
Secure Multi-Party linear Regression

Fida Dankar
University of Ottawa

IBM Canada
fidamark@ca.ibm.com

Renaud Brien
University of Ottawa

Rbrie047@uottawa.ca

Carlisle Adams
University of Ottawa

cadams@eecs.uottawa.
ca

Stan Matwin
Dalhousie University

stan@cs.dal.ca

ABSTRACT
Increasing efficiency in hospitals is of particular importance.
Studies that combine data from multiple hospitals/data holders can
tremendously improve the statistical outcome and aid in
identifying efficiency markers. However, combining data from
multiple sources for analysis poses privacy risks. A number of
protocols have been proposed in the literature to address the
privacy concerns; however they do not fully deliver on either
privacy or complexity. In this paper, we present a privacy
preserving linear regression model for the analysis of data coming
from several sources. The protocol uses a semi-trusted third party
and delivers on privacy and complexity.

Categories and Subject Descriptors
D.3.3 [Computers and Society]: Public Policy Issues– Privacy

H.2.8 [Database Management]: Database Applications– Data
Mining.

General Terms
Algorithms, Security, Theory.

Keywords
Linear regression, privacy preserving data mining, secure
multiparty computation.

1. INTRODUCTION
Hospitals are under a lot of pressure to increase their efficiency.
They need to see more patients and reduce their costs without
increasing resources [1]. Increasing the efficiency of critical
resources, such as surgeons and operating rooms, while keeping
the same quality of care is of particular focus [1]. For example,
surgery completion time is an indicator of critical resources
efficiency. Several studies have presented interesting explanation
for the variation in surgery completion times [2]–[4], among the
culprits are individual, team and organizational experience,
learning curve heterogeneity and workload. These studies
however work with raw data coming from a single source.

Combining data from multiple sources or hospitals is necessary to
have high statistical power and sufficient heterogeneity among the
subjects. However, combining data from multiple sources and
performing statistical analysis on the union of the data poses
privacy concerns [5].

A number of protocols have been proposed in the literature to
address the privacy concerns; however, these protocols are either
not completely private [6], [7] or are very demanding of the data
holders involved in terms of complexity (extensive message
passing among the participants and exponential computation
complexity at each site) [8], [9].

We develop a privacy preserving linear regression using a semi-
trusted third party (the Evaluator). We show that our approach has
several desirable properties. The complexity at each site is
independent of the number of involved sites, and the complexity
for the Evaluator is linear in the number of sites. Private health
information is preserved and the statistical outcome retains the
same precision as that of raw data. Moreover, contrary to previous
approaches, ours is complete. It not only calculates the linear
regression parameters of a fixed model, but also includes model
diagnostics and selection, which are the more important and
challenging steps [5].

2. LINEAR REGRESSION
Linear regression consists of modeling the relationship between a
set of variables referred to as attributes (or independent variables)
and a response variable (or output variable). Fitting a linear
regression model consists of a sequence of steps including
estimation, diagnostics and model selection [10]. In what follows
we give an overview of the steps involved, for more information
the reader is referred to [10], [11]:

Assume that a dataset is composed of input variables

 (is the set of real numbers and is the set of

attributes), and output variables . We denote by

the input matrix , and by the output vector.

Linear regression is the problem of finding the subset of

the attributes that affect and shape the response variable , and

then learning the function that describe this
dependency (of the ouput variables on the independent variables).
Linear regression is based on the assumption that is

approximated by a linear map, i.e.

(c) 2014, Copyright is with the authors. Published in the Workshop
Proceedings of the EDBT/ICDT 2014 Joint Conference (March 28,
2014, Athens, Greece) on CEUR-WS.org (ISSN 1613-0073).
Distribution of this paper is permitted under the terms of the Creative
Commons license CC-by-nc-nd 4.0

7th International Workshop on Privacy and Anonymity in the
Information Society (PAIS’14) March 28, 2014, Athens, Greece

406

 for some , where is the

vector restricted to the set of attributes in question. In

linear regression literature, it is common to set , and

to augment every row with (so is set to
), with that the formulae above can be restated as:

. In what follows, we abuse the notation

and use the superscript instead of .

