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Automated Specification-based Testing of 
Interactive Components with AsmL 

Ana C. R. Paiva, João C. P. Faria, and Raul F. A. M. Vidal 

Abstract  — It is presented a promising approach to test interactive components, supporting the automatic generation of test cases 
from a specification. The relevance and difficulties (issues and challenges) associated with the testing of interactive components are 
first presented. It is shown that a formal specification with certain characteristics allows the automatic generation of test cases while 
solving some of the issues presented. The approach is illustrated with an example of automatic testing of the conformity between 
the implementation of a button, in the .Net framework, and a specification, written in the AsmL language, using the AsmL Tester tool. 
The conclusion discusses the characteristics of the tool and gives directions for future work. 
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1 INTRODUCTION

he development of high-quality interactive systems and 
applications is a difficult and time-consuming task, 
requiring expertise from diverse areas (software engi-

neering, psychology). Current IDE's are not powerful 
enough for specifying/modeling, building and testing 
those systems in an effective way. The development of in-
teractive systems and applications based on reusable inter-
active components is the key to achieve higher quality and 
productivity levels. Improving the quality of interactive 
components should have a major impact in the quality of 
interactive systems and applications built from them, and 
should contribute to their increased reuse. 
In this paper, it is presented a promising approach to the 
testing of interactive components. By interactive compo-
nents we mean reusable controls or widgets or interactors, 
capable of both input from the user and output to the user, 
written in a general-purpose object-oriented language, such 
as Java or C#. Interactive components range from the more 
basic ones (such as buttons, text boxes, combo boxes, list 
boxes, etc.) to the more sophisticated ones (calendars, data 
grids, interactive charts, etc.) built from simpler ones. The 
overhead incurred in testing reusable interactive compo-
nents pays-off, because of their wider usage and longevity, 
when compared to special purpose and short lived "final" 
user interfaces. 

The paper is organized as follows: next section (section 
2) presents some important issues and challenges of testing 
interactive components. Section 3 explains the type of test 
automation that is envisioned (automated specification-
based testing), discusses the type of formal specification 
required, and discusses its costs and benefits. Section 4 pre-
sents an example of performing automated specification-
based tests using the AsmL language and the AsmL Tester 
tool. Some conclusions and future work can be found in the 

final section. 

2 ISSUES AND CHALLENGES OF TESTING 
INTERACTIVE COMPONENTS 

Testing interactive components is particularly difficult be-
cause it shares and combines the issues and challenges of 
testing object-oriented systems [1], component-based sys-
tems [2], and interactive systems. Some of the main issues 
and challenges are identified and described next. 

2.1 Complex Event-driven Behaviour 
Interactive components (and interactive applications and 
systems in general) have complex event-driven behaviour, 
difficult to analyze and predict, and, consequently, also dif-
ficult to test and debug. Even basic interactive components, 
such as buttons and text boxes, may react to and generate 
dozens of events. Most of us have already experienced 
"strange" behaviours (blocked interfaces, dirty displays, 
etc.) apparently at random when using wide-spread inter-
active applications and systems. This should not be a sur-
prise given their complex event-driven behaviour. 

2.2 Highly-configurable (or Customizable) Behaviour 
Reusable interactive components usually have a highly-
configurable (or customizable) behaviour. This can be done 
statically or dynamically by setting configuration properties 
or attributes, by adding event-handlers or by defining sub-
classes and method overriding. Testing an interactive com-
ponent in all the configurations allowed is almost impossi-
ble because of the huge set of possible configurations and 
the difficulty to predict the customized behaviour. 

2.3 Multiple Interfaces 
Interactive components have both a user interface (GUI) 
and an application interface (API). The application interface 
is used for customizing and composing them, and for link-
ing them with the underlying application logic. Different 
kinds of inputs and outputs occur via these different inter-
faces. Adequate testing of an interactive component cannot 
look at just one of these interfaces in isolation, and has to 
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take into account all these kinds of inputs and outputs in 
the definition of test cases and in test execution. 

2.4 GUI Testing is Difficult to Automate 
Automating the testing of graphical user interfaces poses 
well-known challenges: 

1. How to properly simulate inputs from the user 
(mouse, keyboard and other higher-level events that 
are generated by the user)? 

