempt has shown that spreading rumors in real-life
social networks is (surprisingly) faster than in complete
graphs [8]. Therefore, studying graph completeness is
also important for benchmarking analyses.

• Analysis of biological networks: Biological sys-
tems are often modeled as a network of biomolecules
for understanding their cooperative activity. With the
advancements of high-throughput technologies, enor-
mous amount of experimental data is becoming ac-
cessible day by day. Biological networks may not be
available as a stream but analyzing networks in lin-
ear/sublinear time/space is useful for dynamic sequenc-
ing of genes or for studying protein-protein interac-
tions. Estimating completeness in such large-scale bi-
ological networks might help in prompt identification
of strongly connected components. In a spreading dis-
ease network, biomolecules get rapidly a↵ected by one
another and such behaviors can be analyzed with com-
pleteness verification models. The broader goal is cer-
tainly to facilitate the system level understanding of
cell-to-cellular components and its subprocesses.

• Studying communication networks: The num-
ber of communication service providers has rapidly in-
creased over the last few decades around the world.
Their growth has not only increased the volume of data
but also its variability. This type of data can also be
modeled as a network to understand various proper-
ties. Analyzing such networks might help the service
providers to decide whether they should involve new
services. Estimating completeness in such networks
will be helpful in identifying the saturation of connec-
tivity. This will invoke the demand of new communica-
tion providers. Again for the better understanding of a
dynamic setting, we need to study the communication
networks modeled on streaming graphs.

In the following section, we discuss the state-of-the-art of
finding completeness of graphs, estimating cliques and the
related progresses in streaming algorithms.

4. RELATED WORKS
Verifying the completeness of a graph is a special case of

clique problems. A graph is complete if its clique number is
of the order of the graph. Finding the maximum order clique
in a graph is known to be an NP-hard problem [5]. An im-
portant study about a decade ago showed that the approxi-
mation of a maximal clique in polynomial time is hard within
a factor of n1�" (for any " > 0), unless NP = ZPP (where n
is the number of vertices in the graph) [14]. ZPP stands for
zero-error probabilistic polynomial time. The problems in
ZPP can be exactly solved in expected polynomial time by
a probabilistic algorithm. It is strongly believed that ZPP ⇢

NP and the hypothesis NP 6= ZPP is almost as strong as P
6= NP [14], where P denotes the decision problems solvable
in polynomial time using a deterministic Turing machine.
For this reason, many of the recent algorithms to solve the
maximum clique problem (MCP) are based on metaheuristic
approaches [4]. To approximate cliques, spectral approaches

showed promise in earlier studies. Spectral graph theory is
also important in analyzing the bounds of completeness. A
few attempts were made earlier to estimate the chromatic
number of a graph using eigen values [22], which can be
further related with the clique number of a graph. Based
on eigen value computations, several upper bounds on the
clique number were derived previously [2]. Recently, these
bounds (and also lower bounds) were tightened further [6].
Current studies indicate that a relation with the spectral
radius with the clique might help us to estimate the upper
bound of the clique in a streaming model [17].

Streaming algorithms have been in focus for more than
a decade. But this domain is still in a nascent stage. The
limited earlier contributions before 2005 have been well re-
viewed in [20]. While presenting this survey, Muthukrish-
nan also addressed some real life problems based on stream-
ing models. Following this, diverse e↵orts were made to re-
visit and solve a number of problems in a streaming setting.
There were studies on matrix approximation, matrix decom-
position, low rank approximation, `p regression, etc. [13, 17,
18]. There has been an influential line of work on computing
a low-rank approximation of a given matrix, starting with
the works of [10, 21]. A lot of works were done on linear
algebra in a streaming model. Also low rank approximation
made the analysis of massive data less complicated. Very re-
cently, the `

1

and `
2

heavy eigen-hitter problems have been
estimated in the streaming model in a lower dimension [3].
Notably, the heavy eigen-hitters problem was first proposed
in [20]. Andoni and Huy achieved a success probability of
5

9

[3]. They also estimated the residual error with the same
probabilistic accuracy. Sampling and sketching methods for
producing low-complexity approximations of large matrices
is in focus for the last few decades. We estimated the com-
pleteness of a graph in the streaming model based on the
computations of `

1

heavy eigen-hitters.