Given a subset of attributes , to learn the regression

model (i.e. to learn the function) we need to find such that

 best fit the dataset. The difference between the

actual value and the estimated is referred to as

the residuals: . The goal in linear regression is to

find that minimizes the square sum of the residuals (

). The method used is referred to as the “least squares method”
and it is equivalent to solving the following equation:

 (1)

The process of determining the best subset is referred to
as model selection. Model diagnostics are used to assess whether
a fixed model (i.e. a regression model for a fixed) is proper.
One statistics that reflects the goodness of fit for a fixed model is

the adjusted measure:

 (2)

Where is the output variable mean.

For a fixed model, once is available, can be

calculated followed by ..

3. SETTING
In this paper, we consider the case of a dataset that is horizontally
distributed among data warehouses (or data owners). The

different owners are interested in cooperatively studying the
relationship between the independent and response variables,
however they are not willing to share their data. This is known as
privacy-preserving regression protocol [5]:

Let be the matrix augmented with column , i.e.
. We consider the setting of data holders,

… , each holding part of the matrix . The
division is assumed to be horizontal, i.e. each party holds a subset
of the records of . Denote by the subset of matrix held

by party , then . In what follows,

we assume that ,…, , and

.

Before proceeding with an overview of the algorithm, we present
two important properties for the horizontally distributed data:

1. For any , can be extracted from

 by removing all entries from matrix

 where either or do not represent a

variable in . The same applies for .

2. Given that , for any we have that:

 and that

.

 Hence Equation (1) is equivalent to:

 (3)

In what follows, we present a privacy-preserving linear regression
protocol that uses a third party. The third party is referred to as the
Evaluator. The Evaluator is assumed to follow the protocol
correctly however if some data holders are corrupt, then the
Evaluator will collaborate with them to obtain sensitive
information about the data. Similarly, it is assumed that a corrupt
data holder will correctly follow the protocol. We assume that up

407

to data holders can be corrupt for some , thus,
if then all data holders are honest. The protocol is
composed of 3 functions:

(a) Pre-computations, (b) a core regression protocol (referred to as
), and (c) an iterative protocol referred to as . The pre-

computations are done once at the beginning of the protocol, then
the protocol runs. It’s role is to iterate over different values
of , calling for each such value of . The

protocol is performed by the evaluator with the collaboration of
out of the data warehouses. takes as input a subset

 and computes and for that given .There are

known iterative protocols for choosing the best subset of
independent variables [10], [11]. A common technique is to start
with some basic set of attributes and find its

corresponding and . Additional attributes can then enter
the analysis one by one and the effect of each can be studied

separately through . An outline of the algorithm is presented

in Figure 1, where the function and the algorithm flow are
presented in details. The remaining functions will be presented in
details in Section 6. For more information on regression the reader
is referred to [5], [11].

4. RELATED WORK
A number of protocols have been proposed for the collaborative
computation of linear regression when data is horizontally
distributed among the different parties. These protocols do not
iterate over the attributes, they only offer fixed model solution
(i.e. a solution for Equation (3)) and thus do not deal with model
diagnostics.

The protocol in [7] suggests that the sites could share their local
aggregate information. In other words site would share with the

other sites the aggregate values: and . This
way, each site can add the aggregate information to obtain

 and , find the inverse of , then use
Equation (1) to estimate the parameters of the regression. This
method, although efficient, was criticized for being non-private as
it shares local aggregate statistics [5], [8].

Another protocol due to Karr et al [6] suggests using secure
multiparty computation in order to securely sum the local

statistics: and , the final sum and

 is then shared among the different sites. This protocol,
although efficient, was also deemed to be non-private [8].

Three more protocols have been suggested to solve this problem,
two of these protocols [8], [9] use secret sharing and

homomorphic encryption to privately calculate ,

and , and then to multiply and

. Both solutions make heavy usage of secure multiparty
computation. As such, all data holders must remain online
throughout the entire procedure. In both of these protocols, the

main computational component is the secure inversion of

 and their extensive use of the secure multiparty matrix

multiplication protocol [12] extended to parties. Each use of
this -party multiplication requires each pair of participants to

Fig 1. Algorithm flowchart

execute a 2-party secure matrix multiplication protocol. This

amounts to a total of multiparty matrix

multiplications. Such a -party multiplication has each party
executing a combination of homomorphic matrix

Function PreComputation()
{

 Phase 0

}

Function

{

 Phase 1 # Calculates for the model

 with attributes .