2. How to check the outputs to the user without exces-
sive sensitivity to formatting and rendering details? 

2.5 API's with Callbacks and Reentrance 
The designer of a reusable interactive component defines its 
methods but does not know in advance which kind of ap-
plications will make use of them. Method calls between an 
interactive component and an application occur in both 
directions: 

1. The application (or test driver) may call methods of 
the interactive component. From the testing perspec-
tive, inputs are methods invoked with parameters 
while outputs are the values returned by those 
methods. This is the traditional situation in unit test-
ing. 

2. The interactive component may generate events 
(originated from the user or internally generated) 
that cause the invocation of methods in the applica-
tion (or test stub), by some kind of callback mecha-
nism (event handlers, or subclassing and method 
overriding). Again, from the testing perspective, the 
outputs are the events and parameters passed to the 
application, while inputs are returned parameters. 

Testing the second kind of interaction (callbacks) poses 
specific issues and challenges, as already noted in [3]: 

1. An application method invoked in a callback may, in 
turn, invoke methods of the interactive component 
(reentrancy situation) and have access or change its 
intermediate state. Hence, the internal state of the in-
teractive component when it issues a callback is not 
irrelevant. Moreover, some restrictions may have to 
be posed on the state changes that an application 
may request when processing a callback.  

2. During testing, one has to check that: (1) the appro-
priate callbacks are being issued; (2) when a callback 
is issued, the interactive component is put in the ap-
propriate internal state; (3) during the processing of 
a callback, the application doesn't try to change the 
state of the interactive component in ways that are 
not allowed. 

2.6 Operating System Interference 
Interaction with the user is mediated by the operating sys-
tem in non trivial ways (often, several layers are involved), 
introducing more dimensions of configurability, and com-
plicating the analysis and prediction of its behaviour, as 
well as the testing and debugging tasks. 

2.7 Insufficient Documentation 
The documentation supplied with interactive components 
is usually scarce and not rigorous enough for more ad-
vanced uses, such as advanced customization and thorough 

testing. For example, from the documentation, it is difficult 
to know precisely: 

1. when are events signalled and by what order;  
2. what is the internal state of a component when it 

signals an event; 
3. what is safe for an event handler to do;  
4. what interactions exist between events. 
This usually leads to a trial-and-error style of application 

programming and poor application quality, and also com-
plicates the design of test cases. 

2.8 Poor Testability 
Testing of interactive components is usually difficult and 
time-consuming due to: 

1. the lack of rigorous, unambiguous and comprehen-
sive documentation; 

2. the reduced observability (capability to observe the 
internal state, display produced, and events raised); 

3. the deficient controllability (capability to simulate 
user input). 

Some of the issues and challenges described in this sec-
tion will be addressed by our testing approach and dis-
cussed in the next sections. 

3 AUTOMATED SPECIFICATION-BASED TESTING 
Manual testing of GUIs and interactive components is la-
bour-intensive, frequently monotonous, time-consuming 
and costly. Some of the reasons are the existence of varied 
possibilities for user interaction and a large number of pos-
sible configurations for each component, and other issues 
described in section 2, making it impractical the satisfaction 
of adequate coverage criteria by manual testing. It is neces-
sary to use some type of automation to perform those tests. 

3.1 Degree of Automation Envisioned 
The degree of automation we envision is the automatic 
generation of test cases (inputs and expected outputs) from 
specification, and not just the type of automation that is 
provided by unit testing frameworks and tools, such as 
JUnit (www.junit.org) or NUnit (www.nunit.org), or the type 
of automation provided by capture and replay tools, such 
as WinRunner (www.mercure.com) and other tools 
(www.stlabs.com/marick/faqs/t-gui.htm). 
Unit testing frameworks and tools are of great help in orga-
nizing and executing test cases, particularly for API testing, 
but not in generating test cases from a specification.  

Capture and replay tools are probably the most popular 
tools for GUI testing, but don’t support the automatic gen-
eration of test cases. With these tools, it is possible to record 
the user interactions with a graphical user interface (mouse 
input, keyboard input, etc.) and replay them later. Capture 
and replay tools are of great help in several scenarios, but 
also have widely recognized limitations (see e.g. the lesson 
"capture replay fails" in [4]). In this type of test automation, 
there is no guarantee of test coverage, and there is an exces-
sive dependency on the “physical” details of the user inter-
face. 

