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ABSTRACT 
Increasing efficiency in hospitals is of particular importance. 
Studies that combine data from multiple hospitals/data holders can 
tremendously improve the statistical outcome and aid in 
identifying efficiency markers. However, combining data from 
multiple sources for analysis poses privacy risks. A number of 
protocols have been proposed in the literature to address the 
privacy concerns; however they do not fully deliver on either 
privacy or complexity. In this paper, we present a privacy 
preserving linear regression model for the analysis of data coming 
from several sources. The protocol uses a semi-trusted third party 
and delivers on privacy and complexity. 

Categories and Subject Descriptors 
D.3.3 [Computers and Society]: Public Policy Issues– Privacy 

H.2.8 [Database Management]: Database Applications– Data 
Mining. 

General Terms 
Algorithms, Security, Theory. 

Keywords 
Linear regression, privacy preserving data mining, secure 
multiparty computation. 

1. INTRODUCTION 
Hospitals are under a lot of pressure to increase their efficiency. 
They need to see more patients and reduce their costs without 
increasing resources [1]. Increasing the efficiency of critical 
resources, such as surgeons and operating rooms, while keeping 
the same quality of care is of particular focus [1]. For example, 
surgery completion time is an indicator of critical resources 
efficiency. Several studies have presented interesting explanation 
for the variation in surgery completion times [2]–[4], among the 
culprits are individual, team and organizational experience, 
learning curve heterogeneity and workload. These studies 
however work with raw data coming from a single source. 

Combining data from multiple sources or hospitals is necessary to 
have high statistical power and sufficient heterogeneity among the 
subjects. However, combining data from multiple sources and 
performing statistical analysis on the union of the data poses 
privacy concerns [5]. 

A number of protocols have been proposed in the literature to 
address the privacy concerns; however, these protocols are either 
not completely private [6], [7] or are very demanding of the data 
holders involved in terms of complexity (extensive message 
passing among the participants and exponential computation 
complexity at each site) [8], [9].  

We develop a privacy preserving linear regression using a semi-
trusted third party (the Evaluator). We show that our approach has 
several desirable properties. The complexity at each site is 
independent of the number of involved sites, and the complexity 
for the Evaluator is linear in the number of sites. Private health 
information is preserved and the statistical outcome retains the 
same precision as that of raw data. Moreover, contrary to previous 
approaches, ours is complete. It not only calculates the linear 
regression parameters of a fixed model, but also includes model 
diagnostics and selection, which are the more important and 
challenging steps [5]. 

2. LINEAR REGRESSION 
Linear regression consists of modeling the relationship between a 
set of variables referred to as attributes (or independent variables) 
and a response variable (or output variable). Fitting a linear 
regression model consists of a sequence of steps including 
estimation, diagnostics and model selection [10]. In what follows 
we give an overview of the steps involved, for more information 
the reader is referred to [10], [11]:  

Assume that a dataset is composed of  input variables 

 (  is the set of real numbers and  is the set of 

attributes), and  output variables . We denote by  

the  input matrix , and by  the  output vector. 

Linear regression is the problem of finding the subset  of 

the attributes that affect and shape the response variable , and 

then learning the function  that describe this 
dependency (of the ouput variables on the independent variables). 
Linear regression is based on the assumption that  is 

approximated by a linear map, i.e.  
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 for some , where  is the 

vector  restricted to the set of attributes  in question. In 

linear regression literature, it is common to set , and 

to augment every row  with  (so  is set to 
), with that the formulae above can be restated as: 

. In what follows, we abuse the notation 

and use the superscript  instead of .  

Given a subset of attributes , to learn the regression 

model (i.e. to learn the function ) we need to find  such that 

 best fit the dataset. The difference between the 

actual value  and the estimated  is referred to as 

the residuals: . The goal in linear regression is to 

find  that minimizes the square sum of the residuals (

). The method used is referred to as the “least squares method” 
and it is equivalent to solving the following equation:  

   (1) 

The process of determining the best subset  is referred to 
as model selection. Model diagnostics are used to assess whether 
a fixed model (i.e. a regression model for a fixed ) is proper. 
One statistics that reflects the goodness of fit for a fixed model is 

the adjusted  measure: 

  (2) 

Where  is the output variable mean. 

For a fixed model, once  is available,  can be 

calculated followed by .. 

