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ABSTRACT

Pervasiveness of mobile phones and the fact that the phones
have sensors make them ideal as personal sensors. Smart
phones are equipped with a wide range of motion, location
and environment sensors, that allow us to analyze, model
and predict mobility in urban areas. Raw sensory data is
being collected as time-stamped sequences of records, and
this data needs to be preprocessed and aggregated before
any predictive modeling can be done. This paper presents a
case study in preprocessing such data, collected by one per-
son over six months period. Our goal with this exploratory
pilot study is to discuss data aggregation challenges from
machine learning point of view, and identify relevant direc-
tions for future research in preprocessing mobile sensing data
for human mobility analysis.

Categories and Subject Descriptors

H.2.8 [Database Applications]: Data Mining; 1.5.2 [Pat-
tern Recognition]: Feature evaluation and selection

Keywords

mobile sensing, data preprocessing, feature extraction, ac-
celerometer, smart cities

1. INTRODUCTION

The availability and penetration of smart mobile devices
is increasing; smartphone penetration in Europe is already
more than 49% [2]. Mobile sensing systems are finding their
way in many application areas, such as monitoring human
behavior, social interactions, commerce, health monitoring,
traffic monitoring, and environmental monitoring [9].

Pervasiveness of mobile phones and the fact that they
are equipped with many sensor modalities makes them ideal
sensing devices. Since the mobile phones are personal de-
vices, we can use the idea of mobile sensing to probe the
owner of the phone and the environment, in which the user
is moving. Our general interest is to use mobile phones to
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learn about the mobility patterns of people and to reason
and predict about their mobility patterns in urban traffic
environment.

The idea of using mobile phones as sensors is not new: mo-
bile phones have been used for context recognition (e.g. [8])
and for measuring social interactions (e.g. [4]) in complex
social systems already about a decade ago.

Nowadays, smart phones are equipped with a wide range
of sensors, including motion, location and environment sen-
sors, that allow collecting rich observational data about hu-
man mobility in urban areas. Various predictive modeling
tasks can be formulated based on such data. For example,
one can be interested in recognizing the current activity of a
person [11], predict next location [6], or predicting a trajec-
tory of movement [13]. In this study, we explore challenges
of preprocessing such sensory data for machine learning pur-
poses for analyzing, modeling and predicting human mobil-
ity in urban areas. We present an experimental case study,
report lessons learned and discuss challenges for future re-
search.

The task of data preprocessing in mobile sensing is not
trivial, and there are various challenges associated with this
task. Data from sensors is collected as a sequence of time
stamped observation records. Data records are not equally
time spaced. Moreover, the timestamps of records from dif-
ferent sensors are not matching. In addition, observation
records can be of different types: recording discrete events
(e.g. battery charger plugged in), continuos processes (e.g.
acceleration), or static measurements (e.g. current temper-
ature).

The standard machine learning approaches for predictive
modeling require data to be represented as instances. In-
stance (or example, case, or record) is defined as a single
object of the world from which a model will be learned, or
on which a model will be used (e.g., for prediction) [10].
However, data recorded by mobile sensors does not come
as instances. Data comes as time stamped records, where
time stamps are different for each sensor and are not equally
spaced in time. The main data preprocessing question is,
how to aggregate such data and convert it into instances for
machine learning.

The problem of sensory data preprocessing is also not new,
typically in the literature an arbitrary data aggregation ap-
proach is chosen and briefly mentioned (or not reported at
all). However, there is a lack of dedicated studies focusing
on the problem of preprocessing itself. Furthermore, the
existing literature on preprocessing of mobile sensing data
mainly deals with feature extraction from one sensor (e.g.
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Table 1: Data collection rates (in sec.)
Until June 14  After June 14
Source Per. Dur. Per. Dur.

