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ABSTRACT
Tra�c congestion is quite common in urban settings, and is
not always caused by tra�c incidents. In this paper, we pro-
pose a simple method for detecting tra�c incidents by using
probe-car data to compare usual and current tra�c states,
thereby distinguishing incidents from spontaneous conges-
tion. First, we introduce a tra�c state model based on a
probabilistic topic model to describe tra�c states for a vari-
ety of roads, deriving formulas for estimating the model pa-
rameters from observed data using an expectation–maximi-
zation algorithm. Next, we propose an incident detection
method based on our model, which issues an alert when a
car’s behavior is su�ciently di↵erent from usual. We con-
ducted an experiment with data collected on the Shuto Ex-
pressway in Tokyo over the 2011 calendar year. The results
showed that our method discriminates successfully between
anomalous car trajectories and the more usual, slowly mov-
ing tra�c. However, our method does sometimes classify
abnormally fast-moving cars as tra�c incidents.

Categories and Subject Descriptors
H.2.8 [Database Management]: Database Applications—
Data mining, Spatial databases and GIS

General Terms
Algorithms

Keywords
Anomaly detection, automatic incident detection, proba-
bilistic topic model, probe-car data, tra�c state estimation

1. INTRODUCTION
Automatic incident detection (AID) is a crucial technol-

ogy in intelligent transport systems, particularly in terms
of reducing congestion on freeways [10]. Tra�c incidents of-
ten cause tra�c congestion, causing great inconvenience and
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economic loss to society. A technology that can detect traf-
fic incidents in real time and alert people accordingly would
therefore be a desirable way of reducing these ill e↵ects.

Against this background, there have been many studies
on AID, e.g., [2, 13]. Most of the approaches exploit data
sent from stationary sensors and cameras installed on roads.
However, the installation and maintenance of such sensors
is expensive, with only the main routes likely to have them
[17]. On the other hand, probe-car data (PCD), on which
we focus in this paper, are becoming increasingly important,
as the number of probe cars and the size of the associated
data archives increase. PCD includes timestamps and the
locations of vehicles, and may contain additional values such
as the probe cars’ speed and direction. Although a PCD sys-
tem cannot monitor all cars, it enables tra�c administrators
to watch a vast area at a lower cost than by using stationary
sensors. In addition, a PCD system can follow a probe car’s
sequence of movements in detail, which is hard to achieve
via stationary sensors, and trajectory mining can be applied
to the collected data.

Using PCD for freeways, it is easy to detect any reduction
in speed, which sometimes implies congestion, by analyzing
the speeds of the probe cars. However, this method is less
applicable to local streets where there are many crossings
and tra�c lights that cause cars to stop frequently but nor-
mally. Moreover, speed reduction is not always an abnormal
circumstance, even on freeways, and is not always caused by
incidents such as accidents, which we would regard as sud-
den and unusual tra�c events in this paper.

There are two types of congestion: spontaneous and ab-
normal [2]. Detecting spontaneous congestion is less impor-
tant, as it originates in road design and urban planning.
Any road may have potential bottlenecks, such as upslopes,
curves, junctions, tollgates, and narrow sections. Vehicles
are likely to slow down at the bottlenecks, with vehicular
gaps shortening and drivers in the following cars having to
brake. Congestion will then occur even without a tra�c
incident [7]. Spontaneous congestion also occurs when the
tra�c demands exceed the tra�c capacity of such bottle-
necks, and it is not resolved until the demand drops below
the capacity [12]. The drivers may be familiar with the lo-
cations of such potential bottlenecks, and they can avoid
them. On the other hand, abnormal congestion originates
in tra�c incidents, which need to be detected in real time
to prevent or resolve any sudden heavy congestion.