3. SETTING 
In this paper, we consider the case of a dataset that is horizontally 
distributed among  data warehouses (or data owners). The 

different owners are interested in cooperatively studying the 
relationship between the independent and response variables, 
however they are not willing to share their data. This is known as 
privacy-preserving regression protocol [5]: 

Let  be the matrix  augmented with column , i.e. 
. We consider the setting of  data holders, 

… , each holding part of the matrix . The 
division is assumed to be horizontal, i.e. each party holds a subset 
of the records of . Denote by  the subset of matrix  held 

by party , then . In what follows, 

we assume that ,…, , and 

. 

 

Before proceeding with an overview of the algorithm, we present 
two important properties for the horizontally distributed data: 

1. For any ,  can be extracted from 

 by removing all entries  from matrix 

 where either  or  do not represent a 

variable in . The same applies for . 

2. Given that , for any  we have that:  

  and that  

. 

 Hence Equation (1) is equivalent to:  

  (3) 

In what follows, we present a privacy-preserving linear regression 
protocol that uses a third party. The third party is referred to as the 
Evaluator. The Evaluator is assumed to follow the protocol 
correctly however if some data holders are corrupt, then the 
Evaluator will collaborate with them to obtain sensitive 
information about the data. Similarly, it is assumed that a corrupt 
data holder will correctly follow the protocol. We assume that up 
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to  data holders can be corrupt for some , thus, 
if  then all data holders are honest. The protocol is 
composed of 3 functions: 

(a) Pre-computations, (b) a core regression protocol (referred to as 
), and (c) an iterative protocol referred to as . The pre-

computations are done once at the beginning of the protocol, then 
the  protocol runs. It’s role is to iterate over different values 
of , calling  for each such value of . The  

protocol is performed by the evaluator with the collaboration of  
out of the  data warehouses.  takes as input a subset 

 and computes  and  for that given .There are 

known iterative protocols for choosing the best subset  of 
independent variables [10], [11]. A common technique is to start 
with some basic set of attributes  and find its 

corresponding  and . Additional attributes can then enter 
the analysis one by one and the effect of each can be studied 

separately through . An outline of the algorithm is presented 

in Figure 1, where the  function and the algorithm flow are 
presented in details. The remaining functions will be presented in 
details in Section 6. For more information on regression the reader 
is referred to [5], [11]. 

 

4. RELATED WORK 
A number of protocols have been proposed for the collaborative 
computation of linear regression when data is horizontally 
distributed among the different parties. These protocols do not 
iterate over the attributes, they only offer fixed model solution 
(i.e. a solution for Equation (3)) and thus do not deal with model 
diagnostics.  

The protocol in [7] suggests that the sites could share their local 
aggregate information. In other words site  would share with the 

other sites the aggregate values:  and . This 
way, each site can add the aggregate information to obtain 

 and , find the inverse of , then use 
Equation (1) to estimate the parameters of the regression. This 
method, although efficient, was criticized for being non-private as 
it shares local aggregate statistics [5], [8]. 

Another protocol due to Karr et al [6] suggests using secure 
multiparty computation in order to securely sum the local 

statistics:  and , the final sum  and 

 is then shared among the different sites. This protocol, 
although efficient, was also deemed to be non-private [8]. 

Three more protocols have been suggested to solve this problem, 
two of these protocols [8], [9] use secret sharing and 

homomorphic encryption to privately calculate , 

and , and then to multiply and 

. Both solutions make heavy usage of secure multiparty 
computation. As such, all data holders must remain online 
throughout the entire procedure. In both of these protocols, the 

main computational component is the secure inversion of 

 and their extensive use of the secure multiparty matrix 

multiplication protocol [12] extended to  parties. Each use of 
this -party multiplication requires each pair of participants to 

 

Fig 1. Algorithm flowchart 

execute a 2-party secure matrix multiplication protocol. This 

amounts to a total of  multiparty matrix 

multiplications. Such a -party multiplication has each party 
executing a combination of  homomorphic matrix 

Function PreComputation() 
{ 

 Phase 0 

} 

 

 

Function  

{ 

 Phase 1  # Calculates  for the model 

    with attributes . 

 Phase 2  # Calculates  for the model 

    with attributes . 

} 

 

Function  

{ 

  

   # Calculates  and  for 

    the model  with attributes . 

   #  and  represent the 

    final model outcomes 

For every  do 

 { 

   

  If  is significant then  

  { 

    

  } 

 } 

} 
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multiplications and encryptions-decryptions under Paillier 
cryptosystem, as well as sending  matrices. 