5. THEORETICAL RESULTS
In this section, we present some useful theoretical out-

comes and derive some new results that will be helpful in
devising the proposed algorithms. Let AG be a real symmet-
ric n⇥n (n � 1) matrix denoting the adjacency relations in
a graph G. Further assume �i(AG) be the ith largest eigen
value of AG in absolute value. Now, if  represents a sketch
of the matrix AG where  = PAGP T . Then, we have the
following important result from a recent study [3].

Theorem 1. There is a linear sketch of the real symmet-
ric matrix AG, of dimension n⇥n, using space O(k2✏�4)(✏ >
0, k 2 {1, 2, . . . , n}), from which one can produce values �̃i,
for i 2 [k], satisfying the following with at least 5

9

success
probability

|�i(AG) � �̃i|  ✏|�i(AG)| +
1
k

Sk+1

1

,

where Sk+1

1

=
P

i>k |�i(AG)| denotes the residual “`
1

error”.

Now, we derive the following result on bipartite graphs
using the previous claim in Theorem 1.

Theorem 2. On fixing a value of ✏ > 0, one can ensure
whether G is a complete bipartite graph by deriving a lin-
ear sketch  from AG whose top two heavy eigen-hitters in
absolute value should be the same satisfying

�
1

( ) = (1 ± ✏)�
1

(AG) ± S2

1

,

296



and

�
2

( ) = (1 ± ✏)�
2

(AG) ± 0.5S3

1

,

and the third largest eigen value satisfies

�
3

( ) = ±0.3̇S4

1

.

Proof. The eigen values of a complete bipartite graph G
can be ordered as {�

1

(AG), 0, . . . , 0, �n(AG)}, where �
1

(AG)
= ��n(AG) = � (say) [2]. Therefore, if we obtain a decreas-
ing order of the eigen values of AG in absolute value, we
would get {�,�, 0, . . . , 0}. Since G does not contain any
self-loops, the trace of AG should be zero. Then, we can
write

nX

i=1

�i(AG) = 0.

It is understandable that if the eigen values are decreas-
ingly ordered by absolute value, say {�0

1

(AG),�0

2

(AG), . . . ,
�0

n(AG)}, and if �0

1

(AG) = �0

2

(AG) and �0

3

(AG) = 0, then
rest of the eigen values of AG will be certainly zero. This
is because the rest of the eigen values cannot be negative
(being in absolute value) and no more than zero (being in
decreasing order). So, it is su�cient for AG, to have the
first two largest eigen values same in absolute value and the
third one zero, for claiming that the corresponding graph
G is complete bipartite. Now, from Theorem 1, we can de-
rive that the first k eigen values, for a particular ✏ > 0, will
satisfy the following for a linear sketch  

�i( ) = (1 ± ✏)�i(AG) ±

1
k

Sk+1

1

, (2)

Using Eqn. (2), one can verify whether the first two largest
eigen values are same and estimate their values from the
sketch  satisfying

�
1

( ) = (1 ± ✏)�
1

(AG) ±

1
1
S1+1

1

=) �
1

( ) = (1 ± ✏)�
1

(AG) ± S2

1

.

and similarly

�
2

( ) = (1 ± ✏)�
2

(AG) ±

1
2
S2+1

1

=) �
2

( ) = (1 ± ✏)�
2

(AG) ± 0.5S3

1

.

Again, one can verify whether the third largest eigen value
is zero and estimate its value from the sketch  satisfying

�
3

( ) = (1 ± ✏)�
3

(AG) ±

1
3
S3+1

1

=) �
3

( ) = (1 ± ✏).0 ± 0.3̇S4

1

=) �
3

( ) = ±0.3̇S4

1

.

This altogether completes the required proof.

Theorem 3. On fixing a value of ✏ > 0, one can ensure
whether G is a complete graph by deriving a linear sketch  
from AG whose top two heavy eigen-hitters in absolute value
satisfy the following

�
1

( ) = (1 ± ✏)(n � 1) ± S2

1

.

and

�
2

( ) = (✏± 1) ± 0.5S3

1

.

Proof. The eigen values of a complete graph G can be
ordered as {n � 1, �1, ..., �1} [2]. Therefore, if we obtain a
decreasing order of the eigen values of AG in absolute value,
we would get {n�1, 1, . . . , 1}. Since G does not contain any
self-loops, the trace of AG should be zero. Then, we can
write

nX

i=1

�i(AG) = 0.