In this paper, we propose an AID method for detecting
tra�c incidents by discovering abnormal car movements,
distinguishing such movements from those occurring in spon-
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taneous congestion. Our method measures di↵erences be-
tween the current and usual tra�c states, and has two as-
pects; namely, tra�c state estimation and anomaly detec-
tion. First, we employ a probabilistic topic model [4] to
model generation of PCD, which is influenced by hidden traf-
fic situations, such as “smooth” and “congested.” The model
introduces a single set of several hidden component states,
that are associated with probabilistic distributions over the
PCD values, and all the road segments have their respec-
tive mixing coe�cients. Using archived PCD, maximum-
likelihood parameters of the model are estimated by an ex-
pectation–maximization (EM) algorithm. The estimated
model reflects the usual state over the whole observation
period. Our incident detection method simply follows the
intuitive meaning of “anomaly.” To detect incidents, the
proposed method estimates the hidden state behind an ob-
served PCD value and compares this current state with the
usual state. If the current state is significantly di↵erent from
the usual state, it is recognized as an anomaly.

We conducted an experiment using PCD observed for three
of the routes of the Shuto Expressway system in Tokyo over
the 2011 calendar year. The experiment showed that the
proposed method can be e↵ective for AID.

The main contributions of this paper are as follows.

• We propose a method for estimating tra�c states by
applying a probabilistic topic model to PCD, whereby
road segments are characterized in terms of their ex-
pected performance.

• We propose a new method for detecting anomalous car
trajectories according to the di↵erences between the
estimated states behind the trajectory and the usual
states indicated by the learned model, whereby the
detection is conducted adaptively in terms of the seg-
ments.

• Our experiment showed that the usual tra�c state
could be estimated using the observed PCD, and that
our AID method had good selectivity for anomalous
behavior by cars encountering incidents.

2. RELATED WORK
Although many studies have considered the tra�c state

estimation problem, there is no general agreement about a
formal definition of a“tra�c state.” Some research estimates
the tra�c state in terms of vehicular speed [11, 19], and
this kind of estimation characterizes states, i.e., quantized
speeds, as“free”or“congested” [6]. Yoon et al. [17] proposed
two feature values based on vehicular speed to detect a“bad”
tra�c state, i.e., slow tra�c. In contrast, Kerner et al. [8]
used travel time. Xia et al. [15] used a clustering method to
identify congested tra�c in a feature space involving tra�c
flow, speed, and occupancy, which has been well studied in
tra�c engineering [12].

AID can be considered to be an application of anomaly
or outlier detection. Zhu et al. [20] applied the outlier de-
tection methods to feature vectors carefully extracted from
PCD using heuristics. If an incident occurs, cars upstream
of the incident will travel slower and downstream cars will
travel faster. In addition, a car passing before the incident
will travel faster at that position than one passing just after
the incident. If v(d, t, l) is the vehicular speed in link l at
time t on date d, Zhu et al. proposed the following four

Table 1: Notation
Notation Definition
K Number of tra�c states.
k Index of a tra�c state.
S Number of segments.
s Index of a segment.
xsn n-th data in the s-th segment.
Ns Number of observations in the s-th segment.
�k Parameter of the k-th distribution.
�s Mixing coe�cient vector in segment s.
� ({�s}s=1,··· ,S , {�k}k=1,··· ,K).
�(s, x) Tra�c state in s when x was observed.
�(s) Usual tra�c state in s.
d(s, x) Divergence of �(s, x) from �(s).
Xs Set of data observed in the s-th segment,

i.e., Xs = {xs1, xs2, · · · , xsN
s

}.
X Whole set of data, i.e., X = {X

1

, · · · , XS}.
Xc Data sequence from car c,

i.e., Xc = h(s
1

, x
1

), (s
2

, x
2

), · · · , (sN
c

, xN
c

)i.
D(Xc) Divergence of Xc.

features: v(d, t, l), v(d, t, l) � v(d, t � 1, l), v(d, t, l � 1) and
v(d, t, l + 1) � v(d, t, l), where link l � 1 is the next link up-
stream of l, and l + 1 is the next link downstream. These
feature vectors are filtered using the heuristics above and an-
alyzed by distance-based outlier detection. In another AID
study, Akatsuka et al. [2] proposed an alternative feature
vector. From the viewpoint of machine learning, AID can
be regarded as a classification problem. Abdulhai et al. [1]
used neural networks, and Yuan et al. [18] used support
vector machines, to classify the observed vectors from sta-
tionary sensors as being incident based or otherwise. AID
can also be regarded as an application of the change-point
detection problem in time-series analysis, with Wang et al.
[13] developing a hybrid method using time-series analysis
and machine learning.

