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ABSTRACT
Micro-blogging services such as Twitter have gained enor-
mous popularity over the last few years leading to massive
volumes of user generated content. In combination with the
proliferation of smart-phones, this information is generated
live from a multitude of content contributors. Interestingly,
the content and timestamp of tweets is not the only infor-
mation that can produce useful knowledge. The location
information of users is of great significance since it can be
utilized in a variety of applications such as emergency iden-
tification, tracking the spread of a disease and advertising.
Unfortunately, information regarding location is very rare
since many users do not accurately specify their location,
and fewer posts have geographic coordinates. In this work,
we aim to confront this data sparsity issue. Utilizing Twit-
ter’s social graph and content, we are able to obtain users
from a specific location. We optimize our method to work
with minimum amount of queries considering the large vol-
ume of data in such settings. We also provide a mechanism
for geo-locating a tweet within a city and present the quali-
tative enrichment in our data, achieved by our method.

Categories and Subject Descriptors
H.2.8 [Database Management]: Data Mining; J.4 [Social
and Behavioural Sciences]: Sociology

General Terms
Algorithms

Keywords
Social Networks, Data Sparsity, Location Profiling

1. INTRODUCTION
Over the last decade on-line platforms where individuals

generate and contribute content have gained massive popu-
larity. In most of these platforms individuals are connected,
establishing social networks. Such networks attracted in-
terest from various scientific fields due to the numerous re-
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search challenges and the plethora of potential applications.
A typical example is Twitter currently hosting more than
200 million users contributing more than 400 million tweets
per day [12]. Twitter is unique among the social networks
since it propagates information to an immense amount of
people very quickly, in fact many times, faster than conven-
tional news networks [23]. Combined with the increasing
popularity of smart phones, and mobile internet availabil-
ity, users generate content from a variety of locations in real
time, creating a very diverse and spatio-temporarily spread-
out network of information.

Naturally, with the formation of such a network, there
has been an increase in research as well as applications for
spatio-temporal data [18, 13, 8]. These applications utilize
the content, time of creation as well as location of data. Lo-
cation information is important as it can transfer knowledge
from the online back to the real world, and aid towards per-
sonalized and localized information services. It is invaluable
for a variety of applications such as discovering the way dis-
eases spread [6], emergency identification and response [25],
localized event detection and relevant news propagation [28],
analysis of the behavioural patterns and mobility of people
within a city [8, 10] as well as online advertising [1]. Further-
more, social networks themselves are also adopting a local-
focus philosophy, with examples of Twitter recently starting
reporting local trends1, while search engines consider your
location among other factors when returning results2.

Despite the fact that user contributed content in such plat-
forms is always characterized by a well defined timestamp,
unfortunately location information is very sparse. Research
in Twitter suggests that a big percentage of users either do
not provide their location information in their profiles, or
input noisy data [7], with only 48% of users providing an
actual location with city or lower level accuracy [11]. More-
over, the number of tweets with geographical coordinates
is much lower, in the order of 1% [26]. Reasonably, this
sparsity of information constitutes a major issue for all the
aforementioned applications that require it.

In this paper, we address the problem of sparsity of loca-
tion data by providing a framework that utilizes information
from the content of a users’ tweets, as well as the social graph
around her. Considering the large volume of data in such
settings and the fact that our system works with the Twit-
ter API, we take into account the limitations set by such
systems and optimize our method for the minimum amount
of queries. Our contribution is threefold:

1https://blog.twitter.com/2010/now-trending-local-trends
2http://www.google.com/landing/now/
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• We formalise the problem of location identification us-
ing both social graph information and text information
as a resource utilization optimization problem in the
context of the limitation in the Twitter system.

• We analyse the locality of the social graph in Twitter,
and the connectivity between users who live in geo-
graphical proximity.

• We provide a framework for (i) identifying more users
at a location of a city-level granularity, (ii) attaching
geographical coordinates to individual tweets within
that city.

In addition to the precision of our model, we also perform
quantitative and qualitative analysis on how the increase in
users, and thus tweets, enriches our data by extracting topic
models and analysing them. We chose to apply our method
on Twitter due to (i) its increased academic interest, (ii)
large volume of active users and tweets and (iii) its unique
nature as a fast information and events propagator.

