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ABSTRACT
The abundance of GPS tracking data due to the emergence and pop-
ularity of smartphones has fuelled significant research around GPS
trajectories and map-matching algorithms. Unfortunately, none of
this previous research addresses the issue of identifying turning re-
strictions in the underlying road network graph. Our latest research
endeavour remedies this, by proposing a novel, straightforward and
e↵ective way to infer turning restrictions for OpenStreetMap data,
by utilizing historic map-matching results from an existing fleet
management service. Our experimental evaluation based on the re-
sults acquired for three European cities within an one-year period,
proves the robustness and credibility of our method.

Categories and Subject Descriptors
H.3.3 [Information Search and Retrieval]: Information filtering;
H.2.8 [Database Applications]: Spatial databases and GIS

General Terms
Design

Keywords
Crowdsourcing, Turning Restrictions, Map-matching, OpenStreetMap

1. INTRODUCTION
Our latest research e↵orts of [22] aimed towards combining state-

of-the-art research about road networks, Floating Car Data, map-
matching, historic speed profile computation, live-tra�c assess-
ment and time-dependent shortest-path computation to provide an
e�cient, yet economical fleet management solution. This process
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was documented in [5] and its result, our fully functional Sim-
pleFleet fleet management system and its accompanying demo [7]
now cover the urban regions of three European metropolitan cities
namely: Athens (Greece), Berlin (Germany) and Vienna (Austria).
Creating the actual service required several intermediate steps such
as: Creating road network graphs from OpenStreetMaps data, col-
lecting a large amount of Floating Car Data (FCD) from fleet ve-
hicles, applying state-of-the-art map-matching algorithms on this
data for aligning the GPS traces to the road network graph and
consequently producing high-quality historic speed profiles along
with frequently updated live-tra�c assessment. This combination
of live-tra�c information and speed profiles was subsequently used
to provide up-to-date live-tra�c shortest-path and isochrone com-
putation (refreshed every 5 minutes). In addition, our recent work
of [6] has already combined the live-tra�c isochrone functionality
of this system with demographic / business data to showcase the
impact of tra�c fluctuations in a geomarketing context. There, one
can see in a quantitative way the considerable importance of tra�c
and how it should a↵ect geomarketing decisions.

It is obvious that the success of every fleet management solution
depends highly on the quality of the road network graph. Although
OpenStreetMap (OSM) is a crowdsourced, high-quality, frequently
updated road network dataset, an entire year of running the Sim-
pleFleet service for its three urban regions has revealed a inherent
limitation of the OSM dataset: Its limited information for turning
restrictions, i.e., a transition from one network edge to another (via
an intersection node) that is prohibited due to local tra�c rules.
It is not that OSM data does not support turning restrictions: an
additional relation tag (Relation:restriction [19]) is defined for de-
scribing such restrictions. The problem is that only a small number
of users contribute to this information. While OSM includes more
than 2.1 billion Nodes, Ways and Relations [17], less than 230,000
relations actually represent turning restrictions [19]. This is even
more obvious, when we look at our individual test cases: For the
city of Athens and its road network of 277K nodes, only 214 turn-
ing restrictions have been recorded by OSM users. This lack of data
is to be expected: there are no public datasets for tra�c signs easily
found (if any), satellite imagery cannot reveal this information and
adding turning restrictions even for a single road is extremely time-
consuming. Keep in mind that turning restrictions do not include
one-way streets. Such streets are easily modeled in every directed
graph representation, are easily recognized by users and OSM data
has extensive coverage for them.
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Turning restrictions on road networks are especially important
for any routing / isochrone service. While a lot of scientific lit-
erature has focused on time-dependency on road networks (due to
the fluctuation of tra�c) and consequently the implementation of
e�cient shortest-path algorithms that address this issue, there is a
limited number of works that deal with turning restrictions. This
is mostly due to the fact that “no publicly-available realistic turn
data exist”[4]. Note that turning restrictions have a more dramatic
impact on shortest paths provided by mapping services than tra�c:
While ignoring tra�c returns a valid, yet suboptimal route to the
user, ignoring turning restrictions returns erroneous paths that may
lead to accidents. As a result, providing an e�cient method for au-
tomatically identifying turning restrictions is extremely important.