In this paper, we regard the AID problem as an anomaly
detection problem. Previous work exploits characteristics
of congested tra�c, such as slowdown, in which vehicular
speed decreases even in the absence of a tra�c incident. We
take another approach to follow the intuitive meaning of
“anomaly”; namely, an event di↵erent than usual. For this
purpose, the tra�c should be described by a probabilistic
model. We therefore exploit the idea of probabilistic topic
models, which was originally studied in the field of natural
language processing [5, 4]. The proposed method estimates
both a set of tra�c states over an entire route and the mix-
ing coe�cients for each road segment, with a tra�c state
corresponding to a topic.

3. METHODOLOGY
Table 1 summarizes the notations used in this paper.
This section describes our tra�c state model and incident

detection method. We first introduce a method for applying
a probabilistic topic model to PCD. Our task is to estimate
the model parameters using a PCD archive and to identify
incidents by comparing the usual and current tra�c states,
which are obtained from the learned model.

3.1 Traffic State Model
Intuitively, we can identify some tra�c states as “smooth”
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or “congested” regardless of location. Vehicles travel fast in
smooth states and behave in a stop-and-go fashion in heavily
congested states. When observing the speed of a probe car,
the value is likely to be small if the car is in “congested
tra�c,” or large if the tra�c is “smooth.” The value will
also be a↵ected by geographical conditions, such as curves
and slopes. In short, the behavior of a car is a↵ected by
the surrounding tra�c state, and the observed values for
the probe car will change, whereas the tra�c state is latent
and varies according to the time and place. This relation
between tra�c states and PCD can be modeled using the
latent Dirichlet allocation [5], the simplest topic model [4].

Tra�c states are strongly related to roads, so we introduce
the segment as the unit for watching tra�c. The segment
is defined independently of the PCD by the spatiotemporal
space of observation. For example, one such segment could
be defined as the section between Interchanges A and B
on the inbound direction of Route 3 between 6 a.m. and
9 a.m. PCD includes timestamps and location data, that
are obtained via GPS and are represented by longitude and
latitude, and each probe-car observation can be assigned to
a predefined segment.

PCD also has information on values such as speed and
direction that can be recorded directly in the PCD or cal-
culated using sequential observation. Here, all the observa-
tions are aggregated for each segment, and a set Xs of the
observed data for the s-th segment is obtained. The symbol
xsn, the n-th value of Xs, might have either a scalar or a
vector value. For simplicity in this paper, we assumed that
xsn was a scalar value, but our method could be extended
to observe vector values.

Our model associates a tra�c state with a probability
distribution. Let K be the number of states, with the k-th
tra�c state corresponding to the parameter �k. The prob-
ability distribution for the s-th segment, given by p(x|s), is
described in terms of a mixture of these K distributions and
can be described as follows:

p(x|s) =
KX

k=1

⇡skp(x|�k), (1)

where ⇡sk is the mixing coe�cient for the k-th state and
satisfies the conditions:

0  ⇡sk  1,
KX

k=1

⇡sk = 1 (2)

for each s. The state parameters {�
1

, · · · , �K} are identi-
cal for all segments, but the mixing coe�cient vector �s =
(⇡s1 · · · ⇡sK)T is di↵erent for each segment. By using a global
�k, we can compare and characterize segments in terms of
local �s. For example, straight sections are dominated by
“smooth” states, with sections that include tollgates that are
dominated by “congested” states.

Finally, for each segment, the generative process for this
model was as follows.