2. RELATED WORK
Related work can be broadly divided into research done

for identifying the location of a user, or the location of each
individual tweet.
In the first category, Eisenstein et al. attempt to solve the
problem through geographical topic models [9]. They cap-
ture the di↵erence in the use of language for a specific topic,
between people from distant areas. They are able to predict
the location of a user with an error mean distance of 900
km, and achieve a 27% accuracy when predicting the state
of a user. Their results indicate that people have di↵erent
ways of discussing a topic in di↵erent areas, however, there
has to be a significant distance between these areas. Within
a city level granularity, people are more likely to have sim-
ilar conversational habits. More recently, Ahmed et al. in
[2] proposed a tree-like hierarchical structure of topics, at
which the lower levels of the tree, represent more specific
versions of the general topics at the parent nodes. This way,
they are able to extract location specific topics, and place
users with an average error of 298 kilometers in the same
dataset. Cheng et al. in [7] utilized the locality of phrases
rather than topics, and manage to pinpoint the city of 51%
of users, within 100 miles of their actual location. Mahmud
et. al. in [22] improve upon this method by identifying
named local words. These terms are very local terms such
as the name of a location or the name of places, retrieved
from services such as foursquare. They use a Multimonial
Naive Bayes classifier and test hierarchical algorithms that
first predict the country and then the state of a user, to es-
timate the city of a user. They achieve an accuracy of 58%
for 100 miles radius.

These approaches take advantage of the di↵erence in the
use of language about specific topics or words which iden-
tify the location of users, however in cases of smaller ar-
eas, where there are not many language di↵erences, these
methods would not perform well. Our work di↵erentiates
at two fundamental levels. Firstly, we take advantage of a
users writings as well as the relationships in the social graph,
which enables us to predict location with greater geograph-
ical detail. Secondly we also propose a way to attach exact
geographical coordinates in a tweet level, after we have iden-
tified the location of the user who created it.

In the second category, Ikawa et. al in [14] attempt to esti-
mate the location of a tweet by associating expressions with
locations. For each query tweet, they find the location with
the closest word list and place it there. However, the under-
lying assumption that people will tweet about the place they
are in, and then express their feelings about it, does not al-
ways hold, and they achieve an accuracy of 14% for a radius
of 5 kilometres. Li et, al achieve a better precision for the
same problem as they attempt to identify Places of Interest
(POI) a tweet may belong to. [21]. They build a Language
Model for each POI, based on tweets that occurred there
and information crawled from websites, and then rank the
KL-divergences for each query tweet, to identify the candi-
date POI’s. They test their method for the 10 top POIs at
a city, and reach an accuracy of more than 60% for their
best case. However, their accuracy fluctuates greatly based
on the number of tweets about a POI, and their premise
is somehow unrealistic, since in a real-world scenario, there
are much more than 10 possible locations within a city. Kin-
sella et. al provide a framework, which is closer to our work
since it is used to pinpoint the location of both users and
tweets in a variety of granularities in [15]. They build lan-
guage models for each location and test a Query Likelihood
model, in order to predict the location of a tweet. Their
best results accomplish an accuracy of 31.9% for users for
a town granularity and 13.9% for tweet location in zip-code
granularity. In their work, they use the same model to solve
both problems, while we discriminate between the two and
mostly take advantage of the social graph for user location
prediction and term-models for tweet location prediction,
which enables us to create a more robust system.

Ren et. al [24] take the social graph into account in or-
der to identify a users’ location. They place each user to
the location of the majority of his friends. They achieve a
precision of 59.3%, however they only test it for 704 users.
Working on a much larger dataset from facebook data, Back-
strom et. al [4] suggest a correlation between friendship and
distance on the map, and build a more elaborate model to
find the probability of a users home location, given the lo-
cation of his contacts. They place 67.7% of users correctly,
however, both these methods, assume that we know all the
friends of the user we are trying to locate, which in very large
graphs such as those created by social media is rarely the
case. Our method aims to minimize the number of queries
at the social graph, and more importantly operates without
the knowledge of the location of all the friends of a user.