When searching existing scientific literature for solving this is-
sue, we found a significant body of work based on Floating Car
Data (FCD) in various areas (see [29] for a partial overview on GPS
related research). The only previous works relevant to solving (or
even acknowledging) our actual problem also use FCD for calcu-
lating turn delays [1, 13, 23, 27, 28]. It was really a surprise, when
we did not find any literature devoted to the results of the map-
matching (MM) algorithms, as though those results may strictly be
used for travel-time estimation. In this sense, we beg to di↵er, be-
cause the main focus of this work is to automatically identify / infer
turning restrictions in the OSM dataset by utilizing historic map-
matching results, i.e., we crowdsource the identification of turning
restrictions to local vehicle drivers by mining the map-matching re-
sults produced by them, when traversing the road network graph.
This is also the true novelty of our contribution: instead of using the
GPS trajectories directly, we use the map-matching results derived
from them. Our approach makes sense: In comparison to raw GPS
traces, map-matching results are: a) more condensed, since instead
of random locations in the plane we have edge sequences and b)
less error-prone (if an e�cient map-matching algorithm is used)
since they are interpolated with the actual road network. Therefore
it is logical to utilize those historic results to extrapolate this addi-
tional meaningful information, instead of using raw FCD like most
previous works. To the best of our knowledge, we are the first to
utilize map-matching results for such a task. Although our method
uses OSM data, it may also be used for any road network dataset,
in cases where the road network evolves faster than typical map up-
dates. In those cases, identifying added turn-restrictions, as soon as
they occur, is extremely important.

The outline of this work is as follows. Section 2 describes pre-
vious research in relation to our work. Section 3 describes our sci-
entific contribution towards identifying turning restrictions in the
OSM dataset by utilizing historic map-matching results. Section 4
summarizes the results of our approach. Finally, Section 5 gives
conclusions and directions for future work.

2. RELATED WORK
Recently, real-time Floating Car Data (FCD) collected by oper-

ating vehicles equipped with GPS-enabled devices has become the
mainstream in tra�c study because of its cost-e↵ectiveness, flex-
ibility and being the “the only significant tra�c data source with
the prospect of global coverage in the future”[10]. Typically a GPS
trajectory describing a vehicle movement, consists of a sequence of
measurements with latitude, longitude and timestamp information.
However, this data is inherently imprecise "due to measurement
errors caused by the limited GPS accuracy and the sampling error
caused by the sampling rate" [20]. Therefore the observed GPS po-
sitions often need to be aligned with the road network graph. This
process is called map-matching. As a result, a map-matching (MM)
algorithm accepts as input a vehicle’s GPS trajectory and outputs a

path / ordered sequence of road network graph edges that this vehi-
cle has traversed, along with travel time information, i.e., how long
did it take for the specific vehicle to traverse the calculated path. In
our SimpleFleet service [5] we used two di↵erent MM algorithms:
the Fréchet-distance-based curve matching algorithm of [2, 25] and
the [11] implementation of the ST-matching algorithm [14]. How-
ever, both implementations were significantly enhanced to handle
live incoming FCD streams.

Despite their inherent imprecision and the usually low sampling
rate of available datasets, latest years saw an explosion of research
around GPS trajectories ([29] presents a partial overview of GPS
related research). Nevertheless, so far, only a limited portion of
this research focused on road network intersections. This is a ma-
jor oversight, since intersections are important components of ur-
ban road networks and contribute much to the total travel time cost
[16, 24]. [16] concludes that intersection delays i.e., the turn cost
associated with the continuation of travel between edges via an in-
tersection node [26] contribute to 17-35% of the total travel time,
according to a conducted survey in the Copenhagen urban area.

The few research works around road network intersections that
actually exist, focused on estimating intersection delays based on
the available Floating Car Data. Some researchers have utilized the
historical mean method to calculate the intersection delays ([23],
[28]), while other authors employ piecewise linear interpolation
([1], [27]). Additional works employed the principal curves method
[9] to overcome data sparseness of Floating Car Data and calculate
turn delays tables for the region of Beijing [13].