From a higher perspective, these different approaches 
and types of automation are complementary and not oppo-
nents. 
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The automatic generation of test cases from specification 
requires some sort of formal specification of the software to 
be tested, that can be used to generate concrete input values 
and sequences, as well as the expected outputs (as a test 
oracle).  

It is possible to design test cases (for black-box testing) 
from informal specifications, but not in an automated way. 
At most, inputs can be generated automatically based on 
the signatures of methods and events (their calling syntax), 
but expected outputs can only be generated based on a 
formal specification of their semantics. 

3.2 Type of Specification Needed 
A popular type of specification of object-oriented systems is 
based on the principles of design by contract [5], by means 
of invariants and pre and post-conditions, as found in Eiffel 
(www.eiffel.com), ContractJava [6] or JContract 
(www.parasoft.com). An invariant is a condition that restricts 
the valid states of an object, at least on the boundaries of 
method calls. A pre-condition of a method is a condition on 
the input parameters and the internal state of the object that 
should hold when a method is called. On the opposite side, 
a post-condition of a method is a condition on the input 
parameters, initial state of the object (when the method is 
called), final state of the object (when the method returns), 
and value returned that should hold at the end of the 
method execution. 

Although with limitations, some test tools, such as JTest 
(www.parasoft.com), have the capability of generating unit 
tests based on the specification of pre and post-conditions. 
While pre and post-conditions are a good mean to restrict 
the allowed behaviours of an object, they are not adequate, 
in general, to fully specify their intended behaviour, par-
ticularly when callbacks are involved. As already noted by 
Szyperski in his book [3], the semantics of components that 
issue callbacks, as is the case of interactive components (see 
section 2), cannot be captured only by means of pre and 
post-conditions (at least with the meaning presented 
above). 

The Object Constraint Language (OCL) (see 
www.uml.org) goes a step further, by allowing the specifica-
tion, in the post-condition of a method, of messages that 
must have been sent (method calls and sending of signals) 
during its execution. However, in general, it is not possible 
to specify the order by which messages are sent and the 
state of the object when each message is sent (important 
because of re-entrance, as explained in section 2). The defi-
nition of post-conditions in OCL has another advantage 
over its definition in Java or Eiffel, because OCL is a higher-
level formal language supporting formal reasoning and 
automation. 

AsmL [7] (http://research.microsoft.com/fse/asml), a formal 
specification language developed at Microsoft Research, 
tightly integrated with the .Net framework, bridges over 
the limitations found in OCL by means of "model pro-
grams". A "model program" is an executable specification of 
a method. A model program may be organized in a se-
quence of steps. For example, if a method issues a callback 
in the middle of its execution, three steps should be de-
fined: a first step to lead the object to the appropriate state 

before issuing the callback; a second step where the call-
back is issued; a third step to lead the object to the appro-
priate final state and return. These steps facilitate the defini-
tion of restrictions on sequences of actions/events that are 
common to find in user interface modelling and are not 
easy to express using just post-conditions. Each step com-
prises one or more non-contradictory "model statements" 
that are executed simultaneously. Model statements are 
written in a high-level action language with primitives to 
create new objects, assign new values to the attributes of an 
object, and call other methods. Model programs may be 
used in combination with pre and post-conditions, usually 
dispensing the later. Examples of specifications written in 
AsmL will be presented in section 4. 

3.3 Conformity Checks 
With appropriate tool support (as is the case of the AsmL 
Tester tool), model programs can be used as executable 
specification oracles [1]. That is, the results and state 
changes produced by the execution of model programs (ex-
ecutable specifications written in AsmL) can be compared 
with the results produced by the execution of the corre-
sponding implementation under test (written in any .Net 
compliant language in this case). Any discrepancies found 
are reported by the tool. Mappings between actions and 
states in the specification and the implementation have to 
be defined, either explicitly or implicitly (based on name 
equality). Although this is not the only way of performing 
conformity checks between a specification and an 
implementation (see [8] for a discussion of other possible 
ways), it is a feasible way. 