It is understandable that if the eigen values are decreas-
ingly ordered by absolute value, say {�0

1

(AG),�0

2

(AG), . . . ,
�0

n(AG)}, and if �0

1

(AG) = n � 1 and �0

2

(AG) = 1, then
certainly the rest of the eigen values of AG should also be
one. This is because the rest of the eigen values cannot be
negative (being in absolute value) and no more than one
(being in decreasing order). So, it is su�cient for AG, to
have the first two largest eigen values as n � 1 and one, re-
spectively, for claiming that the corresponding graph G is
complete. We have already derived that the first k eigen
values, for a particular ✏ > 0, will satisfy Eqn. (2) for a lin-
ear sketch  . Then using this, the first largest eigen value
can be estimated as

�
1

( ) = (1 ± ✏).�
1

(AG) ±

1
1
S1+1

1

=) �
1

( ) = (1 ± ✏).(n � 1) ± S2

1

.

and the second largest eigen value can be estimated as

�
2

( ) = (1 ± ✏).�
2

(AG) ±

1
2
S2+1

1

=) �
2

( ) = (1 ± ✏).(�1) ± 0.5S3

1

=) �
2

( ) = (✏ ± 1) ± 0.5S3

1

.

This altogether completes the required proof.

In the next section, we present our approaches for com-
pleteness verification of bipartite graphs and any arbitrary
graph in a streaming setting.

6. PROPOSED METHOD
Our algorithms are principally based on the concept of

generating a projection P , of size O(k/✏2) by n, and com-
puting the sketch  = PAGP T for `

1

to retain (and thus
estimate) the properties of the heavy eigen-hitters as close
as possible. This saves the space requirements and computa-
tional time together. The method of verifying completeness
of bipartite graphs is formally presented as Algorithm 1.
Theorem 2 serves as the base of this approach. Note that,
for estimating the completeness of bipartite graphs, we re-
quire the top two eigen values in absolute value to be same
in original matrix AG, i.e. �

1

(AG) = �
2

(AG) = � (say).
Therefore, the eigen value di↵erences in the sketch matrix
 result into the following relation (using Theorem 2).

�
1

( ) � �
2

( ) = ±2✏�± S2

1

± 0.5S3

1

.

This provides an error estimation of the relation derived
in Theorem 2.

In Algorithm 2, we present the formal approach of veri-
fying completeness of any arbitrary graph. This is a more
generalized approach with a fewer number of eigen value es-
timations. We mainly use the results from Theorem 3 to
devise this algorithm. In both the algorithms described, for

297



Algorithm 1 An algorithm for estimating completeness of
bipartite graphs

Input: The adjacency matrix AG of the bipartite graph G.
Output: The decision about the completeness of G.
Algorithmic Steps:

1: Obtain a sketch  = PAGP T , where P is a t ⇥ n ma-

trix with ⇥( log

2 n
✏2

)-wise independent entries identically
distributed as N(0, 1

t
).

2: Compute the top three largest eigen values of  in the
decreasing order denoted as �

1

( ), �
2

( ) and �
3

( ),
respectively.

3: if �
1

( ) = �
2

( ) and �
3

( ) = ±0.3̇S4

1

then
4: G is a complete bipartite graph.
5: end if

bipartite and general graphs, the ⇥( log

2 n
✏2

)-wise independent
entries for the random matrix P are generated following an
earlier approach [1].

Algorithm 2 An algorithm for estimating completeness of
any arbitrary graph

Input: The adjacency matrix AG of the graph G.
Output: The decision about the completeness of G.
Algorithmic Steps:

1: Obtain a sketch  = PAGP T , where P is a t ⇥ n ma-

trix with ⇥( log

2 n
✏2

)-wise independent entries identically
distributed as N(0, 1

t
).

2: Compute the top two largest eigen values of  in the de-
creasing order denoted as �

1

( ) and �
2

( ), respectively.
3: if �

1

( ) = (1±✏)(n�1)±S2

1

and �
2

( ) = (✏±1)±0.5S3

1

then
4: G is a complete graph.
5: end if

7. EMPIRICAL STUDY
We considered two real-life networks for testing the out-

come of the proposed algorithms. The algorithms were im-
plemented in MATLAB and the simulations were performed
on an HP Laptop with Intel(R) Core(TM) i5-2410M proces-
sor running at 2.30 GHz speed and having 4 GB primary
memory. one of these networks is a complete bipartite graph
and the other one is sparse. The experimental procedures
are briefly discussed below.