Although turn costs / intersection delays are a generalization of
turning restrictions (i.e., a turning restriction is a turn with delay
set to 1) previous works are fundamentally di↵erent from our ap-
proach in several levels. First of all, for previous approaches to cal-
culate turn cost for a specific turn, many vehicles need to actually
use it. On the contrary, we identify turning restrictions by focus-
ing on turns with no available data. Second, previous approaches
use GPS trajectories; we use map-matching results. Third, since
they are based on data mining techniques they may only verify re-
sults by dividing the original GPS dataset into a training and a test
set. We use an independent mapping service to verify our findings.
Lastly, most publicly available GPS datasets are either simulated
[12], focused on a specific city [3, 15] or for limited time periods
(a day, week or month for [12, 15, 3] respectively). Contrarily, our
conclusions are based on three di↵erent European cities and fleets
of 2, 000�5, 000 vehicles per city covering a full 12-month period.
Since our results are almost identical for each city (see Sec. 4) it is
obvious that our method is both realistic and robust.

In the next section we will describe the basic methodology with
all the practical details of our implementation.

3. CROWDSOURCING TURNING
RESTRICTIONS

In this section we are going to present basic information about
the OpenStreetMap dataset and the methodology we used to infer
information about turning restrictions from historic map-matching
results, as well as the verification process used.

3.1 Preliminaries
In the discussion that follows, a road network is represented by

a directed weighted graph G(V, E, l), where V is a finite set of ver-
tices / nodes, E ✓ VxV are the edges of the graph and l is a posi-
tive weight function E ! R+. Typically, the weight l represents the
travel time required to traverse the edge. In other cases, l may refer
to the length of the edge in meters (for travel distances metric).
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(a) Prohibited U-turn (b) Prohibited left turn

(c) Prohibited right
turn

(d) No entry sign

Figure 1: Prohibitory tra�c signs for turning restrictions

The degree of a vertex u, denoted as deg(u), is the number of
edges incident to the vertex. Intersection nodes are the road net-
work vertices with node degree larger than two, i.e., I = {vi 2 V,
deg(vi) > 2}. A turning restriction is an ordered sequence of two or
more network edges connected via intersection nodes that is pro-
hibited due to local tra�c rules. Such turning restrictions are rep-
resented in the road network as tra�c signs (see Fig. 1). For the re-
mainder of the paper, we only deal with those edge sequences that
consist of a single ordered pair of two edges connected via a sin-
gle intersection node, since those represent the majority of turning
restrictions on typical road networks. Note that turning restrictions
do not refer to one-way streets, because a) even a single edge may
be marked as unidirectional and b) turning restrictions may refer
to roads that are bidirectional but it is only their sequence that is
prohibited. In addition, unidirectional streets are easy to model in
every directed graph representation, whereas turning restrictions is
a distinguishing trait of road networks that di↵erentiates them from
most other real-world networks.

A GPS trajectory describing a vehicle movement, consists of a
sequence of measurements with latitude, longitude and timestamp
information for the same vehicle ID. Map-matching is the process
of aligning such a trajectory against the underlying road network
graph. Consequently, a map matching algorithm accepts as input a
single vehicle’s trajectory and outputs a path / ordered sequence of
road network graph edges that this vehicle has traversed, along with
travel time information, i.e., how long did it take for the specific
vehicle to traverse the calculated path. For the remainder of the
paper, when we are talking about map-matching results we only
refer to the calculated vehicle’s path and not the associated travel
time information.

3.2 OpenStreetMap and turn restrictions
OpenStreetMap [18] is a free, editable map of the entire world.

Unlike proprietary datasets, the OpenStreetMap license allows free
access to the full map dataset. This massive amount of data may be
downloaded in full but is also available in other useful formats such
as mapping, geocoding or other web services. Users participate
in the OpenStreetMap (OSM) community by providing feedback
and editing the map. Although OpenStreetMap contains an appro-
priate relation tag (Relation:restriction [19]) for describing turning

Table 1: Turning restrictions added in OSM per year for the
cities covered by our service

city 2009 2010 2011 2012 2013 Total
Athens - 11 1 75 127 214
Berlin 8 26 101 386 147 668
Vienna 33 36 99 307 324 799

Table 2: OSM road networks of the three cities covered by our
service

# intersection
# intersection vertices for

vertices roads <=10
city # vertices # edges total % total %

Athens 277,719 329,444 100,422 26% 34,921 13%
Berlin 89,598 103,486 51,935 58% 21,119 24%
Vienna 100,579 112,478 44,874 45% 16,104 16%

restrictions, only a small number of OSM users contribute to this
information, due to its inherent di�culty. This statement was easy
to confirm for the three European cities (Athens, Berlin, Vienna)
covered by our service. Results retrieved in September 2013 are
shown in Table 1.