3.4 Finite State Machine Model and Test Case 
Generation 

For the generation of test cases, the AsmL Tester tool first 
generates a FSM (Final State Machine) from the AsmL 
specification, and then generates a test suite (with one or 
more test cases) from the FSM, according to criteria pro-
vided by the user. Since the number of possible object states 
(possible combinations of values of instance variables) is 
usually huge, the states in the FSM are an abstraction of the 
possible object states, according to some criteria provided 
by the user. 

It is well known that state machine models are appropri-
ate for describing the behaviour of interactive systems (and 
reactive systems in general), and a good basis for the gen-
eration of test cases, but usually there is not a good integra-
tion between the object model and the state machine model. 
AsmL and the AsmL Tester tool solve this problem with the 
generation of the FSM from the specification (formal object 
model). 

3.5 Advantages of the Formal Specification of 
Interactive Components 

When compared to other testing techniques, automated 
specification-based testing has the disadvantage of requir-
ing a formal specification (to achieve a higher degree of 
automation). But the investment in the formal specification 
of reusable interactive components may be largely compen-
sated by the multiple benefits it can bring: 
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1. Formal specifications and models are an excellent 
complement to informal specifications and docu-
mentation, because ambiguities are removed and in-
consistencies are avoided. 

2. Formal specifications allow the automation of speci-
fication-based testing, as described in this paper.        

3. Besides being useful as the basis for the generation 
of test cases, FSM's can also be used to automatically 
prove required properties of a system, with model-
checking tools that exhaustively search the state 
space. The properties are written in temporal logic. 
For example, Campos, in [9], uses model checking 
tools to prove usability properties of user interfaces. 

4. Desired properties of a system (with a finite or infi-
nite state space) may be proved in a semi-automated 
way, given a formal specification or model of the 
system, and a formal description of those properties 
[10]. 

5. Executable specifications (or models) of user inter-
faces and interactive systems may be used as fully 
functional prototypes. Problems in specification and 
design can be discovered and corrected before im-
plementation begins.  

6. In restricted domains, and with appropriate tool 
support (see for example [11]), formal specifications 
or models of user interfaces can be used as the basis 
for the automatic generation of an implementation 
in some target platform, according to refinement or 
translation rules. The generated implementations are 
correct by construction, and conformity tests are not 
needed. 

Overall, higher rigor in the description and verification 
of interactive components is important to gain confidence 
on their correctness and encourage their reuse [10]. 

4 EXAMPLE 
In this example, the AsmL Tester tool is used to test the con-
formity between the implementation of the button control 
in the .Net framework (� � � � � � �� � 	 
 � � � �  � � � � � � � � � � 	  
class) and a specification of a small part of its behaviour 
(related to mouse and keyboard events only) in the AsmL 
language. The example is small but was selected mainly to 
illustrate the testing process and turnarounds to some diffi-
culties, and not the power of the AsmL language. The ap-
proach presented can easily scale to be used in larger inter-
active controls. 

4.1 Formal Specification of a Button in AsmL 
The button specification has instance variables (  Specifica-
tion 1), events (  Specification 2), and methods (  Specifica-
tion 3).  

Two types of events should be distinguished: events re-
ceived by the button (� � � � � � � , � � � � � � � � 	 , � � � � �  and 
� � � � � � 	 ), and events generated by the button in response 
to the previous ones (� � � � � ). Both these types of events 
may be sent by the button to the application via event han-
dlers. There are more button events in the .Net platform but 
only these events are considered in this example. 
Instance variables � � � � , � 	 � � � � 
  and  � � � � � 
  (  Specifi-

cation 1) model the internal state of the button, and corre-
spond to properties existing in the � � � � � 	  class in the .Net 
framework.  

Instance variables � � � � � � � � 	  � � �  and � � � � � � 	  � � �  
represent event flags that were added to check that appro-
priate sequences of mouse and keyboard events are re-
ceived by a button (� � � � � � �  after � � � � � � � � 	 , � � � � �  after 
� � � � � � 	 ).  

Instance variable � � � � � � 
  � � �  was added to tell 
whether the � � � � �  event was generated by the button in 
response to the last keyboard or mouse event received. This 
instance variable is reset each time an event is received 
(method  � � � � ! � 	 � � � � � 
 � " � 	 �  � � � � ). 