In [9], the inversion is done using an iterative method requiring 
two secure multiparty matrix multiplications for up to 128 
iterations when using their settings for Paillier. This makes their 
protocol quite demanding on the data owners.  

In [8], the authors present a generalization to  parties of the 
secure matrix sum inverse protocol of [12]. This allows them to 
compute the inverse in one step, which is an improvement on the 
inversion of [9], but their matrix inversion still requires around 

 secure 2-party matrix multiplications.  

The third protocol was presented in [13], it uses additive 
encryption and Yao Garbled circuits. The protocol uses two non-
communicating semi-trusted third parties. One party executes the 
algorithm, while the other holds encryption keys and generates 
garbled inputs.  The additive encryption is used to privately 

compute  and , and Yao Garbled circuits to 

privately find the inverse of . While this solution does not 
require the involvement of all data holders, it requires two non-
colluding semi-trusted parties each sharing part of the output. 
Moreover, the protocol requires the construction of garbled 
circuits. The construction of such circuits as well as its theoretical 
complexity were not tackled in the paper. 

 

5. PRELIMINARY 
In what follows we propose a privacy preserving regression 
protocol. We first introduce the properties of the public key 
cryptosystems that are used in our protocol. 

Given a message , we denote the ciphertext by 

 where  is the public key used in the 

encryption. We will simply use  when  is clear 
from the context. In our protocol, we use Paillier cryptosystem 
[14] for the case where  and threshold Paillier cryptosystem 
[15] when  for their homomorphic properties. 

Paillier cryptosystem is additively homomorphic, as such the sum 
of two messages can be obtained from their respective 
cyphertexts. For Paillier, this translates to  

 [14]. 

Moreover, Paillier allows a limited form of homomorphic 
multiplication, in that we can multiply an encrypted message by a 

plaintext. It is done as follow: . 

To simplify notation, given a matrix , we let 

denote the entry-wise encryption of . Thus, given two 
matrices  and , the two properties of the Paillier encryption 
allows us to calculate the encrypted product  from 

 and  as follows: 

, where  represents the 

 entry in Matrix . Similarly,  can be 

calculated from   and . 

In a -threshold cryptosystem, the secret decryption key is 
distributed among  different entities such that a subset of at 
least  of them are needed to perform the decryption [15], [16]. 
I.e. in order for the decryption to occur, at least  parties have to 
correctly perform their share of the decryption. The decryption 
shares are then combined to obtain the final decryption. 

Note that our protocol will be using the threshold Paillier [15] 
cryptosystem when . This can be set up through a trusted 
party that will generate and distribute the public and secret keys. 
The trusted party can then erase all information pertaining to the 
key generation. If no such trusted party is available, the keys can 
be generated using secure multiparty computations [17]. Although 
this requires more computation overhead from each data owner, it 
only has to be done once. As such, it is an acceptable tradeoff. 

In an -threshold Paillier cryptosystem, the encryption is 
identical to the regular scheme. For the decryption, each party 
involved is required to compute the exponentiation of the 
cyphertext by their secret key. The product of these shares is then 
computed individually to proceed with the decryption. Since the 
validity of the decryption depends on the validity of the shares, 
threshold decryption protocols involve proofs of knowledge 
between each participant to prevent attacks by malicious parties. 
The complexity of the decryption is thus dominated by these 
proofs of knowledge [15]. 

We note that in our setting, each data owner will correctly execute 
the protocol even if they are corrupt, since they genuinely want 
the correct result. As such, we do not require the proofs of 
knowledge. This makes the threshold decryption only slightly 
more complex than the decryption in the setting . 

6. PROTOCOL 
In what follows, we present the Pre-computation function (also 
referred to as Phase 0), as well as the  function which is 
composed of two phases, Phase 1, and Phase 2: 

In Phase 0 some pre-computations are done. These computations 
are done once at the beginning of the Protocol. 

The  protocol is executed several times for different subsets 

, it computes  and  for the given  with the 

collaboration of  out of  data warehouses, say 

. Phase 1 of  is dedicated to the calculation 

of the regression coefficients  and Phase 2 is dedicated for the 

calculation of .  

We assume that all the inputs are integer valued, due to the use of 
Paillier’s cryptosystem. This is not a problem, as the data owners 
can multiply their data by a large non-private number. The effects 
of this multiplication can then be removed in intermediate/final 
results [12], [17]. 