To the best of our knowledge, despite the large number
of relevant papers which focus on estimating the location of
a single user, the problem of identifying more users from a
specific location, has yet to be solved. In contrast to most
of the previous work done in this area we: (i) attempt to
identify the location of a user in a city level accuracy, which
is much more limited than 100 miles radius, set this far, (ii)
combine this information to attach geographical coordinates
to a tweet, by taking under consideration both the relation-
ships of users in the social graph as well as the content of
their writings, and (iii) use a computational model based on
the Twitter system, optimized for the number of queries.

3. PROBLEM DEFINITION
Location data in twitter are rare, and given the value of

such information we attempt to discover more users at a spe-
cific location. We analyse data about a city as whole, and
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we set two interconnected goals: (i) Discover more users
that live in that city and (ii) create a system that is able
to attach exact coordinates on a Tweet level within that
city. Moreover, we assume that we incur a cost each time
we make a query about the connections or the location of
a user. This assumption is pragmatic because social net-
works have limitations on how many times one can inquire
about such information within a specific time frame. For
instance Twitter only allows for 15 queries per 15 minutes
for the friends of user. Taking under consideration the size
and increase rate of social networks today, this constitutes a
practical constrain as well, since it is computationally expen-
sive to process the entire graph. The problems are formally
defined below:

Problem 1 - User Level
Given set of users U who tweeted from a specific city C,
identify as many users from the same city as possible,
by asking at most k -queries about the social graph.

Problem 2 - Tweet Level
Given a set of tweets T

1

from a specific city C for which
we know their exact geographical location, and a set
T

2

for which we do not have such information, attach
geographical coordinates to T

2

.

We consider the two problems to be interconnected, be-
cause by following a hierarchical scheme, the tweets of users
identified in C, can be considered as T

2

and be geo-located
on the map, with the solution to problem 2.

4. PRELIMINARIES

4.1 Twitter
Twitter consists of messages which have a maximum length

of 140 characters, which may or may not include location in-
formation. With the proliferation of mobiles phones, many
users tweet from a variety of locations. However, there is a
wide array of topics and uses for a tweet, which in combi-
nation with the limited text size, render most of them im-
possible to analyse and categorize. Users have the ability to
have a static location in their profiles, however, according to
[11] the location field of Twitter users many times is empty
or contains inaccurate or in-comprehensive information.

4.2 Graph Analysis and Motivation
Previous work has indicated that there is a correlation

between proximity on the real world and proximity on the
online social graph[16, 28, 20, 4]. Furthermore the small
world e↵ect is even greater in local communities [3], hence
we question whether these e↵ects continue to intensify in a
more local level; the area of a city.

We collected tweets from a specific area using the Twit-
ter streaming API, which provides, two types of tweets; a
set which has exact geographical coordinates attached to
each tweet and one which occurred within the bounds we
set, but only has an approximate location. However, not all
users who post a tweet from a city, live there. Some may
have declared non-existing locations or nothing in their pro-
files, while others could be just visiting the city. In order to
identify the location of a user we used a gazetteer provided
by the GeoNames (www.geonames.org), from which we col-
lected locations names from within our specified area, and
checked if they matched a users’ location. Understandably

our evaluation method is not perfect, since location names
to not correspond to unique places on the map, however this
is an insignificant percentage in our dataset.

In order to test whether locality in the real world is corre-
lated to locality in the network, we apply a set of filters in our
data. Initially we re-create a part of the social graph, only
considering edges that are bidirectional. Most real world re-
lationships by far exceed the energy of a mere follow back,
and thus people that are connected in real life, are more
likely to have a bidirectional edge than a unidirectional.
The latter are more likely to occur when the two parties
do not really know each other in the real world. Further-
more, we discarded very popular users which we defined as
having more than f = 30000 followers or friends, to avoid
celebrities, who tend to be very central nodes, with very lit-
tle location information.
Our first filter, was then to extract the largest connected
component of the sample graph, formed from users who
tweeted within C.
Secondly, we applied a measure in an attempt to remove
users who are just visiting a city, we only kept users who
tweeted more than n times in a period greater than h hours.
For this experiment, we set n = 4 tweets and h = 100 hours.