1. Choose a hidden state k ⇠ multinomial probability
distribution Multi(�s).

2. Generate the value xsn ⇠ p(xsn|�k).

3.2 Parameter Estimation
Our model is described by a mixture distribution, with

its maximum-likelihood parameters estimated by an EM al-

gorithm, using X as training data [3]. For simplicity, we
introduce the symbol � as a set of all parameters in the
model. For the entire set X of observed data, the likelihood
under the model introduced above is given by the following
equation:

L(X) =
S�

s=1

N
s�

n=1

KX

k=1

⇡skp(xsn|�k). (3)

The update equations are derived by considering the maxi-
mization of the following Q function under constraint (2):

Q(X, �, �̂) =
SX

s=1

N
sX

n=1

KX

k=1

p(k|xsn, �̂) log p(k, xsn|�), (4)

where

p(k|xsn, �̂) =
⇡̂skp(xsn|�̂k)

KX

k=1

⇡̂skp(xsn|�̂k)

⌘ �snk (5)

p(k, xsn|�) = ⇡skp(xsn|�k), (6)

and �̂ refers to the parameters estimated in the previous
EM iteration.

This Q is maximized by introducing Lagrange multipli-
ers and setting its partial derivative to zero. The update
equation for �k is then derived by solving the equation:

SX

s=1

N
sX

n=1

�snk

p(xsn|�k)
�

��k
p(xsn|�k) = 0. (7)

For example, assume a Poisson distribution for p when any
xsn values, e.g., speed, are nonnegative integers, then:

p(xsn|�k) ⌘ p(xsn|�k) =
�k

x
sne��

k

xsn!
, (8)

where �k is both the mean and variance, and is the only
parameter of p. In this case, by solving equation (7), the
update equation for �k is derived as:

�k =

SX

s=1

N
sX

n=1

�snkxsn

SX

s=1

N
sX

n=1

�snk

. (9)

For the mixing coe�cient �s for the s-th segment, we obtain,
regardless of p, the equation:

⇡sk =

N
sX

n=1

�snk

Ns
. (10)

We now have the EM algorithm for estimating the param-
eters of our tra�c state model: After generating � at ran-
dom, the EM iteration alternates between the E step, which
calculates all �snk using equation (5), and the M step, which
updates � according to equations (7) and (10), until the log
likelihood log L(X) converges.

3.3 Incident Detection
We have now described our tra�c state model and its pa-

rameter estimation method. Given the estimated parameter
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Figure 1: Concept of divergence comparison

� and the value x observed in segment s, the posterior dis-
tribution is given by p(k|x, s). We now define the current
tra�c state when x was observed, denoted by �(s, x), as
the maximum probable state given x. Using the posterior
distribution with Bayes’ theorem, �(s, x) is estimated as:

�(s, x) = arg max
k

{⇡skp(x|�k)} . (11)

Meanwhile, the learned model itself reflects the usual state
over the whole observation period because the parameters
are estimated to fit the distribution in the dataset. We can
therefore define the usual tra�c state for the s-th segment,
denoted by �(s), as the maximum probable state:

�(s) = arg max
k

⇡sk. (12)

We now have the usual and the current tra�c states for
each segment. Figure 1 describes our idea of incident de-
tection via divergence comparison. For example, the usual
state �(s) may indicate smooth tra�c in a straight mid-
night segment, congested tra�c in a rush-hour segment, or
stop-and-go tra�c in segments that contain tollgates for any
time of day. If �(s) indicates congested tra�c and �(s, x) is
also congested, the current tra�c remains usual and would
not be considered an anomaly. If the usual state �(s) indi-
cates free-flowing tra�c and the current state �(s, x) indi-
cates stop-and-go tra�c, then it would be suspected that an
anomaly caused by an incident has occurred.