Before presenting the protocol, we first start with some basic 
functions used throughout the protocol. The protocol will be 
presented for the general case where . When , some 
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steps can be optimized to slightly reduce the number of messages 
sent. These steps are presented after the protocol in a separate 
section. We assume that the total number of records  is public 
knowledge. 

6.1 Basic Functions 
The protocol uses several basic functions: 

1. Creating Random Matrices, or CRM( ): 

 and the Evaluator each generate a 

secret random  matrix  

respectively. We denote by  the product 
. 

2. Creating Random Integers, or CRI:  

each generate a secret random integer  
respectively, while the Evaluator generates two 
random secret integers  and . We denote by  

the product . 

3. Encryption and Decryption Functions for matrices, or 
and , respectively encrypts and 

decrypts the entries of a matrix . This is an 
extension of the regular encryption and decryption 
functions on integers. Note that  data warehouses will 
be involved in the decryption.  

4. Right Matrix Multiplication Sequence Function, or 
RMMS( ), computes . It is 

done as follow. The Evaluator sends  to 

, who uses it to homomorphically compute 

 using it secret matrix . The result is 

then sent to , who in turn computes 

. The process repeats with ,…,

, and the result  is sent back to the 
evaluator. 

5. Left Matrix Multiplication Sequence Function, or 
LMMS( ), computes  It is 

similar to RMMS( ), but the order on the 
data warehouse is reversed. 

6. Integer Multiplication Sequence Function, or IMS(
), The Evaluator sends an Encrypted value 

 to , who uses it to calculate the 

encrypted product , using 

it secret integer . The result is then sent to , 

who in turn computes . The process 

repeats with ,…, , and the result 

 is sent back to the evaluator. 

6.2 Phase 0: Precomputations 
At the beginning of this Phase, the Evaluator initiates , thus 
the  data warehouses as well as the Evaluator generate a secret 
random integer each. This phase is composed of two main 
computations: 

1. Computations of  and : 

Each data holder  locally computes her full local 

matrices , and . She encrypts the 
matrices and sends them to the Evaluator. The Evaluator 
performs homomorphic additions and obtains 

, and 

. 

2. Computation of :  

1. Each data warehouse  sends their 

encrypted local aggregate  

to the Evaluator. The Evaluator 
homomorphically adds these values to get 

, and then 

calculates .  

2. The Evaluator initiates IMS( ) 

and receives . He then initiates 

 to get .  

3. The Evaluator computes  

and initiates  

which results in . The 

Evaluator then computes .  

4. The Evaluator propagates  to all 
data warehouses 
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5. Each data warehouse computes 

 

and . Both 

are sent back to the Evaluator. 

6. The Evaluator computes 

 and recovers 

. The Evaluator then proceeds to 
compute 

 

6.3 Protocol:  
First, given , the evaluator extracts the encryptions of 

 and  from  and 

 respectively. Then the Evaluator initiates CRM(
) and CRI.  

6.4 Phase 1: Computing  
In this phase of the protocol, the Evaluator needs to compute 

. The steps are the following:  

1. The Evaluator computes , initiates 

RMMS( ) and receives 

. 

2. The evaluator initiates  

and receives .  

3. The evaluator computes 

 and calculates 

 using  and 

.  

4. The Evaluator obtains  by 

initiating LMMS( ) and 

computes  homomorphically.  

5. The Evaluator initiates , 

recovers  and sends it to all data warehouses. 

6.5 Phase 2: Computing Ra2 
This is dedicated for the calculation of adjusted  measure 
given by equation (3):  

1. As each data warehouse  knows , they 

calculate their local residuals: , 

encrypt it and send it to the Evaluator. The Evaluator 
then adds the local residuals homomorphically to obtain 

.  

2. The Evaluator computes  and . 

He then initiates IMS( ) and IMS(

) and receives  and 

 respectively.  

3. The Evaluator then initiates a decryption round for 
 to obtain , and uses it to compute 

. 

4. The Evaluator now calculates  
homomorphically as follows: 

  

5. The Evaluator initiates  and propagates the 
result to the different warehouses. 

6.6 Special Considerations for the case l=1 
For the case , all the data owners are assumed to be 
incorruptible and all the decryption and obfuscation is delegated 
to one data warehouse, say . As such, the steps that initiate 
a multiplication sequence (RMMS, LMMS or IMS) followed by a 
decryption can be reversed and merged. In other words,  
can do the decryption first followed by the multiplication by its 
random number.  