 Phase 2 # Calculates for the model

 with attributes .

}

Function

{

 # Calculates and for

 the model with attributes .

 # and represent the

 final model outcomes

For every do

 {

 If is significant then

 {

 }

 }

}

408

multiplications and encryptions-decryptions under Paillier
cryptosystem, as well as sending matrices.

In [9], the inversion is done using an iterative method requiring
two secure multiparty matrix multiplications for up to 128
iterations when using their settings for Paillier. This makes their
protocol quite demanding on the data owners.

In [8], the authors present a generalization to parties of the
secure matrix sum inverse protocol of [12]. This allows them to
compute the inverse in one step, which is an improvement on the
inversion of [9], but their matrix inversion still requires around

 secure 2-party matrix multiplications.

The third protocol was presented in [13], it uses additive
encryption and Yao Garbled circuits. The protocol uses two non-
communicating semi-trusted third parties. One party executes the
algorithm, while the other holds encryption keys and generates
garbled inputs. The additive encryption is used to privately

compute and , and Yao Garbled circuits to

privately find the inverse of . While this solution does not
require the involvement of all data holders, it requires two non-
colluding semi-trusted parties each sharing part of the output.
Moreover, the protocol requires the construction of garbled
circuits. The construction of such circuits as well as its theoretical
complexity were not tackled in the paper.

5. PRELIMINARY
In what follows we propose a privacy preserving regression
protocol. We first introduce the properties of the public key
cryptosystems that are used in our protocol.

Given a message , we denote the ciphertext by

 where is the public key used in the

encryption. We will simply use when is clear
from the context. In our protocol, we use Paillier cryptosystem
[14] for the case where and threshold Paillier cryptosystem
[15] when for their homomorphic properties.

Paillier cryptosystem is additively homomorphic, as such the sum
of two messages can be obtained from their respective
cyphertexts. For Paillier, this translates to

 [14].

Moreover, Paillier allows a limited form of homomorphic
multiplication, in that we can multiply an encrypted message by a

plaintext. It is done as follow: .

To simplify notation, given a matrix , we let

denote the entry-wise encryption of . Thus, given two
matrices and , the two properties of the Paillier encryption
allows us to calculate the encrypted product from

 and as follows:

, where represents the

 entry in Matrix . Similarly, can be

calculated from and .

In a -threshold cryptosystem, the secret decryption key is
distributed among different entities such that a subset of at
least of them are needed to perform the decryption [15], [16].
I.e. in order for the decryption to occur, at least parties have to
correctly perform their share of the decryption. The decryption
shares are then combined to obtain the final decryption.

Note that our protocol will be using the threshold Paillier [15]
cryptosystem when . This can be set up through a trusted
party that will generate and distribute the public and secret keys.
The trusted party can then erase all information pertaining to the
key generation. If no such trusted party is available, the keys can
be generated using secure multiparty computations [17]. Although
this requires more computation overhead from each data owner, it
only has to be done once. As such, it is an acceptable tradeoff.

In an -threshold Paillier cryptosystem, the encryption is
identical to the regular scheme. For the decryption, each party
involved is required to compute the exponentiation of the
cyphertext by their secret key. The product of these shares is then
computed individually to proceed with the decryption. Since the
validity of the decryption depends on the validity of the shares,
threshold decryption protocols involve proofs of knowledge
between each participant to prevent attacks by malicious parties.
The complexity of the decryption is thus dominated by these
proofs of knowledge [15].

We note that in our setting, each data owner will correctly execute
the protocol even if they are corrupt, since they genuinely want
the correct result. As such, we do not require the proofs of
knowledge. This makes the threshold decryption only slightly
more complex than the decryption in the setting .

6. PROTOCOL
In what follows, we present the Pre-computation function (also
referred to as Phase 0), as well as the function which is
composed of two phases, Phase 1, and Phase 2:

In Phase 0 some pre-computations are done. These computations
are done once at the beginning of the Protocol.