# $ % & & ' ( ) ) * + , - . , / 0 & 1 2 3 4 5 )6 % 7 8 4 9 ) % & : ) ; < + =6 % 7 > + ? 2 @ 4 A % & ' * * @ 4 ? +6 % 7 B * 5 ( C 4 A % & ' * * @ 4 ? + D E % $ & ,6 % 7 F * ( C 4 G * H + B @ ? = % & ' * * @ 4 ? + D E % $ & ,6 % 7 I 4 J G * H + B @ ? = % & ' * * @ 4 ? + D E % $ & ,6 % 7 K @ < 5 L 4 A B @ ? = % & ' * * @ 4 ? + D E % $ & ,

  Specification 1 - Button instance variables. 

Events are defined in a way similar to the .Net frame-
work (  Specification 2). For each event named M N O P Q R S T O , 
there is an instance variable named M N O P Q R S T O U S P V W O X Y  
that stores the event handlers registered with the event. 
Operations � 
 
  and � � � � " �  are responsible to register and 
unregister event handlers. In an AsmL specification, it is 
possible to use types defined in the .Net framework. That's 
the case of the type � " � 	 � Z � 	 
 � � �  in   Specification 2, and 
types � " � 	 � [ � � � , � � � � " � 	 � [ � � �  and � � � � � � " � 	 � [ � � �  in   
Specification 3. 

\ 7 ] 6 % . , 6 % 7 K @ < 5 L ^ ? + A @ 4 ; C % & : 4 ) _ E > ` 4 + ) ^ ? + A @ 4 ; D a b, 6 , / . K @ < 5 L % & > ` 4 + ) ^ ? + A @ 4 ;% 0 0 % 0 0 ` ? @ ( 4 . _ K @ < 5 L ^ ? + A @ 4 ; C7 , c _ 6 , 7 , c _ 6 , ` ? @ ( 4 E 7 _ c K @ < 5 L ^ ? + A @ 4 ; Cd d C < e < @ ? ; C ) ? ) 4 e 4 + ) C * e < ) ) 4 A f * ; 4 ` 4 + ) Cd d I 4 J G * H + g I 4 J h i g F * ( C 4 G * H + g ? + A F * ( C 4 h i

  Specification 2 – Button events. 

For each event named M N O P Q R S T O , there is a method 
named j P M N O P Q R S T O  that executes when the event occurs. 
The method is responsible for calling the event handlers 
that were registered with the event (  Specification 3). 
Methods are public by default. In the case of events re-
ceived by the button (� � � � � � � , � � � � � � � � 	 , � � � � �  and 
� � � � � � 	 ), the reception of the event may be simulated (for 
testing purposes) by calling the method j P M N O P Q R S T O  from 
the outside of the class. This explains why those methods 
are marked as public. In the case of events generated inter-
nally by the button (� � � � � ), the method is marked as pro-
tected, because it should only be called internally. 

Some of the methods have a pre-condition indicated 
with the keyword � � k � � � � . The pre-condition restricts the 
states where the method can execute. For instance, the 
method l 	 � � � � �  can only execute when the property � 	 m
� � � � 
  is true. After the pre-condition, comes the model 
program (described in section 3). In some cases, the model 
program is organized in steps. 
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\ 7 _ . , # . , 0 1 + K @ < 5 L � 4 % & > ` 4 + ) � ; = C �7 , � � ] 7 , > + ? 2 @ 4 A D . 7 � ,E _ 7 % $ $ � ? + A @ 4 ; ] / K @ < 5 L ^ ? + A @ 4 ; C � ? + A @ 4 ; � c , g 4 �K @ < 5 L 4 A B @ ? = �D . 7 � ,
1 + I 4 J G * H + � 4 % & I 4 J > ` 4 + ) � ; = C �7 , � � ] 7 , > + ? 2 @ 4 A D . 7 � , % / 0 B * 5 ( C 4 A D . 7 � , % / 0I 4 J G * H + B @ ? = D E % $ & ,& . , \ � 4 C 4 ) � 4 + 4 ; ? ) 4 A > ` 4 + ) B @ ? = C � �& . , \ E _ 7 % $ $ � ? + A @ 4 ; ] / I 4 J G * H + ^ ? + A @ 4 ; C