For example, in Phase 0, step 2.2 can be replaced by “The 

Evaluator sends  to , who decrypts to obtain 

.  then compute and send  back to the 
evaluator.” This will considerably reduce the complexity of 

’s computations when working with matrices.  

Note that the role of  can be assumed by another semi-
trusted third party (STTP) if available. In such case, the Evaluator 
and the STTP will together compute the  protocol. Both third 
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parties should follow the protocol correctly and should not 
communicate secretly outside the protocol. 

6.7 Protocol Modification 
In order to perform linear regression, the  participating data 
warehouses have to be online throughout the whole process. It 
would be ideal if the remaining  data warehouses could 
send their data at Phase 0, then stay offline throughout the 
remaining protocol. However this is not that case, these data 

warehouses have to participate in the calculation of  at each 

iteration of the  protocol (refer to Step 2.1). With some 
changes to the protocol, it is possible for the data warehouses to 
send their full encrypted matrices  and  to 
the Evaluator at the start of the protocol (i.e. in Phase 0) then stay 
offline for the whole process afterwards. The Evaluator can use 
these encrypted matrices to perform Step 1 of Phase 2 without the 
involvement of the  data warehouses. In other words, the 

Evaluator can calculate  using  and 

 as follows: 

 

and 

 

The problem with this modification is that the data warehouses 
would give out their local number of records, . If this is 
considered private information, then the original protocol has to 
be followed. Note that this modification requires considerably 
more space and complexity at the Evaluator side as the encrypted 

 records have to be stored and then used to calculate 

. 

7. PRIVACY DISCUSSION 
In this section we study the privacy of our protocol and show that 
no party can learn any information other than the final results of 
the regression. We assume that  parties are corruptible and 
that the total number of records, , is known. 

Since Paillier is semantically secure [14] and since we need  
parties to complete decryption, no information can be gained from 
the ciphertexts exchanged throughout the protocol. We note that 
when , all but one of the ciphertexts sent to  for 

obfuscation will be decrypted at the next step, so  can only 
gain additional knowledge from a cyphertext if he decrypts 

 in Phase 2.2. As such, we will look at the decrypted 
values each party obtains. 

In Phase 0, all the values are encrypted except for , that the 

 active data owners and the evaluator receive. If the corrupted 
data owners and the evaluator collaborate, they can remove  

and at most  ’s. They can obtain , but since  is a 

random unknown integer, no information about  can be 

recovered. In the case where , the active data owner obtains 

 from the decryption, but since  is random, no information 
is gained. The same reasoning is true for Phase 2, where all the 
information is encrypted except for , which is always 
obfuscated by at least one random integer. In the case where 

,  can also obtain  by performing an extra 

decryption, but no information about  or  can be gathered 
since both are obfuscated by different random integers. 

In Phase 1, all the matrices are encrypted except for  that 
all active party and the evaluator obtain in step 1.2. The evaluator 
and the corrupted party can obtain , where 

 and  is an incorruptible party. Since  

is random, the evaluator cannot recover  or , even while 

knowing .  

We thus have that all the values in the protocol are either 
encrypted, obfuscated by some random element or sent to all the 
parties. As such, our scheme is secure and private, since no party 
can learn additional information from the protocol other than the 
final result of the computations. 

8. COMPLEXITY 
In this section, we evaluate the computational complexity and the 
amount of messages sent during one iteration of our protocol. We 
will evaluate the individual burden of each participating party as 
well as the total complexity. Let  be the number of attributes 
used for a given iteration and let  be the total number of 
attributes considered.  

Our result will be given using some basic functions as the units. 
More specifically, we will give how many encryptions, 
decryptions, homomorphic multiplications (HM) and 
homomorphic additions (HA).  

If we are using an instance of Paillier with modulus , we have 

that HA is equivalent to multiplying two integers modulo , 
while HM is equivalent to computing an exponentiation modulo 

. It follows that an encryption is equivalent to 2HM and 1HA, 
while a standard decryption is essentially 1HM [14].  

Finally, in our setting, a -threshold decryption is equivalent 

to having each of the  involved party compute one HM and  
HA as well as send  messages. It follows that, since 

, HM dominates the decryption and the  HA have a 
negligible impact on the complexity [18]. As such, we can 
reasonably assume that -threshold decryption is bounded 
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above by a constant computational complexity of 2HM, making it 
only slightly more expensive than standard decryption. 

 

We will start by evaluating the complexity of the basic functions 

used throughout the protocol. 
1.  and : These functions involve 

 encryption and decryptions, respectively. If the 

result is sent, it also requires a total of  and 

 messages, respectively.  