Our AID method measures the degree of anomaly for each
probe car’s trajectory. Assume that a probe car c traverses a
road, observing a set of Nc values. Let Xc be the sequence of
data such that each is a tuple of segment and value observed
by c as described in Table 1. Let xn be an observed value
in a segment sn. Of course, we can count how many times
�(sn, xn) di↵ers from �(sn), but this approach regards ma-
jor di↵erences in the same light as minor di↵erences, which
perhaps stem from individual variation rather than from a
tra�c incident. We therefore introduce the divergence of the
current state from the usual state, denoted by d(sn, xn), to
quantify the di↵erence between the two states. Because in
our model each state is associated with a probability distri-
bution, we measure this di↵erence in terms of the Kullback–
Leibler divergence of the current state’s distribution from
the usual state’s distribution. The k-th state corresponds to
the probability distribution p(x|�k), and therefore:

d(sn, xn) =
X

x

p(x|��(s
n

,x
n

)

) log
p(x|��(s

n

,x
n

)

)

p(x|��(s
n

)

)
, (13)

where p is discrete. For example, assume Poisson distribu-

Figure 2: Three routes of Shuto Expressway within
the Tokyo area

tion for p as equation (8). The divergence is derived as:

d(sn, xn) = ��(s
n

)

� ��(s
n

,x
n

)

+ ��(s
n

,x
n

)

log
��(s

n

,x
n

)

��(s
n

)

.

(14)
The behavior of a car c is determined as anomalous if

the estimated state behind the observed data sequence Xc

is quite di↵erent from the usual state. We define the di-
vergence of Xc from the usual state, denoted by D

all

(Xc),
as:

D
all

(Xc) =
N

cX

n=1

d(sn, xn). (15)

The more a car behaves di↵erently from its usual behav-
ior, the larger D

all

(Xc) will be. D
all

(Xc) is considered as
a score of the degree of anomaly, with c being determined
as anomalous when D

all

(Xc) is su�ciently large, i.e., larger
than a predefined threshold.

There are two points to consider about D
all

(Xc). First,
D

all

(Xc) will also increase the longer the car c runs, and any
car would eventually be determined as being anomalous. We
therefore define the normalized divergence D(Xc) as the sum
of the largest N divergences d(sn, xn) if Nc is not less than
N . Otherwise, D(Xc) is equivalent to D

all

(Xc). We have
used D instead of D

all

in the rest of the paper. Second,
when a car generates values periodically, no observation or
multiple observations in a trajectory can be assigned to a
single segment. Our idea of divergence comparison in Figure
1 assumed that one segment corresponded to one current
state, which might require interpolation or aggregation of
data for each segment.

4. EXPERIMENT

4.1 Dataset and Preprocessing
Our probe-car dataset was obtained from probe cars trav-

eling on three routes on the Shuto Expressway system in
Tokyo during 2011. The route information is displayed in
Figure 2, with the three routes being shown as thick red
lines on a map of Tokyo.

Data preprocessing comprised four phases: 1) segment
definition, 2) map matching, 3) trajectory identification, and
4) interpolation. These procedures are described below.
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4.1.1 Segment Definition
Tra�c state information is strongly related to geograph-

ical conditions. We defined road segments by partitioning
each route on the expressway every 50 m for estimation at a
finer level of granularity. The direction was noted. This
experiment did not consider temporal partitioning, even
though the tra�c in some places changed considerably over
time. Therefore, each segment represented a certain 50-m
length of roadway for a certain direction on a certain express-
way route, and all data for a segment were treated without
any consideration of time.

4.1.2 Map Matching
Despite the above definition of a segment being based on

an expressway route, location data in PCD were described
in terms of the two-dimensional (2-D) coordinates of longi-
tude and latitude, with the original observation not being
related to any particular segment. It was therefore neces-
sary to identify the segment that the probe car was in from
the time and position for every observation, even though in
this experiment we did not consider the timestamps. Map
matching is a technology for identifying the road segment
on which the vehicle is traveling and for locating the vehi-
cle within that segment [9], and several methods have been
proposed [14, 16]. In this experiment, map matching was
conducted in the simplest way: a probe car’s observation
was matched with the nearest segment to the car’s location.
The direction was estimated from the angular di↵erence be-
tween the probe car’s heading azimuth in the PCD and the
segment’s azimuth for each direction, and then choosing the
direction that gave the smaller angle.