� ? + A @ 4 ; � c , g 4 �I 4 J G * H + B @ ? = �D . 7 � ,
1 + I 4 J h i � 4 % & I 4 J > ` 4 + ) � ; = C �7 , � � ] 7 , > + ? 2 @ 4 A D . 7 � , % / 0 B * 5 ( C 4 A D . 7 � , % / 0I 4 J G * H + B @ ? = D . 7 � ,& . , \ � 4 C 4 ) � 4 + 4 ; ? ) 4 A > ` 4 + ) B @ ? = C � �& . , \ E _ 7 % $ $ � ? + A @ 4 ; ] / I 4 J h i ^ ? + A @ 4 ; C � ? + A @ 4 ; � c , g4 �& . , \ ] E � 4 	 I 4 J G ? ) ? D: J C ) 4 e 	
 < + A * H C 	 B * ; e C 	 I 4 J C 	 : i ? 5 4 �. � , / 1 + K @ < 5 L � / , � > ` 4 + ) � ; = C � � �I 4 J G * H + B @ ? = �D E % $ & ,
1 + F * ( C 4 G * H + � 4 % & F * ( C 4 > ` 4 + ) � ; = C �7 , � � ] 7 , > + ? 2 @ 4 A D . 7 � , % / 0 F * ( C 4 G * H + B @ ? = D E % $ & ,& . , \ � 4 C 4 ) � 4 + 4 ; ? ) 4 A > ` 4 + ) B @ ? = C � �& . , \ E _ 7 % $ $ � ? + A @ 4 ; ] / F * ( C 4 G * H + ^ ? + A @ 4 ; C

� ? + A @ 4 ; � c , g 4 �B * 5 ( C 4 A �D . 7 � ,F * ( C 4 G * H + B @ ? = �D . 7 � ,
1 + F * ( C 4 h i � 4 % & F * ( C 4 > ` 4 + ) � ; = C �7 , � � ] 7 , > + ? 2 @ 4 A D . 7 � , % / 0 B * 5 ( C 4 A D . 7 � , % / 0F * ( C 4 G * H + B @ ? = D . 7 � ,& . , \ � 4 C 4 ) � 4 + 4 ; ? ) 4 A > ` 4 + ) B @ ? = C � �& . , \ E _ 7 % $ $ � ? + A @ 4 ; ] / F * ( C 4 h i ^ ? + A @ 4 ; C

� ? + A @ 4 ; � c , g 4 �& . , \ 1 + K @ < 5 L � / , � > ` 4 + ) � ; = C � � �F * ( C 4 G * H + B @ ? = �D E % $ & ,
& � % 7 , 0 ' ( ) ) * + � C % & : ) ; < + = g 2 % & ' * * @ 4 ? + �8 4 9 ) �D C> + ? 2 @ 4 A �D 2% 0 0 c , . _ '  + C ) ? + 5 4 C
� 4 C 4 ) � 4 + 4 ; ? ) 4 A > ` 4 + ) B @ ? = C � �K @ < 5 L 4 A B @ ? = �D E % $ & ,

  Specification 3 – Button methods. 

4.2 Extension of the Button Implementation Class 
for Testability 

In order to overcome the limited testability of the � � � � � 	  
class in the .Net framework, a � � � � � � 	  (Testable Button) 
class, inheriting from � � � � � 	 , was created in C# (  
Implementation 1).  

Event flag � � � � � � 
  � � �  is similar to the one used in the 
specification. This flag was marked as public, to facilitate 
the mapping of states between the specification and the 
implementation. 

Method l 	 � � � � �  overrides a protected method with the 
same name defined in the � � � � � 	  class, in order to ma-
nipulate the added event flag and record the occurrence of 
the � � � � �  event. It calls the base method, so that the event 
handlers are called (i.e., so that the event is sent to the ap-
plication).  

For each event received (from the user) with name 
M N O P Q R S T O , it was added a public method name � j P �
M N O P Q R S T O  (U-User) that can be called from outside the 

class to simulate user events.  