2. RMMS( ) and LMMS( ): 

In these functions, each party sends  messages to 

exactly one other party, for a total of  

messages. The data owner  has to 

homomorphically compute , with each 

entry of this matrix requires at most d HM and 

HA. Thus, the whole matrix requires at most HM 

and HA for each . 

3. IMS( ): Each party sends one message to 

exactly one other party, for a total of  messages. 

Each data owner  has to homomorphically 

compute , which requires one HM.  

 

We now evaluate the complexity of each phase, starting with 
Phase 0. Recall that this phase is all about pre-computations. As 
such, it will not affect the complexity of an iteration of Phase 1 
and 2.  

1. Each data owner first computes  and . They are 

then required to send  encryptions (steps 
0.1, 0.2.1 and 0.2.5) and compute 1 HM in phase 0.2.5. 
Each of the  active data owners also participate in 
2IMS and 1 decryption.  

2. The evaluator has to perform a total of 

HA, 3HM and 1 

encryption. He sends a total of  messages.  

 

We now evaluate the complexity of the main protocol, starting 
with Phase 1. We will not take the generation of the random 
integers and random matrices into account, since they can be 
generated and stored ahead of time. In Phase 1, the passive data 
owners do not participate. Each of the  active data owners 

participate in 2MMS and  decryptions.  

The evaluator performs  encryptions, inverts one plaintext 

matrix, and sends messages in 2MMS and  decryptions. He 

also computes a total of HM and 

 HA in steps 1, 3 and 4.  

Phase 1 involves a total of  decryptions, 

HM,  HA and one matrix inversion. A 

total of  messages are sent 
among all the parties. 

 

In Phase 2, all data owners compute  and , and perform 

one encryption. Each of the  active data owners also participate 
in 2IMS and 2 decryptions. The Evaluator computes a total of  
HA and 3HM. The Evaluator also performs a plaintext 

multiplication in step 2.3. A total of  
messages are sent among all the parties. 

 

As such, assuming a decryption is at most 2HM, the final 
complexity of  for each participating party is bounded 
above by the following.  

1. All data owners: 2 matrix multiplications, 1 encryption. 
Sends 1 message. 

2. Active data owners additionally have: 

HM, 

HA. Sends  messages. 

3. The Evaluator: 1 matrix inverse, 1 plaintext 

multiplication, HM, 

HA. Sends 

messages. 

 

As can be seen from this evaluation, if we fix the dimension , 
the total complexity of the scheme is linear in , while the total 

number of messages is . The Evaluator absorbs most 
of the computational complexity, leaving the data warehouses 
with a complexity depending only on the size  of the matrices, 
if we assume . This shows that our protocol allows the 
data owners to greatly reduce the computational power needed for 
a multiparty regression by making use of a STTP (the Evaluator). 

Finally, we will compare the complexity of our scheme to that of 
the schemes of [9] and [8] for each individual participants. For 
this we shall look mostly at the secure multiparty matrix 
multiplication protocol of [12]. In the 2-party case, one party has 

to compute about HM and HA for encryption and 

decryption while the second party has to execute about HM 
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and HA for the homomorphic matrix multiplication and share 
splitting. As such, in the -party protocol we can expect an 

average of HM, HA and  

messages for each participating member.  

This multiparty secure matrix protocol is executed at least 2 times 
in [8] and up to 248 times in [9] when computing the inverse of 

. We note that, for any , our complete protocol  
involves less computational burden and messages for each party 
than a single matrix inversion in [8] or [9]. This is due to the fact 
that the individual complexity in our protocol is independent of 

for all but the Evaluator. 

9. CONCLUSIONS AND FUTURE WORK 
We presented a practical system that performs linear regression 
for a large number of data warehouses without learning anything 
about the data apart from the regression parameters and 
diagnostics.  

Different from existing approaches, our approach is complete. It 
not only calculates the parameters  of a fixed model, but also 
includes model diagnostics and selection, which are more 
important and more challenging steps[5].  

Our model is superior in terms of complexity on the data holders 
end as the Evaluator absorbs most of the regression complexity. 

We are currently in the process of applying the protocol on the 
union of three datasets from the state of Pennsylvania (over 1.5 
million records). The study aims to find the attributes that affect 
surgery completion times and come up with recommendations. 
The trusted third party we will be using is the IBM Cloud at 
Western University. 
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