4.1.3 Trajectory Identification
After map matching, each probe-car observation whose lo-

cation was represented by coordinates in the 2-D space was
matched with the nearest-neighbor segment, as defined in
the first phase of preprocessing. However, the observations
form a collection of punctuated data, with each observation
being separate from the others. Therefore, the continuous
movement of the car, i.e., its trajectory, is not directly avail-
able. To identify trajectories, we grouped all observations
in the probe-car dataset by the car’s ID and sorted them
by timestamp for each group, before concatenating them in
chronological order whenever the time gap between two con-
secutive observations was 10 min or less. A probe car does
not always travel the entire length of a route, because it can
enter or exit the route at intermediate junctions. For a car
traveling on a single route, its trajectory can be visualized in
terms of a time–space diagram [12]. Figure 5 is an example
of such a diagram and will be described in detail later.

After the trajectory identification, we labeled each trajec-
tory, using the tra�c log made available by the administra-
tor of the Shuto Expressway. This tra�c log is recorded via
stationary sensors on or alongside the roads every 5 min, to-
gether with notations about incidents such as accidents and
construction. A trajectory was labeled as anomalous when-
ever a car passed a stationary sensor that had recorded an
incident at that time. Table 2 summarizes the statistical
information for our probe-car dataset after trajectory iden-
tification. The number of anomalies means the number of
trajectories for a probe car passing the scene of an incident
when the incident occurred but does not indicate the num-
ber of unique incidents.
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Figure 3: Histogram of speed of probe cars in a
segment and estimated Poisson mixture

4.1.4 Interpolation
We used a probe car’s speed as the observed value in this

experiment. However, as mentioned in Section 3.3, our de-
tection method estimated the current state for each trajec-
tory for each segment that the car had passed. Our 50-m
segment was too short for fast-moving probe cars to conduct
observations in every segment, whereas a slow-moving car
generated multiple data in a single segment. We therefore
formed an observation sequence for a trajectory by linear
interpolation, giving a sequence of consecutive observations
at 50-m intervals.

4.2 Parameter Estimation
In this experiment, the observed values represented the

speed of probe cars as nonnegative integers. We therefore
assumed a Poisson distribution for the probability distribu-
tion corresponding to each tra�c state.

We also assumed K, the number of tra�c states, to be 8.
In a preliminary experiment, we estimated the parameters of
our tra�c model while varying the value of K up to 100, and
we used the Akaike information criterion (AIC) to evaluate
the model. However, the e↵ect of K was substantially less
than that of the likelihood for improving the AIC, with AIC
being almost the same regardless of K. If K is assumed
to be large, there is a tendency for multiple states to have
almost the same distribution.

We implemented the EM algorithm described in Section
3.2 using OpenMP for multiprocessing. The estimation was
executed on our 32-core Xeon computer for each route of the
Shuto Expressway. It took about 1 min for each direction of
the Shibuya and Shinjuku routes, and about 2 min for each
direction of the Ikebukuro route. Figure 3 shows the actual
histogram for a segment of the inbound Shibuya route as a
step line chart and the estimated Poisson mixture as a solid
curved line. Each of the eight Poisson distributions was
multiplied by the mixing coe�cients ⇡sk, and each is also
shown in Figure 3 as dashed curves. The estimated curve
almost fits the actual histogram for the training dataset.

4.3 Incident Detection
Using the estimated tra�c model, we examined whether

the proposed method could identify anomalous trajectories.
We calculated the divergence for each trajectory and sorted
the trajectories in order of their divergence. The divergence
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Table 2: Statistics on trajectories in our probe-car dataset

Routes
Shibuya route Shinjuku route Ikebukuro route

Inbound Outbound Inbound Outbound Inbound Outbound
Period January 1, 2011 – December 31, 2011 (365 days)
# of trajectories 100,581 95,386 95,293 88,345 128,789 114,942
# of anomalies 4,259 2,475 4,365 3,891 6,089 5,603
Average travel distance [km] 5.7 5.8 6.4 6.7 7.5 8.1