The protocol is executed several times for different subsets

, it computes and for the given with the

collaboration of out of data warehouses, say

. Phase 1 of is dedicated to the calculation

of the regression coefficients and Phase 2 is dedicated for the

calculation of .

We assume that all the inputs are integer valued, due to the use of
Paillier’s cryptosystem. This is not a problem, as the data owners
can multiply their data by a large non-private number. The effects
of this multiplication can then be removed in intermediate/final
results [12], [17].

Before presenting the protocol, we first start with some basic
functions used throughout the protocol. The protocol will be
presented for the general case where . When , some

409

steps can be optimized to slightly reduce the number of messages
sent. These steps are presented after the protocol in a separate
section. We assume that the total number of records is public
knowledge.

6.1 Basic Functions
The protocol uses several basic functions:

1. Creating Random Matrices, or CRM():

 and the Evaluator each generate a

secret random matrix

respectively. We denote by the product
.

2. Creating Random Integers, or CRI:

each generate a secret random integer
respectively, while the Evaluator generates two
random secret integers and . We denote by

the product .

3. Encryption and Decryption Functions for matrices, or
and , respectively encrypts and

decrypts the entries of a matrix . This is an
extension of the regular encryption and decryption
functions on integers. Note that data warehouses will
be involved in the decryption.

4. Right Matrix Multiplication Sequence Function, or
RMMS(), computes . It is

done as follow. The Evaluator sends to

, who uses it to homomorphically compute

 using it secret matrix . The result is

then sent to , who in turn computes

. The process repeats with ,…,

, and the result is sent back to the
evaluator.

5. Left Matrix Multiplication Sequence Function, or
LMMS(), computes It is

similar to RMMS(), but the order on the
data warehouse is reversed.

6. Integer Multiplication Sequence Function, or IMS(
), The Evaluator sends an Encrypted value

 to , who uses it to calculate the

encrypted product , using

it secret integer . The result is then sent to ,

who in turn computes . The process

repeats with ,…, , and the result

 is sent back to the evaluator.

6.2 Phase 0: Precomputations
At the beginning of this Phase, the Evaluator initiates , thus
the data warehouses as well as the Evaluator generate a secret
random integer each. This phase is composed of two main
computations:

1. Computations of and :

Each data holder locally computes her full local

matrices , and . She encrypts the
matrices and sends them to the Evaluator. The Evaluator
performs homomorphic additions and obtains

, and

.

2. Computation of :

1. Each data warehouse sends their

encrypted local aggregate

to the Evaluator. The Evaluator
homomorphically adds these values to get

, and then

calculates .

2. The Evaluator initiates IMS()

and receives . He then initiates

 to get .

3. The Evaluator computes

and initiates

which results in . The

Evaluator then computes .

4. The Evaluator propagates to all
data warehouses

410

5. Each data warehouse computes

and . Both

are sent back to the Evaluator.

6. The Evaluator computes

 and recovers

. The Evaluator then proceeds to
compute

6.3 Protocol:
First, given , the evaluator extracts the encryptions of

 and from and

 respectively. Then the Evaluator initiates CRM(
) and CRI.

6.4 Phase 1: Computing
In this phase of the protocol, the Evaluator needs to compute

. The steps are the following:

1. The Evaluator computes , initiates

RMMS() and receives

.

2. The evaluator initiates

and receives .

3. The evaluator computes

 and calculates

 using and

.

4. The Evaluator obtains by

initiating LMMS() and

computes homomorphically.

5. The Evaluator initiates ,

recovers and sends it to all data warehouses.

6.5 Phase 2: Computing Ra2
This is dedicated for the calculation of adjusted measure
given by equation (3):

1. As each data warehouse knows , they

calculate their local residuals: ,

encrypt it and send it to the Evaluator. The Evaluator
then adds the local residuals homomorphically to obtain

.

2. The Evaluator computes and .

He then initiates IMS() and IMS(

) and receives and

 respectively.

3. The Evaluator then initiates a decryption round for
 to obtain , and uses it to compute

.

4. The Evaluator now calculates
homomorphically as follows:

5. The Evaluator initiates and propagates the
result to the different warehouses.

6.6 Special Considerations for the case l=1
For the case , all the data owners are assumed to be
incorruptible and all the decryption and obfuscation is delegated
to one data warehouse, say . As such, the steps that initiate
a multiplication sequence (RMMS, LMMS or IMS) followed by a
decryption can be reversed and merged. In other words,
can do the decryption first followed by the multiplication by its
random number.