7.1 Study on Synthetic Networks
We have constructed two synthetic networks, one com-

plete bipartite and another complete network, both hav-
ing orders 40 for performance analysis of the proposed ap-
proaches. The complete bipartite network has equal number
of partitions. In both these cases, dimension of the sketch
matrix becomes t ⇥ 40. We have varied t from 10 to 25 and
several arbitrary matrices are generated by employing ran-
dom selection method on a normal distribution (identically)
with parameters (0, 0.01). Finally, the eigen values are esti-
mated (using Algorithm 1 and Algorithm 2) and compared
with the original values. The obtained eigen values indicate
their completeness. The Figs. 2(a-b) show the accuracies
of the eigen values against the di↵erence of dimensions be-
tween the sketch and the original matrix. It becomes clear

(a)

(b)

Figure 2: The average accuracy obtained against the
sketch di↵erence of the synthetic (a) complete bipar-
tite network and (b) complete network.

that the performance rapidly improves after certain thresh-
old. So, proper selection of the dimension of the sketch
vector is very much important.

7.2 Study on Social Networks
We have used a large-scale social interaction data of Face-

book, consisting of ‘circles’ (denoting ‘friends lists’), from a
recent study [19]. This interaction data is used to construct
a large undirected unweighted social network having 4039
vertices and 88234 edges. The average clustering coe�cient
of the network is found to be 0.61, establishing that it is not
complete. We have analyzed this and computed a sketch of
dimension 100 ⇥ 4039 with elements identically distributed
in N(0, 0.01). Finally, Algorithm 2 is applied on this. The
obtained eigen values are found to be quite far from the
values supporting its completeness (as per Theorem 3).

8. DISCUSSION
The approaches to completeness verification presented in

the current paper is important from two di↵erent perspec-
tives. First, the theoretical results provided might be useful
in estimating the clique number of a graph that depends
on the number of eigen values no greater than ‘�1’ [2]. Sec-
ondly, the implementation details might be useful is develop-
ing many other algorithms that work in a streaming setting.
Our assumption of a strict turnstile model does not weaken
the results because the problem demands so. The real sym-
metric form of adjacency matrices of streaming graphs can
be well captured using a turnstile model. Our attempts of
utilizing heavy eigen-hitters are also very promising. The
approaches to standard vector heavy hitters return the ele-
ments that are most frequent (heavy coordinates) [20]. On
the contrary, our methods do not find the elements that are
heavy hitters. This saves an additional factor of O(log n)
to the space requirements (ignoring the random seed size).

298



Another significant advantage of the proposed algorithms is
that their performances are independent of the seed selec-
tion for generating random matrices. It might appear that
the algorithms work only on static graphs (i.e. on a fixed
adjacency matrix) to compute the sketches. But they also
work in a streaming setting because the algorithms, being
linear in computational time, are also capable of supporting
arbitrary updates to the matrix. The major limitation of our
approaches is that the success probabilities are still low since
they rely on multiple applications of Theorem 1. Again, it
might be criticized that large real-life networks, like social
entities and their interactions, are rarely complete. But the
approaches of estimating completeness are still applicable
where time is a major constraint. Therefore, the proposed
methods are very much generalized.

9. CONCLUSION
In this paper, we have provided the first approximation al-

gorithms for estimating the completeness of bipartite graphs
and, in general, any arbitrary graph. Our results are promis-
ing and useful for diverse applications. We have also imple-
mented the proposed algorithms and verified results on two
test cases. The approaches are promising for many further
directions of research on big data at a network level. How-
ever, the success probabilities of our algorithms are still poor
that we would like to improve in near future. Again, we wish
to extend the current analysis using property testing.

10. ACKNOWLEDGMENTS
The authors are thankful to Huy L. Nguyen in the de-

partment of Computer Science of Princeton University for
his important feedback over an initial draft of the paper.

11. REFERENCES
[1] N. Alon, O. Goldreich, J. H̊astad, and R. Peralta.

Simple constructions of almost k-wise independent
random variables. Random Stuctures and Algorithms,
3(3):289–304, 1992.

[2] A. T. Amin and S. L. Hakimi. Upper bounds on the
order of a clique of a graph. SIAM Journal on Applied
Mathematics, 22(4):569–573, 1972.