Table 3: AID results

Routes
Shibuya route Shinjuku route Ikebukuro route

Inbound Outbound Inbound Outbound Inbound Outbound

AUC
Our method 0.912 0.812 0.927 0.919 0.902 0.933
Baseline [20] 0.802 0.794 0.846 0.780 0.823 0.805
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Figure 4: ROC curves (upper frames) and precision vs. false positive rate (lower frames)

of a trajectory was calculated by summing the top N di-
vergences among the observations. In a preliminary exper-
iment, we conducted the detection for several values of N ,
obtaining the best result when N was 20. Because we were
using 50-m segments, the divergences of trajectories were
normalized to 1-km equivalents.

For comparison, we implemented a second method based
on Zhu et al. [20], which was described in Section 2. The
method was modified to enable its application to our data-
set, and although it detected outlier segments represented
by the pair of time and position, our system was evaluated
in terms of anomalous cars. Therefore, we judged that a de-
tection event was successful if the detected car was labeled
as an anomaly in our dataset, even if the detected segment
for the detected car was not a segment involving an incident.

Our detection method gives an alert when the divergence
of a trajectory exceeds a given threshold, and the compared
method gives an alert when the average distance of a fea-
ture vector from other vectors exceeds a given threshold.
The lower the threshold, the more alerts will be issued. We
evaluated the selectivity performance of the two methods
in terms of a receiver-operating characteristic (ROC) curve.
An ROC curve is drawn by plotting the true positive rate
(TPR), which is equivalent to recall, against the false posi-
tive rate (FPR). The area under the curve (AUC) indicates
the discrimination performance, with larger AUC values in-
dicating better discrimination.

The results are displayed in Table 3 and Figure 4. Table
3 reports the AUC of the proposed and baseline methods on

our probe-car datasets. The results showed that our method
had better selectivity for cars that have passed incident lo-
cations, despite using fewer heuristics about anomalies than
the baseline method. Figure 4 shows the ROC curves in the
upper frames and the precision against FPR in the lower
frames. Although the ROC curve should connect points
(0,0) and (1,1), that of the baseline method broke o↵ be-
fore (1,1) was reached, because the method filtered out some
feature vectors, with the number of subject trajectories be-
ing less than the total number of trajectories. The AUC of
the baseline method was calculated by interpolating linearly
between the right-hand end of the ROC curve and (1,1). Fig-
ure 4(a) shows the curves for the outbound Ikebukuro route,
which was the best case in our experiment. The precision
exceeded 80% for the worst 1,000 trajectories. Figure 4(b)
shows the curves for the outbound Shibuya route, which was
the worst case.

Figure 5 shows examples of trajectories for the outbound
Shibuya route that had much divergence in terms of their
time–space diagram. Each plot shows the position of a probe
car against time. The position is represented as the dis-
tance from the origin of the line: the bottom corresponds to
the Tokyo interchange, the westernmost along the Shibuya
route, and the top corresponds to the Tanimachi (eastern-
most) junction. Horizontal pink lines indicate the positions
of interchanges and junctions. The inbound direction is the
direction from the bottom to the top in this diagram. There-
fore, trajectories downward and to the right involve travel-
ing along the outbound Shibuya route. The color of the plot
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Figure 5: Time–space diagrams for probe cars

indicates the speed of the probe car at that point. Green
represents high speed (100 km/h), red is moderate speed (50
km/h), and blue is “almost stopped” (0 km/h). The color
changes gradually according to the speed. The trajectory
marked with an arrow in Figure 5(a) was the most anoma-
lous trajectory, with this car being directly a↵ected by an
incident. The diagram shows that this car was “stop-and-
go” between Sangenjaya and Yoga. On the other hand, the
marked trajectory in Figure 5(b) was ranked as no. 301
among the anomalous trajectories. This car did not en-
counter an incident. The diagram shows the car traveling
rapidly along the route.