For example, in Phase 0, step 2.2 can be replaced by “The

Evaluator sends to , who decrypts to obtain

. then compute and send back to the
evaluator.” This will considerably reduce the complexity of

’s computations when working with matrices.

Note that the role of can be assumed by another semi-
trusted third party (STTP) if available. In such case, the Evaluator
and the STTP will together compute the protocol. Both third

411

parties should follow the protocol correctly and should not
communicate secretly outside the protocol.

6.7 Protocol Modification
In order to perform linear regression, the participating data
warehouses have to be online throughout the whole process. It
would be ideal if the remaining data warehouses could
send their data at Phase 0, then stay offline throughout the
remaining protocol. However this is not that case, these data

warehouses have to participate in the calculation of at each

iteration of the protocol (refer to Step 2.1). With some
changes to the protocol, it is possible for the data warehouses to
send their full encrypted matrices and to
the Evaluator at the start of the protocol (i.e. in Phase 0) then stay
offline for the whole process afterwards. The Evaluator can use
these encrypted matrices to perform Step 1 of Phase 2 without the
involvement of the data warehouses. In other words, the

Evaluator can calculate using and

 as follows:

and

The problem with this modification is that the data warehouses
would give out their local number of records, . If this is
considered private information, then the original protocol has to
be followed. Note that this modification requires considerably
more space and complexity at the Evaluator side as the encrypted

 records have to be stored and then used to calculate

.

7. PRIVACY DISCUSSION
In this section we study the privacy of our protocol and show that
no party can learn any information other than the final results of
the regression. We assume that parties are corruptible and
that the total number of records, , is known.

Since Paillier is semantically secure [14] and since we need
parties to complete decryption, no information can be gained from
the ciphertexts exchanged throughout the protocol. We note that
when , all but one of the ciphertexts sent to for

obfuscation will be decrypted at the next step, so can only
gain additional knowledge from a cyphertext if he decrypts

 in Phase 2.2. As such, we will look at the decrypted
values each party obtains.

In Phase 0, all the values are encrypted except for , that the

 active data owners and the evaluator receive. If the corrupted
data owners and the evaluator collaborate, they can remove

and at most ’s. They can obtain , but since is a

random unknown integer, no information about can be

recovered. In the case where , the active data owner obtains

 from the decryption, but since is random, no information
is gained. The same reasoning is true for Phase 2, where all the
information is encrypted except for , which is always
obfuscated by at least one random integer. In the case where

, can also obtain by performing an extra

decryption, but no information about or can be gathered
since both are obfuscated by different random integers.

In Phase 1, all the matrices are encrypted except for that
all active party and the evaluator obtain in step 1.2. The evaluator
and the corrupted party can obtain , where

 and is an incorruptible party. Since

is random, the evaluator cannot recover or , even while

knowing .

We thus have that all the values in the protocol are either
encrypted, obfuscated by some random element or sent to all the
parties. As such, our scheme is secure and private, since no party
can learn additional information from the protocol other than the
final result of the computations.

8. COMPLEXITY
In this section, we evaluate the computational complexity and the
amount of messages sent during one iteration of our protocol. We
will evaluate the individual burden of each participating party as
well as the total complexity. Let be the number of attributes
used for a given iteration and let be the total number of
attributes considered.

Our result will be given using some basic functions as the units.
More specifically, we will give how many encryptions,
decryptions, homomorphic multiplications (HM) and
homomorphic additions (HA).

If we are using an instance of Paillier with modulus , we have

that HA is equivalent to multiplying two integers modulo ,
while HM is equivalent to computing an exponentiation modulo

. It follows that an encryption is equivalent to 2HM and 1HA,
while a standard decryption is essentially 1HM [14].

Finally, in our setting, a -threshold decryption is equivalent

to having each of the involved party compute one HM and
HA as well as send messages. It follows that, since

, HM dominates the decryption and the HA have a
negligible impact on the complexity [18]. As such, we can
reasonably assume that -threshold decryption is bounded

412

above by a constant computational complexity of 2HM, making it
only slightly more expensive than standard decryption.