Figure 1: User Analytics for Each City.

The first column of Figure 1 indicates statistics for users,
for three di↵erent cities, namely Dublin, Manchester, and
Boston. As expected in all three cases, more than 50% (the
two top boxes) have the field empty or in a location which
does not correspond to an area in the city. In contrast only
a percentage in the order of 30% has a city level accuracy
in their profiles, while the rest belong to a much larger re-
gion which includes out target city. We consider as regions,
Ireland for Dublin, England for Manchester and the state of
Massachusetts for Boston.
Interestingly, these numbers change significantly when we
apply our first filter with all location categories being re-
duced, except for the percentage of people in the city. Since
this is only a sample of the graph, being connected in this
case, translates to stronger connectivity in the complete
graph, which rea�rms that there is a correlation between
locality in the real world and the online, and local commu-
nities seem to have a high clustering coe�cient.
The third column illustrates the data after our third fil-
ter. Interestingly the users who pass this filter, and users in
the largest connected component have many common nodes,
who are mostly users who indeed live in the city. This fact
holds true across all three cities which indicates that sample
connectivity is a good pruning filter for local users.
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Our intuition, based on our analysis, is that local com-
munities on the real graph will form clusters with a high
clustering coe�cient in the social graph since there is a sug-
gested correlation between location and friendship. From
the data given above we can conclude that (i) the majority
of users who live and tweet from the same city, are part of
a strongly connected graph, with users that live there, and
(ii) that connectivity from a sample is a good measure to
prune users that do not belong in a city.

5. OUR APPROACH
Our approach formalizes the algorithm which considers

the limited resources one has for the Twitter API. For this
purpose, we built our methods considering our analysis of
the social graph as well as the restrictions one can have in
similar settings. Based on these observations, we built a
method that is able to identify users from a specific city,
by asking the minimum number of queries about the social
graph.

5.1 Problem 1: User Discovery
For our first problem we use the MaxEdge Algorithm: From

our set of tweets T that have geo-location within the area
of a city C, we extract the users who created them. We
then perform some enhacement assessments, based on our
Analysis in 4.2 on them and consider this group of users
to be our ground truth, from now on referred as seed. We
then perform our graph discovery with the following algo-
rithm: We create edges with weights from the seed to their
friends, and create the rest of the known graph, referred to
as frontier. In our method, initially all the edge weights
are set to 1.0. Each of the nodes in the frontier has a score
equal to the sum of the weights of the seed connected to
it fj =

P
wij . We then start to crawl by discovering the

node with the maximum score. We query for his location
and if this person is located in C we add him to our seed,
query about his connections and update our social graph.
We proceed in the same way until we exhaust our limit of
k -queries.

Essentially our method is an enhanced first step of a BFS
algorithm. Given that the graph in Twitter is mostly con-
nected, a DFS is bound to escape the users living in area
quite soon, simulating a random walk. Following this crawl-
ing method, at each step we create the most strongly con-
nected graph possible, by maximizing the clustering coef-
ficient of the seed. Given our analysis in Section 4.2, this
increases the likelihood of finding users in the same city. In
addition we minimize conductance, which is a measure in-
dicating the quality of the community structure a part of a
graph has [19]. In our case it is defined as the number of
edges between the seed and the frontier over the number of
edges inside the seed, which implies that a good community
has low conductance. Our method’s e�ciency is based on
the fact that it only queries the nodes that maximize the
seed connectivity and minimize the conductance.