Table 1 shows that available data for turning restrictions is par-
ticularly low, especially in comparison to the sizes of the OSM road
networks of the three cities covered by our service, as shown in Ta-
ble 2. We got similar results (or even worse) for other European
cities, especially for countries with less detailed maps (e.g., Alba-
nia, Montenegro). Given the above issue, we decided to take advan-
tage of the large amount of historic map-matching results created
through our fleet management service and infer / identify turning
restrictions in the OSM road network. Our method is straightfor-
ward and e�cient: We aim to discover turns that, although they are
allowed in the original dataset, in practice they are rarely, if ever,
used by the vehicle drivers. Such turns that exhibit such low usage
frequency have a very high probability to be actually prohibited.

3.3 Methodology
The basic methodology for inferring / identifying OSM turning

restrictions by using historic map-matching results created by our
fleet management service may be described by the following sim-
plified diagram of Fig. 2. The independent stages of this process
will be thoroughly discussed in the following sections.

3.3.1 Input data
In our SimpleFleet service [5], GPS traces of fleet vehicles for

the three European cities, arrive in a streaming fashion. Specif-
ically, for each of those urban areas, we are dealing with 2,000-
5,000 fleet vehicles producing a data point (GPS position sample)
every 60 -180s. GPS trajectories for each vehicle are subsequently
map-matched, in order to align those GPS traces to the underlying
OSM road network graph. The result of this process is an ordered
sequence of road edges that a vehicle has traversed. The tra�c data-
store of the service, including the OSM road network graphs, Float-
ing Car Data and map-matching results is implemented by PostGIS
enabled PostgreSQL databases (one database instance per city) for
permanent storage.

As a vehicle moves in the road network, it traverses roads of
varying importance to tra�c (refer to Table 3 for the distribution of
the OSM road networks per their respective category for the three
SimpleFleet cities). However, not all these roads are important to
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Figure 2: Methodology for identifying OSM turning restric-
tions by using historic map-matching results

Table 3: Road categories for the OSM road networks
CategoryID Road category Athens Berlin Vienna

1 motorway 4287 1420 2410
2 motorway link 3747 2012 4386
3 trunk 1343 111 171
4 trunk link 567 0 227
5 primary 16210 5203 8913
6 primary link 1257 347 422
7 secondary 42881 21250 12894
8 secondary link 0 45 0
9 tertiary 58722 9678 11576
10 tertiary link 0 6 0
11 unclassified 13484 2792 3060
12 road 395 28 0
13 residential 186459 58338 67482
14 living street 92 2256 937

tra�c, so it made sense to reduce the bulk of data stored. Towards
this goal, a separate process eliminates map-matched edges that
belong to edges of road category greater than 10 (i.e., OSM cate-
gories for unclassified, road, residential and living street - see Table
3). Depending on the time period and the tra�c patterns in each
city, about 12-15% of the map-matched records are subsequently
dropped after the map-matching process.

Since map-matched records are primarily used to o↵er real-time
information for the current tra�c situation, older data is periodi-
cally removed from the respective PostgreSQL datastores (every 5
minutes) and archived into csv files for o✏ine use. At the end of
each day, a batch process compresses those csv files created during
the day. A copy of this compressed file is then sent to a backup
server for permanent storage. Table 4 indicates the typical size of
compressed archives produced per day and month for each city.

After one year of running the service (from Oct 2012 to end of
September 2013), we have accumulated several Gb of compressed
historic map-matching results for each of the cities covered by our
service. The challenge is how to utilize this significant wealth of

Table 4: Typical size of compressed MM results archives
Size Athens Berlin Vienna

per day 22.3 MB 224 MB 76.3 MB
per month 0.67 GB 6.74 GB 2.29 GB

Table 5: Total counted instances for all examined turns between
Oct 2012 and September 2013

# intersection # instances per
vertices for #examined # total inters. vertex

city roads <=10 turns instances for roads <=10
Athens 34,921 75,552 144,451,729 4,137
Berlin 22,119 44,636 2,054,969,090 97,304
Vienna 16,104 36,484 610,902,632 37,935

data to infer turning restrictions for the respective OSM road net-
works. This process will be described in the following sections.