We will start by evaluating the complexity of the basic functions

used throughout the protocol.
1. and : These functions involve

 encryption and decryptions, respectively. If the

result is sent, it also requires a total of and

 messages, respectively.

2. RMMS() and LMMS():

In these functions, each party sends messages to

exactly one other party, for a total of

messages. The data owner has to

homomorphically compute , with each

entry of this matrix requires at most d HM and

HA. Thus, the whole matrix requires at most HM

and HA for each .

3. IMS(): Each party sends one message to

exactly one other party, for a total of messages.

Each data owner has to homomorphically

compute , which requires one HM.

We now evaluate the complexity of each phase, starting with
Phase 0. Recall that this phase is all about pre-computations. As
such, it will not affect the complexity of an iteration of Phase 1
and 2.

1. Each data owner first computes and . They are

then required to send encryptions (steps
0.1, 0.2.1 and 0.2.5) and compute 1 HM in phase 0.2.5.
Each of the active data owners also participate in
2IMS and 1 decryption.

2. The evaluator has to perform a total of

HA, 3HM and 1

encryption. He sends a total of messages.

We now evaluate the complexity of the main protocol, starting
with Phase 1. We will not take the generation of the random
integers and random matrices into account, since they can be
generated and stored ahead of time. In Phase 1, the passive data
owners do not participate. Each of the active data owners

participate in 2MMS and decryptions.

The evaluator performs encryptions, inverts one plaintext

matrix, and sends messages in 2MMS and decryptions. He

also computes a total of HM and

 HA in steps 1, 3 and 4.

Phase 1 involves a total of decryptions,

HM, HA and one matrix inversion. A

total of messages are sent
among all the parties.

In Phase 2, all data owners compute and , and perform

one encryption. Each of the active data owners also participate
in 2IMS and 2 decryptions. The Evaluator computes a total of
HA and 3HM. The Evaluator also performs a plaintext

multiplication in step 2.3. A total of
messages are sent among all the parties.

As such, assuming a decryption is at most 2HM, the final
complexity of for each participating party is bounded
above by the following.

1. All data owners: 2 matrix multiplications, 1 encryption.
Sends 1 message.

2. Active data owners additionally have:

HM,

HA. Sends messages.

3. The Evaluator: 1 matrix inverse, 1 plaintext

multiplication, HM,

HA. Sends

messages.

As can be seen from this evaluation, if we fix the dimension ,
the total complexity of the scheme is linear in , while the total

number of messages is . The Evaluator absorbs most
of the computational complexity, leaving the data warehouses
with a complexity depending only on the size of the matrices,
if we assume . This shows that our protocol allows the
data owners to greatly reduce the computational power needed for
a multiparty regression by making use of a STTP (the Evaluator).

Finally, we will compare the complexity of our scheme to that of
the schemes of [9] and [8] for each individual participants. For
this we shall look mostly at the secure multiparty matrix
multiplication protocol of [12]. In the 2-party case, one party has

to compute about HM and HA for encryption and

decryption while the second party has to execute about HM

413

and HA for the homomorphic matrix multiplication and share
splitting. As such, in the -party protocol we can expect an

average of HM, HA and

messages for each participating member.

This multiparty secure matrix protocol is executed at least 2 times
in [8] and up to 248 times in [9] when computing the inverse of

. We note that, for any , our complete protocol
involves less computational burden and messages for each party
than a single matrix inversion in [8] or [9]. This is due to the fact
that the individual complexity in our protocol is independent of

for all but the Evaluator.

9. CONCLUSIONS AND FUTURE WORK
We presented a practical system that performs linear regression
for a large number of data warehouses without learning anything
about the data apart from the regression parameters and
diagnostics.

Different from existing approaches, our approach is complete. It
not only calculates the parameters of a fixed model, but also
includes model diagnostics and selection, which are more
important and more challenging steps[5].

Our model is superior in terms of complexity on the data holders
end as the Evaluator absorbs most of the regression complexity.

We are currently in the process of applying the protocol on the
union of three datasets from the state of Pennsylvania (over 1.5
million records). The study aims to find the attributes that affect
surgery completion times and come up with recommendations.
The trusted third party we will be using is the IBM Cloud at
Western University.