\ � � $ ] # # $ % & & 8 ' ( ) ) * + � ' ( ) ) * + a\ � � $ ] # ' * * @ 4 ? + K @ < 5 L 4 A B @ ? = D E % $ & , �\ � � $ ] # 8 ' ( ) ) * + � : ) ; < + = C g ' * * @ 4 ? + 2 � � 2 ? C 4 � � a8 4 9 ) D C �> + ? 2 @ 4 A D 2 � b\ 7 _ . , # . , 0 _ 6 , 7 7 ] 0 , 6 _ ] 0 1 + K @ < 5 L � > ` 4 + ) � ; = C 4 � a2 ? C 4 	1 + K @ < 5 L � 4 � �K @ < 5 L 4 A B @ ? = D ) ; ( 4 � b\ � � $ ] # 6 _ ] 0 h 1 + I 4 J G * H + � I 4 J > ` 4 + ) � ; = C 4 � aK @ < 5 L 4 A B @ ? = D f ? @ C 4 �1 + I 4 J G * H + � 4 � � bd d C < e < @ ? ; e 4 ) � * A C * e < ) ) 4 A f * ; 4 ` 4 + ) Cd d I 4 J h i g F * ( C 4 G * H + g ? + A F * ( C 4 h ib

  Implementation 1 – Implementation of a testable button class     
(TButton). 

4.3 Specification and Implementation of a Test 
Container 

In order for a user to interact with a button, it must be 
made visible by putting it inside some window or con-
tainer. With this purpose, a class � �  � � �  was created both 
at the specification level (  Specification 4) and at the im-
plementation level (  Implementation 2). Due to limitations 
of the test tool, auxiliary methods � � � � � � � � � � 	 , 
� � � � � � � � � , � � � � � � � � 	  and � � � � � � �  had to be created to 
simulate user events that are sent to the button contained in 
the form. These methods are selected to trigger the transi-
tions in the state transition diagram (  Figure 1). Each test 
case will be constructed as a sequence of calls to these 
methods. 

# $ % & & 8 ' B * ; e6 % 7 8 ' % & ' ( ) ) * + D / , � ' ( ) ) * + � � 8 ' ( ) ) * + � g . 7 � , �� � � � � � � � � � � � � �  ! " � # � $ %& ' � ( � � � % ) � * $ � % � � � � � + , � � # - * . � /8 ' 	1 + F * ( C 4 G * H + � 4 �� � � � � � � 0 1 � � �  ! " � # � $ % & ' � ( � � � % ) � * $ � % � � � � � + , � � # - * . � /8 ' 	1 + F * ( C 4 h i � 4 �8 ' I 4 J G * H + � 4 % & : J C ) 4 e 	
 < + A * H C 	 B * ; e C 	 I 4 J > ` 4 + ) � ; = C �8 ' 	1 + I 4 J G * H + � 4 �8 ' I 4 J h i � 4 % & : J C ) 4 e 	
 < + A * H C 	 B * ; e C 	 I 4 J > ` 4 + ) � ; = C �8 ' 	1 + I 4 J h i � 4 �& � % 7 , 0 8 ' B * ; e � �d d < + C 4 ; ) ) � < C < + C ) ? + 5 4 < + ) � 4 C 4 ) * f < + C ) ? + 5 4 Cd d ) * 2 4 ) 4 C ) 4 A% 0 0 c , . _ < + C ) ? + 5 4 C

  Specification 4 – Container class TBForm. 

� & ] / 2 : J C ) 4 e �
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 < + A * H C 	 B * ; e C �/ % c , & \ % # , 8 ' B * ; ea \ � � $ ] # # $ % & & 8 ' B * ; e � B * ; e a\ 7 ] 6 % . , 8 ' ( ) ) * + 8 ' �\ � � $ ] # 8 ' B * ; e � � a
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  Implementation 2 – Container class TBForm. 

4.4 Generation of the Finite State Machine Model 
The AsmL Tester tool was used to automatically generate 
the finite state machine (FSM) from the AsmL specification, 
based on the following configuration information: 

1. List of state variables - all the event flags defined in 
the specification of the � � � � � 	  class (� � � � � � � � 	 m
 � � � , � � � � � � 	  � � �  and � � � � � � 
  � � � );  

2. List of actions that trigger transitions – the construc-
tor and methods defined in the � �  � � �  class 
(� � � � � � � � � � 	 , � � � � � � � � � , � � � � � � � � 	  and � � � � m
� � � ). 