AccelerometerSensorProbe - 30 30
ActivityProb - - 30 30
AndroidInfoProbe 86400 - 86400 -
BatteryProbe 1800 - 1800 -
BluetoothProbe - - 300 -
CellProbe 600 - 300 30
GravitySensorProbe - 30 30 30
GyroscopeSensorProbe 120 - 30 -
HardwareInfoProbe 86400 - 86400 -
LightSensorProbe 1800 30 120 30
LocationProbe 1800 30 120 30
MagneticFieldSensorProbe 1800 30 120 30
OrientationSensorProbe 120 30 30 30
RotationVectorSensorProbe - - 30 30
RunningApplicationsProbe 60 - - -
TemperatureSensorProbe 1800 - 30 -
WifiProbe 600 - 300 -
DataUploadPeriod 3600 - 3600 -
Data annotation manual manual

accelerometer or GPS signal) [5, 14], which is only one side
of the problem. We are not aware of research works deal-
ing with the problem of synchronizing data from multiple
Sensors.

This pilot study reports an exploratory case study in ag-
gregating mobile sensing data and can be seen as the first
step towards systematic treatment of this problem. We in-
vestigate how to construct instances out of sensory data for
analyzing human mobility in three different scenarios: ag-
gregating data with manual event annotations, converting
static records to estimates of dynamic characteristics, and
aggregating data from multiple sensors for predictive model-
ing purposes. The main contribution of this study is identi-
fication (via case study), and discussion of data aggregation
challenges, as well as highlighting important questions for
future research. To demonstrate the nature of mobile sens-
ing data, we have released a data set called Sensing Venice,
which is available as an open data set at the authors’ web-
sites.

The paper is organized as follows. Section 2 presents a
case study consisting of three experiments in analyzing mo-
bility data. Section 3 summarizes the main challenges and
lessons learned from the case study with respect to data
preparations, and presents a taxonomy of settings and guide-
lines for data aggregation. Section 4 discusses open research
directions and concludes the study.

2. EXPERIMENTAL CASE STUDY

We start the case study with a description of the settings
and data, and then report methodologies and results from
the three experiments. The experiments were selected to
capture different nature of data aggregation challenges in
processing mobile sensing records. The focus of this study
is on data preparation techniques, therefore, we do not go
further into domain driven analysis of the outcomes of the
case studies and their implications from traffic management
point of view. Domain-dependent treatise is left for future
work.

2.1 Data collection and representation
Dataset has been collected using contextLogger3 [12], which
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is an open source software tool for smartphone data collec-
tion and annotation based on Funf open-sensing framework
[3]. Data was collected during the period from 2013 Febru-
ary 7 to 2014 Januray 27 using Sony Ericsson Xperia Ac-
tive phone, which is using Android OS, v2.3 (Gingerbread).
Summarizing our data collection upto January 2014, we have
over 300 million timestamped records, resulting in approxi-
mately 13 Gb of data. The capacity of the battery is 1200
mAh.

On June 14 the settings for data collection rates were
changed. Table 1 provides details on sampling period and
duration. Period indicates how often a given sensor is ac-
tivated, and duration indicates for how long the sensor is
activated. For example, if the period is 120 and the dura-
tion is 30 it means that the accelerometer is activated every
120 sec, and is collecting data for 30 sec.

We have released a mobile sensing dataset — coined Sens-
ing Venice — as open data collection, which is available at
http://users.ics.aalto.fi/jhollmen/Data/. This par-
ticular subset of data has been recorded in July 2013 in
Venice, Italy. We hope that the mobile sensing dataset
demonstrates the nature of the original raw data, and en-
courages other researchers to develop solutions to the chal-
lenges introduced in the current paper.

The experiments reported in this paper are based on the
full six months dataset.

2.2 Experiment 1: processing event annota-
tions

The first experiment investigates processing of event an-
notations. The start and the end time of an event is input
by a user. These event annotations need to be cleaned, pre-
processed and aligned with the recorded sensor data.