A representation of the graph formulated by the users we
crawled, is in Figure 2. In this figure, the nodes on the
left side, within the bounding box, represent the seed nodes
denoted as s, which are users who tweeted from the city.
As mentioned in section 4.2 a big part of these nodes are
connected, while there are also smaller connected parts and
nodes with few or no internal edges at all. The red nodes
on the right side, represent our current frontier. These are

Algorithm 1 MaxEdge Algorithm

Input: A set of users U who tweeted from within C, k
Output: New users in C

seed ;
for all <Ui in T> do

if Assess(Ui) is true then
seed += Ui

updateFrontier(FriendsOfUi)
end if

end for
while k > 0 do

NewUser  MaxWeight(frontier)
if NewUser in C then

updateFrontier(FriendsOfNewUser)
end if
k  k � 1

end while

nodes we have not queried yet, however they have at least
one link with one node in the seed, hence we know of their
existence, from the edge list of the s. Currently the node
with the most edges to s has 4 edges, and if we discover
and accept this node as being in C, there is a node with
3 edges who will then have 4 and will be our next query.
Our method does not require us to maintain any internal
edges within the seed, or nodes without external edges, thus
limiting the space requirements and making it plausible to
maintain in memory the information needed for a single city.
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Figure 2: Seed and Frontier Example

5.2 Problem 2: Tweet Location Discovery
Our goal in this problem is to identify the geographical

coordinates of a tweet. We evaluate two methodologies, one
assuming we only have knowledge regarding the text of a
tweet, and the other assuming we have information about
the user who created it as well. For both methods, initially
we segment the area, into squares of equal length a.
For the first approach, which we denote as QL we consider
the Query Likelihood Model as defined in [17], since it pro-
vided the best results in [15]. However, instead of having
di↵erent locations as di↵erent documents, we considered all
the tweets that occurred in the same box as a document,
and assign a query tweet to the box that has the maximum
likelihood of having produced that tweet.
For our second method we exploit information about the
users and his tweeting habits, to create the method QLU.
In this method we assign to each square a probability that
the user u tweeted from the box b as

p(Useru|Boxb) =
|Tweetsu 2 b|P

Tweetsu
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(a) Dublin (b) Manchester (c) Boston

Figure 3: Users in C v Number of Queries in Twitter

and choose the box with the maximum probability p. If
information regarding the user u is not available, we return
to the QL method to locate it.

We consider this method as the next step of the User
Discovery problem in a hierarchical model in order to iden-
tify the originating location of tweets. Adding geographical
coordinates to a text works better if the possible area is lim-
ited, especially in the case of tweets, which contain mostly
common words and very few location information.

6. EXPERIMENTS

6.1 Datasets
We run our experiments on geolocated tweets from 3 dif-

ferent cities. Our data were collected between April and Au-
gust 2013, and their details are presented in Table 1. New
Users, refers to the number of extra users we crawled with
our method, that were from the same city. The Dublin All
dataset, refers to all the tweets from users we were able to
crawl that live in Dublin, which was used for the topic model
experiments described in section 6.4

Tweets Users Area New Users
Dublin 1.9 M 43 k 1224 km2 179 k

Manchester 1.3 M 40 k 462 km2 70 k
Boston 1.5 M 55 k 1521 km2 73 k

Dublin All 71 M 220 k 1224 km2 -

Table 1: Dataset Details

6.2 User Discovery Results
In this experiment we measured how well our method, per-

forms in discovering users from the a city, and illustrate our
results for Boston, Dublin and Manchester, for k = 50000.

Initially we define as seed s all the users who tweeted from
within C with an exact geo-location in their tweets.
Simple refers to the algorithm described in 5.1 which takes
all these users as its seed.
City Seed di↵erentiates by considering as seed, the largest
connected component of users who declare their in their pro-
files that they live in C.
TimeTweets(n, t) considers as seed the city users who tweeted
at least n = 4 times with a di↵erence of t = 100 hours be-
tween the first and last tweet.
Feedback refers to a more complex version of our algorithm,
which rewards the nodes that pointed to a correct user,
and penalises those that pointed to an incorrect one. More

specifically, when updating the frontier, we increase or re-
duce the weights of the edges, of such nodes, by multiplying
their current weight with a coe�cient 1 ± c. For our exper-
iments we set c = 0.01. This algorithm uses the same seed
as City Seed.