3.3.2 Parsing map-matching results and optimizations
The basic focus of our work is to identify those turns (i.e., or-

dered pair of edges connected via an intersection node) that exhibit
unusually low frequency of usage by vehicles. The frequency of us-
age will be determined by parsing the compressed archives of the
historic map-matching results produced for the three cities during
the operational period of our service (Oct 2012 to end of Septem-
ber 2013). Since, the respective OSM road networks comprise of
hundreds of thousand of nodes and edges (see Table 2) we need to
somehow limit the possible turns that need to be examined.

The first optimization is to identify those pairs of consecutive
edges that connect at intersection vertices. There is no need to ac-
cumulate information for vertices of degree 2 (with just one incom-
ing and one outgoing edge) or lower, since in those vertices the
driver has no choice but to continue in one direction. The second
optimization had to do with the available input data. Since map-
matching results only include larger roads that correspond to OSM
categories  10 (see Section 3.3.1), we are only interested in those
intersection vertices connected to such roads. This way we miss
some intersection vertices (strictly connected to smaller categories
roads) but this is a necessary compromise to minimize our scope. In
addition, intersection vertices that connect to major roads are more
likely to be used by many vehicle drivers and as a result they signif-
icantly influence tra�c behaviour. Table 2 shows that the number
of intersection vertices connecting major roads are less than 25%
of total vertices for all cities covered by our service.

As a result of those two optimizations, the number of unique
turns / pairs of consecutive edges we need to examine is signifi-
cantly smaller than the available road network edges, which is a
considerable improvement (see Table 5). Since the OSM road net-
works of each city are stored in the respective PostgreSQL datas-
tores, determining intersection vertices of interest and their corre-
sponding turns is easily accomplished with plain SQL commands.

After determining the unique turns for examination, we imple-
mented a custom Java app that parses the compressed archives of
historic map-matching results in our disposal (see Section 3.3.1),
counts the instances encountered for each turn and stores results in
the respective PostgreSQL datastores. The total counted instances
for all examined turns during our one-year testing period (starting
Oct 2012) are shown in Table 5. Results also show, that on average
for every intersection vertex connected to major roads (i.e., their
road category  10 ), we have 4,137 (Athens) - 97,304 (Berlin)
counted instances of turns, which means that we have a su�ciently
large number of measurements per intersection vertex.
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3.3.3 Identifying candidate turning restrictions
After enumerating instances for every unique turn we needed to

examine, we must discover which of those turns are rarely used.
Since both turns and results of the enumerating process are stored
in the respective datastores, it is easy to group results / turns by
entrance edge and direction (for bidirectional edges) . Each such
group contains all possible turns a vehicle may follow after travers-
ing a specific entrance edge (and a specific direction). Subsequently,
each turn belongs to only a single group of turns. Since we know
the number of instances encountered for each one of the turns be-
longing to the same group, it is easy to calculate the percentage of
usage for each one. An example group for a specific entrance edge
is shown in Fig. 3.

Figure 3: A simple example of grouping turns per entrance
edge (A, B) at an intersection vertex (B) for calculating usage
percentage per turn

As we notice in the example group of Fig. 3, most drivers con-
tinue straight when they traverse the entrance edge (A, B) that leads
to the intersection vertex B. Some others prefer to turn right. But a
very small percentage of them (2%) turn left. This is a very strong
indication that this low percent actually represents erroneous map-
matching results (even the most e�cient MM algorithm has a small
error rate) and indeed this particular left-turn is prohibited, even if
OpenStreetMap lacks this information.

Next, we made the rather logical assumption that turns with lower
frequency percentage than an implicit 5% threshold are probably
prohibited. Of course this threshold is arbitrary but as results will
show, it is pretty accurate as well. Table 6 shows the number of the
candidate turning restrictions we have discovered for each city for
both 5% and 2.5% thresholds.

However, estimating candidate turning restrictions is not enough.
For each such turn, we need to additionally calculate its direction,
to conclude if it is a straight, right, left or U-turn. The direction
calculation is very easy, since we have already stored the inclina-
tion of each edge in the respective datastore, since this information
was needed for the isochrone functionality of our service. Table 7
shows the percentages of the turns direction categorization for the
candidate prohibited turns we have extracted. As expected, most of
them (particularly in Berlin and Vienna) represent left-turns.