5. DISCUSSION
In Figure 4(b), the TPR of the proposed method was slug-

gish when the TPR was around 0.1, indicating that the pro-
posed method rarely detected anomalous cars correctly even
when the threshold was lowered to some degree. Cars whose
trajectories became anomalous at this point traveled rapidly,
with the car of the marked trajectory in Figure 5(b) being
an example of such cars. This car traversed the route be-
fore dawn, when the tra�c is usually smooth. One of the
possible reasons for such false positives is that our experi-
ment did not consider temporal partitioning in the segment
definition, even though the tra�c changed considerably over
time. The spatial length of a segment, as well as parameters
K and N , should also be determined in future studies.

The following discussion demonstrates another analysis on
the abovementioned false positives based on the estimated
tra�c states. In this experiment, we used the speed of the
probe car, and the tra�c state was represented by the Pois-
son distribution, which was characterized by the mean and
variance parameter �. The stacked area chart in Figure 6
shows the estimated mixing coe�cients for the eight Pois-
son distributions for each segment of the outbound Shibuya
route. The horizontal axis shows the position along the
route, and cars travel from left to right. The colored ar-
eas show the mixing coe�cient for each state varying with
position. They are in order of �, with the bottommost be-
ing the slowest, and the topmost being the fastest. From
Tanimachi to Ikejiri, the top three fastest states were dom-
inant, which means that cars usually travel quickly in this

section. However, from Ikejiri to Yoga, the coe�cients for
the faster states decrease as the slower states begin to domi-
nate, because the cars usually travel more slowly in this sec-
tion. Therefore, although the marked trajectory in Figure
5(b) does not seem to include any incidents, this behavior
was quite di↵erent from the usual running pattern, and our
method identified this as an anomaly. It is noteworthy that
our tra�c state model has enabled this sort of analysis, with
every segment being characterized using a single set of tra�c
states. Although we used the data sequence to give observa-
tions at 50-m intervals for each probe car, stationary sensors
can also generate similar data except for tracking informa-
tion for each car. Because parameter estimation does not
require such information, this road characteristics analysis
can be conducted using stationary sensors, and its output
might be applied to other problems; e.g., route guidance.

The Shuto Expressway system has many bottlenecks, such
as curves and narrow sections that involve frequent changes
in vehicular speed, unlike freeways. We speculate that this is
the reason that our intuitive method found that “unusual”
car behavior worked better than a heuristic method that
pays attention to changes in speed. On the other hand, a
significantly fast car can be surely determined as an anomaly
if its behavior is statistically unusual relative to the past
observations, although this kind of “unusualness” is not a
problem for drivers. Anomalies accompanying a slowdown
in vehicular speed can be regarded as a subset of the anom-
alies discussed in this paper. The administrator and drivers
have the option to filter the outcome of our detection al-
gorithm using additional heuristics. However, a particular
incident is hard to detect by the proposed method if the traf-
fic behavior in the incident is just like regular spontaneous
congestion. We are currently conducting investigations into
detailed issues as a further study, expanding our dataset
sphere from only three routes to all the routes on the Shuto
Expressway system.

6. CONCLUSION
We have studied the problem of detecting tra�c incidents

using probe-car data. Although congestion can be detected
by monitoring vehiclar speeds, it is chronic in some spots
and does not necessarily indicate the occurrence of an in-
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Figure 6: Mixing coe�cients for eight Poisson dis-
tributions for each segment of the outbound Shibuya
route

cident. To detect tra�c incidents, we propose an approach
that compares the current tra�c state with the usual one for
that location in terms of anomalous car movements, using
a probabilistic topic model to describe the state of moni-
tored tra�c. We proposed an incident detection method
that measured the di↵erence between the usual and current
states. Our method was applied to real probe-car data that
were collected on the Shuto Expressway system in Tokyo,
and the discrimination performance was evaluated. The re-
sults showed that our method could discriminate trajecto-
ries a↵ected by incidents from other trajectories, although
abnormally fast cars were also reported as anomalies, giving
a low precision for certain routes.
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