We illustrate these data preprocessing challenges by an
experiment in modeling accelerometer data collection rate
for different user activities. Accelerometer data is available
only from June 14, hence, we use only that period of data
in this experiment.

2.2.1 Methodology

We have two sets of recordings: event annotations and ac-
celerometer records. Both are timestamped, but the times-
tamps are not aligned in any way. First we find the minimum
(earliest) and the maximum (latest) time stamps in both
sets, and discard the records from non-overlapping parts, as
illustrated in Figure 1.

The main challenge in data preparation in this experiment
is to extract activity labels from the event annotations. An-
notations provide the start and the end time stamps of ac-
tivities. Starts and ends are not necessarily paired, i.e., it
may happen that there is a start, but no end, or there are
three starts in a row and then one end of the same activity.
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Figure 2: Accelerometer records over time.

We process annotations in a sequence. If there is a start,
we consider an activity happening (no matter how many
other starts of the same activity follow) until either of the
following three triggers appear: annotation ”stop”, annota-
tion ”invalidate”, or more than 6 hours have passed since
the start. The latter rule is arbitrary chosen, assuming that
mobility activities are typically short time.

For every second in time we create a label vector, where
currently ongoing activities are encoded as 1, and not on-
going activities are encoded as 0. We get a label matrix A
of size T' X k, where T is the number of seconds from the
beginning of data recording to the end, and k is the number
of distinct activities recorded. Obviously, longer recording
periods produce very large data files, therefore, one may
consider choosing a larger time step for aggregation (e.g.
creating a vector for every 10 sec. instead).

For modeling data collection rates, we need to process
automatically collected accelerometer data and align it with
the extracted activity labels. The time step, over which
data is aggregated, needs to match the step used for label
extraction earlier. We count the number of accelerometer
records per second for every second that accelerometer was
on. We get a vector X of size T' x 1, where each entry is a
number of records per second. Figure 2 shows the amount
of data recorded over time.

Given the extracted label matrix A and the record vector
X, we can obtain estimates for average records per second
for each activity. There is an important modeling decision
to be made. If two or more activities take place at the same
time, how does it affect the number of records? Suppose
activity a1 generates n; records per second, and activity as
generates na records. We could assume that if a1 and as
take place at the same time, n; + na records are generated.
Alternatively, we can assume that if a; and a2 take place at
the same time, max(ni,n2) records are generated. In our
experimental study we take the latter approach.

Following the first assumption, data collection rate can
be modeled as a linear regression, where the inputs are bi-
nary indicators of activities, and the output is the number
of records generated. If the second assumption is adopted,
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Figure 3: Average number of accelerometer records
per second for each activity.

each activity is modeled independently, as follows:

T

Do i

ri = T ) (1)
Zj:l Aji

where i denotes the i*" activity, aj; is the 5" entry of activity
i in matrix A, z; is the 5" entry of vector X.

Note, that this approach will automatically exclude the
periods when the phone was off and no data was collected,
since in those cases z; = 0.

With this experimental setup we anticipate that different
activities generate different number of accelerometer records.
Raw sensor data in Android is acquired by monitoring sen-
sor events. A sensor event occurs every time a sensor detects
a change in the parameters it is measuring [1]. We expect
different activities to have different acceleration patters, and
in turn to result in different data collection rates.

2.2.2  Results and observations

Figure 3 shows the resulting estimates of data collection
rates for each activity. Data aggregated in such a way can
be used, for instance, as a feature for activity recognition.
While this feature stand alone would not be enough to sep-
arate all the activities, certain activities could be well dis-
tinguished, for instance, walking.

We see that walking produces the most records per time
period, while at home or in the office activities produce the
least. These results intuitively make sense. At home or office
the phone would typically stay still on the table, hence, there
is not much motion involved.