Table 6: Number of candidate turning restrictions discovered
for 5% and 2.5% thresholds

# turning turning
restrictions restrictions (%)

city # turns 5% 2.5% 5% 2.5%
Athens 75,552 5,287 3,596 7.00% 4.76%
Berlin 44,636 2,653 1,582 5.94% 3.54%
Vienna 36,484 1,739 1,261 4.77% 3.46%

Table 7: Categorization of candidate turning restrictions per
direction for 5% threshold

# turning
city restrictions straight left right U-turn

Athens 5,287 6.5% 45.4% 41.6% 6.5%
Berlin 2,653 1.6% 64.6% 18.6% 15.2%
Vienna 1,739 10.5% 44.8% 30.0% 14.7%

Still, after determining the candidate prohibited turns for each
city covered by our service, we still need to find additional means
to verify the validity of our claims. This process is discussed in the
following section.

3.4 Verifying results
There are two basic ways to validate the discovered candidate

turning restrictions. Firstly, we can visualize each one of those
candidate restrictions. Secondly, we can use an external mapping
service and cross-check if we get similar results to ours. We used
both ways: Results are presented in the following sections.

3.4.1 Visual Inspection
In order to confirm our results, we need to visualize the candidate

restricted turns. Each such turn may be represented with the appro-
priate tra�c sign (depending on the direction of the turn according
to Table 7) located in the corresponding intersection vertex coor-
dinates. For that purpose, we used QGIS [21], a popular, free and
open source GIS application that runs in all major operation sys-
tems. We used a Google Maps Layer in QGIS as the background
map layer, in order to compare results to an external mapping ser-
vice. Figure 4 shows some typical examples of the results of our
visualization process for some of the candidate turning restrictions:

• Figure 4(a) depicts an intersection familiar to most local dri-
vers in the center of Athens. This type of restrictions were
easily verified by our personal experience and they e↵ec-
tively demonstrate how important and critical turning restric-
tions are discovered through our method.
• Figure 4(b) shows a case of a prohibited U-turn in the Berlin

area. There, many disallowed U-turns are missing from the
OpenStreetMap dataset.
• Figure 4(c) shows that the Google Maps layer visually con-

firms the discovered turning restriction.

Conclusively, visual inspection of our findings shows that Open-
StreetMap data (despite its high quality) is still missing some vi-
tal information, especially as turning restrictions are concerned.
By taking advantage of historic map-matching results, we have
tracked and visualized many such problematic cases. As a result,
our methodology may be used to further enrich the collection of
turn-restrictions available in OpenStreetMap. Yet, to further ver-
ify and quantify results, an additional high quality mapping service
could be used for cross-checking the validity of our findings. This
process will be described in the following section.
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(a) Turning restrictions visualization in
Athens

(b) Turning restrictions visualization in
Berlin

(c) Turning restrictions visualization in Vi-
enna

Figure 4: Visualizing turning restriction with QGIS

3.4.2 Sourcing an external mapping service
Although visual inspection is a convincing, qualitative way to

validate results, it would be best if we could further verify and
quantify our findings through an automatic process. One solution
to this problem is to use the Google Directions API [8]. Although
Google Maps is not guaranteed to be perfect, yet, it is a global,
popular, commercial, alternative solution to the crowdsourced user-
generated data of OpenStreetMap.

The Google Directions API is a service that calculates directions
between locations using HTTP requests. Users may search for di-
rections for several transportation modes, include transit, driving,
walking or cycling. Directions may specify origins, destinations
and waypoints either as text strings or as latitude/longitude coordi-
nates. The Directions API can return multi-part directions using a
series of waypoints [8].

The Google Directions API allows only 2,500 directions requests
per 24 hour period from a single IP address (for free users). This
is the reason, why it was important to first identify (a rather lim-
ited number) of candidate turning restrictions, so that the required
requests to the API could finish in a few days. In any such HTTP
request to the API, certain parameters are required while others
are optional. As is standard in URLs, all parameters are separated
using the ampersand (&) character. The most important required
parameters (relative to our problem) are:

• Origin - The address or textual latitude/longitude value FROM
which we wish to calculate directions.
• Destination - The address or textual latitude/longitude value

TO which we wish to calculate directions.

Two additional, optional parameters useful to our purpose are:

• Mode (defaults to driving) - Specifies the mode of transport
to use when calculating directions. The value can be “driv-
ing”, “walking”, “bicycling” or “transit”.
• Waypoints - Specifies an array of waypoints. Waypoints al-

ter a route by routing it through the specified location(s). A
waypoint is specified as either a latitude/longitude coordinate
or as an address which will be geocoded.