6.2.1 City Precision
Figure 3 illustrates that our method works well for the

first 10 - 15 thousand queries, while filters in our initial seed
outperform it slightly. After this point however, the part
of the graph which we are trying to maximize its cluster-
ing coe�cient, becomes too large and too connected with
non-local users, and thus our method slowly begins to crawl
non-city users. The exact number of dilution in the users,
depends heavily on the size of the city, as smaller cities are
more interconnected locally while larger cities tend to have
more connections to outside communities [4].
This e↵ect can be tackled by using our Feedback algorithm,
which gave us the highest most stable precision in all cases,
finishing with a precision of 62.9% for Dublin, 63.0% for
Manchester and 65.6% for Boston. The results indicate that
our intuition is correct, users in proximity can be discov-
ered by maximizing connectivity, however after a number of
queries, the seed becomes too diluted. Feedback essentially
crawls the user, who is most likely to belong to a city, by
the ”majority vote” of all the users who live there.
Precision inevitably drops after a many queries, because the
most certain users are already in the seed, and many users
will have common connections from the outside world. The
Feedback algorithm however, learns which users are more in-
clined to have connections with non local users and assigns
less weight to their ”votes”.

6.2.2 Region Precision

Figure 5: Users in Region v Number of Queries

Figure 5 represents the accuracy for regional results. The
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(a) QL method Accuracy (b) QLU method Accuracy (c) Sensitivity to Training Size

Figure 4: Size of Area - Boston: 39x39km, Manchester: 21x22km, Dublin: 34x36km

question we asked for this experiment, is whether focusing in
a local area, will produce good precision, when accounting
for users living in a greater region. We tested the Feedback
algorithm, for a greater region surrounding our city. The
precision here is higher, in the order of 80% however not
proportionally to the increase in the real world size. This
indicates that users are indeed more connected with others
in the greater area of their location, however they are also
connected globally.

6.3 Tweet Location Discovery Results

QL Method
This experiment evaluates how topical tweets are, and whether
we can utilize their content in order to identify their exact
geographical locations. For the QL method we preprocessed
the data, by removing stopwords and performing a stem-
ming function (through lucene K-Stemmer stemmer), which
slightly improved our accuracy across all configurations. We
tested for linear interpolation, however because of the small
size of the query (maximum 140 characters) the best results
were yielded when � = 0. For each experiment we performed
a 10-fold cross validation, by splitting the dataset in 10 sub-
sets randomly, and for each experiment training with the 9
parts and tested with the other. The reported figure is the
average precision, which had a trivial deviation.

Results of the QL method, for a = 4000 reach a precision
of 33% for Dublin, 34% for the city of Manchester and 27%
for Boston, while they drop slightly as we reduce the size
of the boxes. Figure 4(a) illustrates the accuracy for each
city, for the tested granularities. We can observe, that al-
though the number of possible boxes quadruples from each
level of detail to the next, the accuracy of our method de-
creases in much slower fashion, even for the very specific
granularity of 500m. It is also noticeable that Boston is al-
ways clearly lower than the other two cities, which can be
attributed to the fact that the area we chose for Boston is
almost four times the size of the area we chose for Manch-
ester, as it is a much larger city. In addition, despite the fact
that the area for Manchester is much smaller than the one
for Dublin, they have very similar accuracies. This occurs
due to the landscape of each city, since some of the area
we selected for Dublin, inevitably contains a portion of sea,
without any tweets. Table 2 contains more detailed informa-
tion about the total number of tweets, the number of empty
and reported squares, as well as the average Error Distance
in kilometres for each city; for a = 1000m. Interestingly,

the average distance is only slightly reduced, when precision
is increased which indicates that our method often chooses
neighbouring boxes for smaller granularities. Our method
reports the majority of squares, which indicates that it is
not a↵ected by the skewed distribution. However this bi-
ased distribution cannot be exploited to locate tweets. In
order to illustrate that, we created a method that assigns
a tweet to a location with a probability proportional to the
number of tweets in that box, which yielded an accuracy of
less than 1%.