Moreover, we can see that conceptually similar activities
appear close together, presenting similar amount of records.
For example, “elevator” is very close to “escalator” and ”fu-
nicular”, where we would expect a smooth not too fast move-
ment following a straight path. On the other spectrum of
the scale "train” and ”tram” appear nearby, both are means
of transportation over rail. From this pilot experiment we
can conclude that this preprocessing approach works and
proceed to the next experiment.
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2.3 Experiment 2: estimating the rate of change

from static measurements

Sensors record static measurements; however, sometimes
our interest may be to estimate dynamic characteristics. Ex-
amples include estimating speed of a moving object from
GPS coordinates, estimating energy consumption from bat-
tery level indications, estimating flow rates from observed
level of liquid.

The task in this experiment is to estimate how much en-
ergy is being consumed during data collection, given un-
equally time spaced observations of the battery level. The
main challenges are: deriving conversion equations, filtering
out uninformative observations, identifying and handling the
periods with missing information (when the data collection
application is off).

2.3.1 Methodology

For energy rate estimation we use level, voltage and status
information from the BatteryProbe. Level indicates the per-
centage of battery charge remaining. Voltage indicates cur-
rent voltage. Status indicates whether the phone is charging,
discharging or the battery is full. All the records have the
same time stamps.

Energy consumption in watt-hours (Wh) is computed as

E(wny = Q(man) X V(v)/1000, (2)

where @ is the electric charge in milliampere-hours (mAh),
V is voltage in volts (V).

Given data recorded by ContextLogger2, the electric charge
during the i** time period,which starts at time ¢; and ends
at time ¢;41 can be estimated as

Q'L' = QbatteTy X (Lz - Li+1)7 (3)

where L; and L;;1 are battery levels (in percentage) at the
start and the end of the period.

However, there are two challenges. Firstly, data records
are not equally spaced in time. As a result, time period 7 is
not necessarily equal to ¢ + 1 and, hence, Q); is not compa-
rable to Qi+1. Secondly, battery levels are presented in low
granularity (in rounded percents). As a result, estimation
becomes stepped, where for several records the estimated
energy consumption is zero (because L; = Li1), then sud-
denly jumps and becomes zero again.

The first challenge can be overcome by estimating the rate
of energy consumption instead of the amount of energy con-
sumed. The rate of consumption is known as power P (in
Watts), which during time period 7 can be computed as

P, = Qi x 3600/ (tis1 — t:). (4)

It is assumed that ¢ is measured in seconds.

The second challenge can be addressed by discarding all
the records of battery level, where the level remains the same
as in the preceding record. This way we get less time inter-
vals to consider, while the intervals themselves are longer.

2.3.2 Results and observations

Figure 4 plots the resulting energy consumption rate over
time. We can see that most of the time energy consumption
with ContextLogger is around 5 W. Negative energy appears
when the phone is plugged for charging.

There are higher peaks of energy power, which may be due
to switching ContextLogger on and off, when it is partially
charged. In order to estimate energy more exactly at these
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Figure 4: Estimated energy power estimates over
time.

points, we would need to know or detect when context logger
is switched on and off. Currently this information is not
available from the logs.

Overall, from this pilot experiment we can conclude that
it is possible to estimate the distribution of dynamic char-
acteristics, such as energy consumption, from static sensor
observations. However, this kind of preprocessing requires
some domain knowledge input (e.g. knowing from physics
how energy is defined). Nevertheless, we anticipate that it is
possible to define a generic model form of such estimates for
any sensor. This remains a subject of future investigation.

2.4 Experiment 3: data aggregation for pre-
dictive modeling

The goal of this experiment is to model energy consump-
tion as a function of charging status of the battery.

2.4.1 Methodology

We model energy consumption as a linear function of indi-
cator variables of the charging status: ”discharging”, "charg-
ing” and "full”. We assume that energy consumption or in-
flow should be fully covered by these three sources; hence,
we do not model the intercept (assume that the intercept is
zero). With preliminary experiments using cross-validation
we chose the Ridge regression optimization approach [7]
(A =1) for finding the regression coefficients.