Since our requests concern driving directions, there is no need
to specify the “mode” parameter as it defaults to “driving”. As for
waypoints, we only need one waypoint per request. This waypoint

http://maps.googleapis.com/maps/
api/directions/json?origin={A_
coordinates}&destination={C_
coordinates}&waypoints=via:{B_
coordinates}&sensor=false

Figure 5: A sample Google Directions API request

should not be a stopover but serves just to influence the route. This
may be done by prefixing the waypoint with the prefix “via:” (in
the respective API call). This way, a single-part route is returned.

Given the above and with reference to Fig. 3, in which the
Turn(A! C via B) has a low frequency usage, an HTTP request to
verify this candidate turning restriction would be similar to Fig. 5.
This request returns a JSON object with the proposed route by the
API. The process for verifying the turning restriction is described in
Algorithm 3.1, which compares the distance (in meters) calculated
by the Google Directions API with the sum of lengths of edges
(A, B) and (B,C). If the Google distance is significantly greater
(over 10%) than OSM’s distance, then we may safely assume that
indeed there is a turning restriction and the Google Directions API
has to follow a much longer route than simply (A, B)! (B,C).

Algorithm 3.1: VerifyTurn(Turn(A! C via B))

GooglePath DirectionsAPICall(A! C via B)
if dist(GooglePath) >> dist(A! B) + dist(B! C)

then
n
Turn(A! C via B) is veri f ied

In order to access the Google Directions API, we implemented a
Java command-line application that retrieves turns below a thresh-
old frequency usage (5% in our case) from the datastore, constructs
an appropriate request string similar to Fig. 5 for each turn and re-
trieves the distance of the route returned by the API. To avoid over-
loading Google’s servers and getting rejected requests, we have en-
forced a 500 ms gap between requests. API distance results are also
stored in the respective PostgreSQL datastore for easy accessing.

An obvious problem to this approach for verifying results, is the
usage limits of the Google Directions API. Although we are dealing
with road networks with hundreds of thousands of nodes, edges and
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Table 8: Number of verified restrictions for 5% and 2.5% im-
plicit threshold

candidate turning
restrictions # verified verified (%)

city 5% 2.5% 5% 2.5% 5% 2.5%
Athens 5,287 3,596 3,517 2,471 67% 69%
Berlin 2,653 1,582 1,510 1,016 57% 64%
Vienna 1,739 1,261 1,172 880 67% 70%

possible turns, through our optimizations (see Section 3.3.2) and
by restricting the usage of the API to strictly confirm the candidate
prohibited turns found by our proposed method, we only need to
check a few thousands turns. Even by not bypassing Google API’s
limits (by using di↵erent IP addresses) this process only takes 1-3
days per city (e.g., for Vienna it requires only a few hours). As a
result, the API usage limits easily su�ce for confirming our results.
These results are presented in the following section.

4. RESULTS
This section summarizes the results produced by the Google Di-

rections API verification process for all candidate turning restric-
tions in comparison to the original OpenStreetMap datasets.

4.1 Verified turning restrictions
The method used for comparing results of Google Directions

API and the OSM distances for each turn was thoroughly explained
in Section 3.4.2. In Table 8, we present the number of restrictions
verified for both 5% and 2.5% implicit usage threshold, as well as
their respective percentages in comparison to the total candidate
restrictions. Keep in mind that usually the paths returned by the
Google Directions API are significantly larger (85-90% of the ver-
ified restrictions give at least two-times larger paths) than the sum
of lengths (A, B) and (B, C), which further proves the validity of
the verification method used.

As we notice, the majority of the candidate restrictions are suc-
cessfully verified by the Google Directions API. In fact, in Athens
and Vienna more than 67% of the extracted turning restrictions are
verified. In Berlin, the verified restrictions are about 57% for the
5% threshold and 64% for the 2.5% threshold. Another useful re-
mark is that moving from the 5% to the 2.5% threshold, the veri-
fied restrictions’ percentage is slightly increased but, in fact, we are
missing a significant number of restrictions (compare columns “#
verified” for 5% and 2.5%). This means, that there is a respectable
amount of existing (and verified) restrictions even in the turn usage
interval between 2.5% and 5%.