Grid Size Tweets Empty Reported Error
Dublin 34 x 36 1099904 309 868 11.604
Manchester 21 x 22 798779 20 442 8.301
Boston 39 x 39 1014232 117 1521 14.822

Table 2: Details for QL experiments

6.3.1 QLU Method
In this experiment we evaluate whether users are topical,

and tend to tweet from the same places, when they do so by
their phones. Figure 4(b) presents the same information as
the previous section, for the method QLU which yielded a
precision of 80% for boxes of side 4000m in Dublin, which
was reduced only by 10% when reducing the size of the re-
ported area to 1/64 of the original. This result indicates
that users, across cities, tweet in a spatial routine pattern,
with a very big portion of their tweets from the same speci-
fied area.
Table 4(c) shows the sensitivity of our method when using
various percentages of the dataset as training. The upper
lines represent the accuracy QLU method while the bottom
ones represent QL. The latter is sensitive for tweet num-
ber, however QLU is not, which indicates the strength of
people’s habits to tweet from nearby locations.

6.4 Evaluation through Topic Models
This experiment illustrates how well we can summarize

the information from all the tweets we crawled, as well as
the e↵ectiveness and necessity of our methods since we can
extract more meaningful and accurate topic models through
LDA [5]. Summarizing tweets through topics is important,
especially in the case of emergency identification. Modelling
the topics of discussion in a city, can aid towards defining
which are usual topics of discussion in a city, and thus the
ability to spot abnormal ones. Furthermore it can be used
to identify the rate with which people change topics of dis-
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cussion, and identify a city-wide emergency in case of an
abrupt change, directions we are eager to investigate in the
future.

For the city of Dublin, we initially used the geo-Located
tweets we received from Twitter, and then those we were
able to download from the new users we discovered with our
method. Assuming that one wants to know what the major
topics of discussion in a city C are, during a time interval
t, we identify the di↵erence between the two datasets. As a
measure of performance of LDA, we use perplexity as defined
in [27]. Perplexity essentially tells us how well our proba-
bility distributions over the topics, represent the testing set.
Our results indicate that the set of GeoLocated Tweets is
much more perplexed than the complete dataset, for various
training percentages, across di↵erent total number of topics.
Except for the case of the complete dataset being a training
set, the rest of the samples are non inclusive.

(a) GeoLocated Tweets (b) Tweets from all Users

Figure 6: Perplexity v Number of Topics, for various
percentages of the Dataset (lower is better)

Figure 6(a) shows the perplexity of the geo-Tweets when
divided with the perplexity of the complete set and most
topics which is the lowest. We can observe that the perplex-
ity drops significantly when using a bigger dataset, which
is of-course expected. However in the second case (Figure
6(b), which is the dataset with all the tweets, the perplexity
is at all levels much lower and less sensitive. This indicates
two things: Firstly, LDA creates better topic models given
our more holistic dataset, and secondly that even with a
small percentage of that data, we are able to create and re-
trieve a more coherent picture about the topics discussed in
a city than just with geo-located tweets. In other words, the
tweets which are geo-located are not enough to accurately
depict what the topics of conversation in a city are.

We also performed a qualitative test, by manually la-
belling the topics and determining how many can poten-
tially be annotated with a coherent topic of discussion. We
labelled the 20% and 100% of both datasets. After consid-
ering the results from the largest dataset as ground truth,
since it contains all other datasets, we evaluated how many
topics from each dataset are relevant to the this. The re-
sults are in Table 3 . We present some indicative topics and
annotations for each case in Table 4.

Relevant Annotated
20% Geo 10 32
100% Geo 18 37
20% All 27 42
100% All 45 45

Table 3: Relevant and Annotated Topics

7. CONCLUSIONS
Identifying information for a specific location is an impor-

tant problem. In this regard we analysed the structure of so-
cial networks for users that live in proximity and concluded
that there is a correlation between strong connectivity in the
social graph and proximity in the real world. We created a
method that captures the dynamic relations on such a graph,
and can locate users who live in a specific area, optimized for
minimum number of queries in the graph. Furthermore we
created a method for precise geo-location of tweets within a
city with high accuracy and provided extensive experimen-
tation on a real social network, regarding the e↵ectiveness
of our method as well as the quantitative and qualitative
benefit from the newly found data.
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