10. REFERENCES
[1] E. M. Stahl, Emergency Department Overcrowding: Its

Evolution and Effect on Patient Populations in
Massachusetts. ProQuest, 2008.

[2] D. S. Kc and C. Terwiesch, “Impact of workload on service
time and patient safety: An econometric analysis of hospital
operations,” Manag. Sci., vol. 55, no. 9, pp. 1486–1498,
2009.

[3] G. P. Pisano, R. M. Bohmer, and A. C. Edmondson,
“Organizational differences in rates of learning: Evidence
from the adoption of minimally invasive cardiac surgery,”
Manag. Sci., vol. 47, no. 6, pp. 752–768, 2001.

[4] R. Reagans, L. Argote, and D. Brooks, “Individual
experience and experience working together: Predicting
learning rates from knowing who knows what and knowing
how to work together,” Manag. Sci., vol. 51, no. 6, pp. 869–
881, 2005.

[5] J. Vaidya, C. W. Clifton, and Y. M. Zhu, Privacy Preserving
Data Mining. Springer, 2005.

[6] A. F. Karr, X. Lin, A. P. Sanil, and J. P. Reiter, “Secure
regression on distributed databases,” J. Comput. Graph.
Stat., vol. 14, no. 2, 2005.

[7] W. Du, Y. S. Han, and S. Chen, “Privacy-preserving
multivariate statistical analysis: Linear regression and
classification,” in Proceedings of the 4th SIAM International
Conference on Data Mining, 2004, vol. 233.

[8] K. El Emam, S. Samet, L. Arbuckle, R. Tamblyn, C. Earle,
and M. Kantarcioglu, “A secure distributed logistic
regression protocol for the detection of rare adverse drug
events,” J. Am. Med. Informatics Assoc. JAMIA, vol. 20,
no. 3, pp. 453–461, May 2013.

[9] R. Hall, S. E. Fienberg, and Y. Nardi, “Secure multiple
linear regression based on homomorphic encryption,” J. Off.
Stat., vol. 27, no. 4, p. 669, 2011.

[10] D. C. Montgomery, E. A. Peck, and G. G. Vining,
Introduction to linear regression analysis, vol. 821. Wiley,
2012.

[11] G. A. Seber and A. J. Lee, Linear regression analysis, vol.
936. John Wiley & Sons, 2012.

[12] S. Han and W. K. Ng, “Privacy-preserving linear fisher
discriminant analysis,” in Advances in Knowledge
Discovery and Data Mining, Springer, 2008, pp. 136–147.

[13] V. Nikolaenko, U. Weinsberg, S. Ioannidis, M. Joye, D.
Boneh, and N. Taft, “Privacy-Preserving Ridge Regression
on Hundreds of Millions of Records,” 2012.

[14] P. Paillier, “Public-key cryptosystems based on composite
degree residuosity classes,” in Advances in cryptology—
EUROCRYPT’99, 1999, pp. 223–238.

[15] C. Hazay, G. L. Mikkelsen, T. Rabin, and T. Toft, “Efficient
rsa key generation and threshold paillier in the two-party
setting,” in Topics in Cryptology–CT-RSA 2012, Springer,
2012, pp. 313–331.

[16] Y. Desmedt, “Threshold cryptosystems,” in Advances in
Cryptology—AUSCRYPT’92, 1993, pp. 1–14.

[17] T. Nishide and K. Sakurai, “Distributed paillier
cryptosystem without trusted dealer,” in Information
Security Applications, Springer, 2011, pp. 44–60.

[18] H. Cohen, A Course in Computational Algebraic Number
Theory. Springer-Verlag, 1993.