In the first experiment we discarded the observations,
which did not indicate any change in the battery level. In
this experiment we use all the records. We select an aggre-
gation step s (e.g. 1 hour), which will be used to form data
instances from raw observation records.

Energy consumption data is produced as specified in Al-
gorithm 1. Voltage is estimated as (V; + Viy1)/2. Energy
power is estimated as in Eq. (4). We first divide all the
time span into time periods of length s. Within each pe-
riod we find all the observed records. We calculate energy
consumption from record to record over time. Finally, we
normalize the energy consumed from the actually observed
time period to a fixed size time period s.

For example, if our period of aggregation if one day (24h),
we may not necessarily observe records from 00:01 to 23:59.
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It may happen, that we observe records only from 8:00 to
18:00. In such case, the factual time period is 10 hours.
Hence, we would divide the observed energy consumption
by 10 and multiply by 24 (the actual period of interest).

Algorithm 1: Aggregation of energy consumption data.

Data: A time ordered sequence of battery level L,
voltage V, and timestamps ¢t (N records);
battery capacity Qpattery; aggregation step s (in
sec)

Result: Dataset: energy consumption E = (Eq, Ea,...)

(Wh) during time period s

1 forb=1to (ty —t1)/s // number of bins
2 do
3 Ep < 0, Ty < 0
4 for tnow € [t1 + (b—1)s,t1 + bs — 1] do
// all time stamps within an interval
5 Eb < Eb — Qbatte'r'y(Lnow - Lnow+1)><
6 X(Vnow + Vnow+l)/2 000,
7 Tb — Tb + tnow+1 - tnow;
8 end
9 Eb < SEb/Tb;
10 end

Charging status data is aggregated in a similar way, as
energy. For each time period b we have a three-dimensional
vector of battery status, where each dimension indicates the
percentage of time spent ”discharging”, “charging” or oper-
ating with ”full” battery. The final dataset is a matrix with
four columns, where the first three columns are the indi-
cators of battery status, and the last column is the energy
consumption. Fach row corresponds to an observation pe-
riod of 1 hour.

Since different sensors and sampling rates were active in
the first and in the second period of data collection (before
June 14 and after), we run the experiment in two parts, cor-
responding to these periods. For each period data is split
into training and testing at random (50:50%). The regres-
sion parameters were estimated on the training part, and
the model was tested on the testing part.

2.4.2 Results and observations

Table 2 presents the predictive models and their respective
accuracies. The coefficients at the charging status mean the
estimated energy consumption per hour. For example, 0.41
discharging means that when data is being collected and the
phone is not plugged in, it consumes 0.41Wh of energy per
hour. The negative coefficients mean that this is the net
amount of energy the phone gets, when it is plugged into
the electricity source.

We see that the directions of energy consumption (posi-
tive or negative) are identified correctly in both cases. In the
second period discharging when a charger is plugged is ex-
cessively high (0.76), identifying reasons for that requires

Table 2: Energy consumption as a function of bat-
tery status.

Period Discharg. Charg. Full MAFE R?
Until June 14 0.41 —-0.89 0.23 0.15 54%
After June 14 0.27 —1.66 0.76 0.19 72%

further investigation. The relative magnitudes of energy
consumption in the first period are convincing: charging
is faster than discharging (0.89 Wh vs 0.41 Wh), and dis-
charging when the charger is plugged is slower than when no
charger is plugged (0.23 vs. 0.41 Wh). Interestingly, the en-
ergy consumption estimate is lower after June 14. It could be
because of more inactivity periods during the second span;
however, a further investigation is needed to analyze this
phenomenon. Moreover, battery level is estimated rounded
numbers, therefore the resulting energy consumption esti-
mate is stepped and approximate.

Overall, from this experiment we conclude that it is pos-
sible to uncover, model and interpret relationships between
processes with basic data aggregation; however, more inves-
tigation into accompanying data denoising is required, which
remains a subject of future investigation.