Finally, Table 9, compares total turns, examined turns, candidate
and verified turning restrictions in comparison to the turning re-
strictions existing in the original OpenStreetMap datasets for the
three respective cities. Results are quite impressive: Instead of
examining hundreds of thousands of turns, by focusing on inter-
section nodes connecting major roads and utilizing historic map-
matching results, we discovered only a few thousand candidate
turning restrictions in need of verification. Next, by using the Goo-
gle Directions API most of the candidate turning restrictions were
successfully verified. But the most impressive fact of all, is that
the number of verified turning restrictions is significantly larger
than the restrictions existing in the original datasets. Especially
in Athens, the number of verified turning restrictions is 16 times
larger than those existing in the original OSM dataset. Even, in Vi-
enna and Berlin the number of the verified prohibited turns is still
1.7 - 2.2 times larger than those existing in the original data. Our

Table 9: Total turning restrictions results for 5% implicit
threshold in comparison to existing OSM’s restrictions

candidate verified OSM
total examined turning turning turning

city turns turns restrictions restrictions restrictions
Athens 900,397 75,552 5,287 3,517 214
Berlin 252,271 44,636 2,653 1,510 668
Vienna 256,185 36,484 1,739 1,172 799

results lead us to assume that in cities of European countries with
less detailed maps (e.g., Albania, Montenegro) the situation will be
similar to Athens or even worse.

4.2 False positives?
Another pending question is what can we really infer for those

turning restrictions that were not verified by the Google Directions
API. Most of the times, for those turns, the distance returned by
the Google Directions API is quite similar to the sum of lengths
(A, B) and (B, C). Still, there is also a non- negligible number of
routes (5% for Athens, 2% for Berlin and 8% for Vienna of those
unverified restrictions) where the distance returned by the API is
less than 80% of the sum of lengths of edges (A, B) and (B, C).
When we searched for those strange cases, most of the times there
were serious inconsistencies between the two maps. In that case, if
the turn is actually allowed or not is very debatable.

Still, even if we assume that all unverified turning restrictions are
indeed allowed (i.e., our method produces false-positives) there is
one fact we cannot ignore: A very small percent of drivers actually
use them. In that case, a perfect shortest-path solution would still
have to penalize (by increasing the respective turn cost) such “un-
appealing” turns. In this sense, even unverified turning restrictions
returned by our method are still useful in revealing typical drivers’
patterns and behaviors.

5. CONCLUSION AND FUTURE WORK
In this work we have proposed a new and e�cient, semi-automatic

way to infer / identify turning restrictions for OpenStreetMap data
by utilizing historic map-matching results from an existing fleet
management service, covering three major European cities, span-
ning a period of twelve months . Our method has proved solid:
57-67% of the turning restrictions we have extracted may be suc-
cessfully verified. However, the most important result is that we
have identified and verified 2-16 times more turning restrictions
than those existing in the original datasets. This impressive feat
proves the validity and credibility of our method.

To the best of our knowledge, we are the first to utilize historic
map-matching results for such a task. This is after all, the main
novelty of our work, since the few existing works that deal with
the similar subject of intersection delays base their research on raw
GPS trajectories. In addition, most previous works used either sim-
ulated data or data covering smaller time periods (up to a month)
and were focused on a particular area. Our results are based on
three European cities, originate from three medium / large fleets
of 2,000-5,000 vehicles per city and cover an entire year of opera-
tion. Results for the three areas were almost identical, which fur-
ther proves the robustness of our method. Moreover, by comparing
our results with an external mapping service (the Google Direc-
tions API) we have shown the correctness of our approach. On a
quite similar note, we also experimented with two fundamentally
di↵erent map-matching algorithms and our results showed that our
method produces similar results regardless of the map-matching al-
gorithm used.
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We can give the following directions for future work. Since the
proposed method is able to identify and confirm turning restric-
tions in the OSM data we can expand it to automatically contribute
those confirmed restrictions back to the OpenStreetMap project.
This way, the product of our work could be shared by the related
mapping community. Additionally, our results could be proven ex-
tremely useful to further improving the quality of existing map-
matching algorithms. Many of those algorithms use partial shortest-
path calculations to align the raw GPS traces to the road network
graph. Up until now, those SP computations do not take turning
restrictions into account. Since, our approach identifies such re-
strictions, those newly found constraints could be integrated back
in the map-matching algorithms to further improve their results.
That way a self-improving, evolutionary map-matching algorithm
might be possible after all.
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