[3] A. Andoni and H. L. Nguyen. Eigenvalues of a matrix
in a streaming model. In Proceedings of the 24th
Annual ACM-SIAM Symposium on Discrete
Algorithms, pages 1729–1737, New Orleans, USA,
2013.

[4] S. Bandyopadhyay and M. Bhattacharyya. Mining the
largest dense vertexlet in a weighted scale-free graph.
Fundamenta Informaticae, 96:1–25, 2009.

[5] I. M. Bomze, M. Budinich, P. M. Pardalos, and
M. Pelillo. The maximum clique problem. In D. Z. Du
and P. M. Pardalos, editors, Handbook of
Combinatorial Optimization: Supplementary Volume
A, pages 1–74. Kluwer Academic, Dordrecht, 1999.

[6] M. Budinich. Exact bounds on the order of the
maximum clique of a graph. Discrete Applied
Mathematics, 127:535–543, 2003.

[7] R. Diestel. Graph Theory. Springer-Verlag Heidelberg,
New York, 2005.

[8] B. Doerr, M. Fouz, and T. Friedrich. Why rumors
spread fast in social networks. Communications of the
ACM, 55(6):70–75, 2012.

[9] J. Feigenbaum, S. Kannan, A. McGregor, and S. Suri.
Graph distances in the data stream model. SIAM
Journal of Computing, 38(5):1709–1727, 2008.

[10] A. Frieze, R. Kannan, and S. Vempala. Fast
monte-carlo algorithms for finding low-rank
approximations. Journal of the ACM,
51(6):1025–1041, 2004.

[11] A. Gilbert, Y. Kotidis, S. Muthukrishnan, and
M. Strauss. Surfing wavelets on streams: One pass
summaries for approximate aggregate queries. In
Proceedings of the 27th International Conference on
Very Large Data Bases, pages 79–88, San Francisco,
CA, USA, 2001.

[12] M. Girvan and M. E. J. Newman. Community
structure in social and biological networks.
Proccedings of the National Academy of Sciences USA,
99:7821–7826, 2002.

[13] N. Halko, P. G. Martinsson, and J. A. Tropp. Finding
structure with randomness: Probabilistic algorithms
for constructing approximate matrix decompositions.
SIAM Review, 53(2):217–288, 2011.

[14] J. H̊astad. Clique is hard to approximate within n1�".
Acta Mathematica, 182(1):105–142, 1999.

[15] P. Indyk, R. Levi, and R. Rubinfeld. Approximating
and testing k-histogram distributions in sub-linear
time. In Proceedings of the 31st ACM
SIGMOD-SIGACT-SIGART Symposium on Principles
of Database Systems, pages 15–22, Scottsdale,
Arizona, 2012.

[16] H. Ino, M. Kudo, and A. Nakamura. Partitioning of
web graphs by community topology. In Proceedings of
the 14th International World Wide Web Conference,
pages 661–669, Chiba, Japan, 2005.

[17] R. Kannan and S. Vempala. Spectral algorithms.
Foundations and Trends in Theoretical Computer
Science, 4(3-4):157–288, 2009.

[18] M. W. Mahoney. Randomized algorithms for matrices
and data. Foundations and Trends in Machine
Learning, 3(2):123–224, 2011.

[19] J. McAuley and J. Leskovec. Learning to discover
social circles in ego networks. In Proceedings of the
Neural Information Processing Systems, pages
548–556, 2012.

[20] S. Muthukrishnan. Data streams: Algorithms and
applications. Foundations and Trends in Theoretical
Computer Science, 1(2), 2005.

[21] C. H. Papadimitriou, P. Raghavan, H. Tamaki, and
S. Vempala. Latent semantic indexing: a probabilistic
analysis. Journal of Computer and System Sciences,
61(2):217–235, 2000.

[22] H. S. Wilf. The eigenvalues of a graph and its
chromatic number. Journal of the London
Mathematical Society, 42(1):330–332, 1967.