3. DISCUSSION

The three case studies illustrate different challenges with
data preprocessing. The first challenge is aggregating un-
evenly spaced and not synchronized in time observations,
observed in Experiment 1. Given two sequences of observa-
tions, first we discard non overlapping (in time) parts, and
then aggregate data over a fixed time step (1 sec).

Setting an appropriate aggregation time step presents one
challenge for future investigation. The smaller the step, the
faster the reaction time. However, the accuracy of the anal-
ysis may suffer if the step is too small to present an infor-
mative summary of what is happening. On the other hand,
an excessively large time step only slows down the reac-
tion time (e.g. a person starts walking, but recognition is
delayed). Moreover, a large time step may capture hetero-
geneous data, for example, a mixture of several activities.

Another important open challenge is how to distinguish
the periods of inactivity from the periods when no data is
being collected, observed in Experiments 1, 2, 3. In this
study we assumed that if there are no accelerometer records,
then there is no activity. This is a crude approximation. Ac-
celerometer sensor may be off or accelerometer sampling rate
may be set to very large value (e.g. sample every 10 min).
Failing to distinguish periods of inactivity from the periods
when no data is being collected introduces noise in the re-
sulting computational models. Such noise could be ignored,
if there were only a few periods of inactivity or no data col-
lection. However, when analyzing human mobility typically
there are many more inactive periods than active periods.
Unless a person is, for instance, a taxi driver, during a typ-
ical working day there would be several spans of movement
and quite a lot of inactive periods, when the phone is resting
in a bag or on a table. Therefore, reliable methods for filter-
ing out the periods of no data collection and disambiguating
the periods of inactivity need to be developed.

The next open challenge is how to deal with different
granularity of sensor records, as observed in Experiment 3.
For example, battery level is estimated in percentage, there
are no decimals of percentage. If we are estimating energy
consumption, the battery level would remain constant for a
while before changing. If does not mean; however, that dur-
ing that period no battery has been consumed. In Experi-
ment 2 we overcame this challenge by introducing a variable
data aggregation step, which varies depending on observed
changes in the battery level. However, to deal with this
challenge systematically we need some kind of smoothing
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mechanism, that would also work online.

Finally, automatically processing manual annotations pre-
sents a big open challenge. Ideally, manual annotation of
an activity should have a start and an end. In practice,
an activity may have, for instance, multiple starts and no
end, or an end, but no start. In addition, some activity
time stamps may have manual corrections. In such a case
end may happen earlier than the start, as we observed in
Experiment 1. One way to deal with this challenge could
be just to discard such corrupted data. However, manually
annotated data is typically very scarce, therefore it is in
the best interest of analysis to preserve as much of it as
possible. Therefore, tailored data cleaning and imputation
methods are needed. In our experimental investigation we
introduced several simple intuition based rules to check and
correct the integrity of user annotations. For example, if
an activity starts and “end” annotation does not arrive for
6 hours, we consider the activity finished. A systematic
generic approach to this problem is needed, that is a subject
of future investigation.

4. SUMMARY AND CONCLUSIONS

We investigated how to aggregate mobile sensing data for
machine learning purposes. We performed three exploratory
experiments to illustrate different data preprocessing chal-
lenges. Following the experimental study, we identified and
discussed several major challenges in mobile sensing data
preprocessing for urban mobility analysis. The main direc-
tions are: how to determine the aggregation step, how to
identify and isolate the periods of inactivity, how to deal
with different granularity of observations, how to effectively
automatically process manual data annotations, and inte-
grate them with the observational data. To accompany the
paper, we have released a subset of the data as openly avail-
able data, coined Sensing Venice. The data with its docu-
mentation is available at the authors’ websites.

This pilot study sets a basis for further investigation aim-
ing at producing a systematic methodology for preprocessing
mobile sensing records for predictive modeling.
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