414

	Message from the Chairs
	Algorithms for MapReduce and Beyond (BeyondMR)
	Scheduling MapReduce Jobs on Unrelated Processors
	Binary Theta-Joins using MapReduce: Efficiency Analysis and Improvements
	On the design space of MapReduce ROLLUP aggregates
	Determining the k in k-means with MapReduce
	Tagged Dataflow: a Formal Model for Iterative Map-Reduce
	Processing Regular Path Queries on Giraph
	Graph-Parallel Entity Resolution using LSH & IMM
	Modular Data Clustering - Algorithm Design beyond MapReduce

	Bidirectional Transformations (BX)
	Preface to the Third International Workshop on Bidirectional Transformations
	Implementing a Bidirectional Model Transformation Language as an Internal DSL in Scala
	Towards a Framework for Multidirectional Model Transformations
	Formalizing Semantic Bidirectionalization with Dependent Types
	BenchmarX
	Towards a Repository of Bx Examples
	Intersection Schemas as a Dataspace Integration Technique
	Bidirectional Transformations in Database Evolution: A Case Study ``At Scale''
	Entangled State Monads
	Spans of lenses

	Energy Data Management (EnDM)
	Pipeline Production Data Model
	Renewable Energy Data Sources in the Semantic Web with OpenWatt
	A Generic Ontology for Prosumer-Oriented Smart Grid
	Computing Electricity Consumption Profiles from Household Smart Meter Data
	ECAST: A Benchmark Framework for Renewable Energy Forecasting Systems
	Energy Data Management: Where Are We Headed? (panel)

	Exploratory Search in Databases and the Web (ExploreDB)
	Exploratory Search in Databases and the Web
	Exploring Big Data using Visual Analytics
	On the Suitability of Skyline Queries for Data Exploration
	Hippalus: Preference-enriched Faceted Exploration
	The DisC Diversity Model
	Exploring RDF/S Evolution using Provenance Queries
	Skyline Ranking à la IR
	Multi-Engine Search and Language Translation

	Querying Graph Structured Data (GraphQ)
	An Event-Driven Approach for Querying Graph-Structured Data Using Natural Language
	GraphMCS: Discover the Unknown in Large Data Graphs
	Graph-driven Exploration of Relational Databases for Efficient Keyword Search
	Implementing Iterative Algorithms with SPARQL
	A Map-Reduce algorithm for querying linked data based on query decomposition into stars
	Performance optimization for querying social network data
	Frequent Pattern Mining from Dense Graph Streams

	Linked Web Data Management (LWDM)
	Quantifying the Connectivity of a Semantic Warehouse
	Scalable Numerical SPARQL Queries over Relational Databases
	Similarity Recognition in the Web of Data
	Mining of Diverse Social Entities from Linked Data
	TripleGeo: an ETL Tool for Transforming Geospatial Data into RDF Triples

	Multimodal Social Data Management (MSDM)
	Social Data and Multimedia Analytics for News and Events Applications
	Event Identification and Tracking in Social Media Streaming Data
	Recommendation of Multimedia Objects for Social Network Applications
	Estimating Completeness in Streaming Graphs

	Mining Urban Data (MUD)
	Mining Trajectory Data for Discovering Communities of Moving Objects
	Mobile Sensing Data for Urban Mobility Analysis: A Case Study in Preprocessing
	Crowd Density Estimation for Public Transport Vehicles
	Traffic Incident Detection Using Probabilistic Topic Model
	Predictive Trip Planning – Smart Routing in Smart Cities
	Addressing the Sparsity of Location Information on Twitter
	Efficient Dissemination of Emergency Information using a Social Network
	Crowdsourcing turning restrictions for OpenStreetMap
	Big data analytics for smart mobility: a case study
	Smart Applications for Smart City: a Contribution to Innovation
	Analysis of Relationships Between Road Traffic Volumes and Weather: Exploring Spatial Variation
	SiCi Explorer: Situation Monitoring of Cities in Social Media Streaming Data
	A Cascading Wavelet-Feed Forward Neural Network Approach for Forecasting Traffic Flow
	Combining a Gauss-Markov model and Gaussian process for traffic prediction in Dublin city center
	Sensing Urban Soundscapes

	Privacy and Anonymity in the Information Society (PAIS)
	A Hybrid Approach for Privacy-preserving Record Linkage
	Clustering-based Multidimensional Sequence Data Anonymization
	Efficient Multi-User Indexing for Secure Keyword Search
	Community Detection in Anonymized Social Networks
	Secure Multi-Party linear Regression
	Data Anonymization: The Challenge from Theory to Practice
	A Privacy Preserving Model for Ownership Indexing in Distributed Storage Systems