299


	Message from the Chairs
	Algorithms for MapReduce and Beyond (BeyondMR)
	Scheduling MapReduce Jobs on Unrelated Processors
	Binary Theta-Joins using MapReduce: Efficiency Analysis and Improvements
	On the design space of MapReduce ROLLUP aggregates
	Determining the k in k-means with MapReduce
	Tagged Dataflow: a Formal Model for Iterative Map-Reduce
	Processing Regular Path Queries on Giraph
	Graph-Parallel Entity Resolution using LSH & IMM
	Modular Data Clustering - Algorithm Design beyond MapReduce

	Bidirectional Transformations (BX)
	Preface to the Third International Workshop on Bidirectional Transformations
	Implementing a Bidirectional Model Transformation Language as an Internal DSL in Scala
	Towards a Framework for Multidirectional Model Transformations
	Formalizing Semantic Bidirectionalization with Dependent Types
	BenchmarX
	Towards a Repository of Bx Examples
	Intersection Schemas as a Dataspace Integration Technique
	Bidirectional Transformations in Database Evolution: A Case Study ``At Scale''
	Entangled State Monads
	Spans of lenses

	Energy Data Management (EnDM)
	Pipeline Production Data Model
	Renewable Energy Data Sources in the Semantic Web with OpenWatt
	A Generic Ontology for Prosumer-Oriented Smart Grid
	Computing Electricity Consumption Profiles from Household Smart Meter Data
	ECAST: A Benchmark Framework for Renewable Energy Forecasting Systems
	Energy Data Management: Where Are We Headed? (panel)

	Exploratory Search in Databases and the Web (ExploreDB)
	Exploratory Search in Databases and the Web
	Exploring Big Data using Visual Analytics
	On the Suitability of Skyline Queries for Data Exploration
	Hippalus: Preference-enriched Faceted Exploration
	The DisC Diversity Model
	Exploring RDF/S Evolution using Provenance Queries
	Skyline Ranking à la IR
	Multi-Engine Search and Language Translation

	Querying Graph Structured Data (GraphQ)
	An Event-Driven Approach for Querying Graph-Structured Data Using Natural Language
	GraphMCS: Discover the Unknown in Large Data Graphs
	Graph-driven Exploration of Relational Databases for Efficient Keyword Search
	Implementing Iterative Algorithms with SPARQL
	A Map-Reduce algorithm for querying linked data based on query decomposition into stars
	Performance optimization for querying social network data
	Frequent Pattern Mining from Dense Graph Streams

	Linked Web Data Management (LWDM)
	Quantifying the Connectivity of a Semantic Warehouse
	Scalable Numerical SPARQL Queries over Relational Databases
	Similarity Recognition in the Web of Data
	Mining of Diverse Social Entities from Linked Data
	TripleGeo: an ETL Tool for Transforming Geospatial Data into RDF Triples

	Multimodal Social Data Management (MSDM)
	Social Data and Multimedia Analytics for News and Events Applications
	Event Identification and Tracking in Social Media Streaming Data
	Recommendation of Multimedia Objects for Social Network Applications
	Estimating Completeness in Streaming Graphs

	Mining Urban Data (MUD)
	Mining Trajectory Data for Discovering Communities of Moving Objects
	Mobile Sensing Data for Urban Mobility Analysis: A Case Study in Preprocessing
	Crowd Density Estimation for Public Transport Vehicles
	Traffic Incident Detection Using Probabilistic Topic Model
	Predictive Trip Planning – Smart Routing in Smart Cities
	Addressing the Sparsity of Location Information on Twitter
	Efficient Dissemination of Emergency Information using a Social Network
	Crowdsourcing turning restrictions for OpenStreetMap
	Big data analytics for smart mobility: a case study
	Smart Applications for Smart City: a Contribution to Innovation
	Analysis of Relationships Between Road Traffic Volumes and Weather: Exploring Spatial Variation
	SiCi Explorer: Situation Monitoring of Cities in Social Media Streaming Data
	A Cascading Wavelet-Feed Forward Neural Network Approach for Forecasting Traffic Flow
	Combining a Gauss-Markov model and Gaussian process for traffic prediction in Dublin city center
	Sensing Urban Soundscapes

	Privacy and Anonymity in the Information Society (PAIS)
	A Hybrid Approach for Privacy-preserving Record Linkage
	Clustering-based Multidimensional Sequence Data Anonymization
	Efficient Multi-User Indexing for Secure Keyword Search
	Community Detection in Anonymized Social Networks
	Secure Multi-Party linear Regression
	Data Anonymization: The Challenge from Theory to Practice
	A Privacy Preserving Model for Ownership Indexing in Distributed Storage Systems