3. Domains (values to consider) for the previous state 
variables and actions’ arguments. For each state 
variable the domain is � � � � � 	 
 � � � � � . In the case 
of the mouse actions, a single argument was pro-
vided, specifying the left mouse button and a posi-
tion inside the form button, more precisely, the value 
� 	 � � � � � � � � �� � 	 
 � � � �  � � � � � � � � � � � " � 	 � [ � � �� � � � � � � �� � 	 
 � � � �  � � � � � � � � � � � � � � 	 � �  � 
 � 	� 	 � 	 � 	 � � � � In the case of the keyboard actions, a 
single argument was provided, specifying the ‘A’ 
key, that is, the value � 	 � � � � � � � � �� � 	 
 � � � �
 � � � � � � � � � " � 	 � [ � � � � � � � � � � �� � 	 
 � � � �  � � � � �
� � � � �[ � � � 

The FSM obtained is shown in   Figure 1. Each state cor-
responds to a combination of values of the state variables. 
Apart from the start state (greyed), the FSM has 6 states. 
This means that two of the possible combinations of values 
of the three state variables cannot occur (� , � � � � , � � � � �

. 
The possible transitions departing from each state are con-
strained by the methods’ pre-conditions ( � � k � � � � clause). 
 
 
 

  Figure 1 – Finite State Machine (FSM) diagram. 

4.5 Definition of Mappings between the Specificatio n 
and the Implementation 

To perform conformity tests it is necessary to define map-
pings (conformance relations) between specification and 
implementation methods and data (state) [8]. These rela-
tions can be established manually or in an automated way. 
It was defined a relation between the classes 
� � 
 � � �� �  � � �  (specification) and � � 	 
 � � � [ � � � � � � m
� � � 	 � �� �  � � �  (implementation). After this, the methods 
with the same names and arguments in both classes are 
automatically related. In the current version of the test tool, 
data relations have to be defined manually. In this example, 
only the � � � � � � 
  � � �  instance variable was mapped, as 
shown in   Figure 2. Conformance tests will execute related 
methods in both levels (specification and implementation) 
and will compare results obtained from both and also com-
pare the related data. 

  Figure 2 – Conformance relations configuration. 

4.6 Generation of the Test Suite 
After generating the FSM, it is possible to generate a test 
suit automatically (  Figure 3), based on coverage criteria 
selected by the user. In this case, it was used the default 
criteria that ensures full coverage of states and transitions. 
A test suite with a single test case (sequence) was sufficient 
to cover all the transitions. This test suit will be used as the 
input to conformance testing. 
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  Figure 3 – Test suit generated. 

4.7 Test Execution and Results 
As soon as the conformity relations are defined and the 
FSM and the test suit are generated, it is possible to execute 
conformance tests. Every time there is an inconsistence, the 
tool stops and reports the error. 
The tool reports a conformance error when the sequence of 
events   � � � � � � � � 	 ,   � � � � � � 	 ,   and � � � � �  is   executed              
( Figure 4), with key 'A'. The error is an inconsistency be-
tween the value of the � � � � � � 
  � � �  value at the imple-
mentation (the value is true) and the specification (the value 
is false). This means that the implementation (the � � � � � 	
class in the .Net framework) generates a � � � � �  event, when 
it receives from the user the sequence of events � � � � � � � � 	 , 
� � � � � � 	 , and � � � � � . According to the documentation of 
the .Net framework, this should only happen when the key 
pressed is the spacebar (which is not the case here). 

 
  Figure 4 – Conformance test inconsistency (the path to the error is 
shown in red). 

To reproduce this abnormal behaviour manually it is 
necessary to press the left mouse button on a .Net button, 
and press and release a keyboard key without releasing the 
mouse button. This will have the effect of selecting the but-
ton and executing the action associated with it. According 
to the documentation, this should only happen with the 

spacebar key. 

5 CONCLUSION 
An approach to test interactive components, with the 
automatic generation of test cases from a specification was 
described. In comparison with others, the approach pre-
sented in this paper requires a formal specification with 
demonstrated benefits in the development and verification 
of interactive components. In the past, formal specification 
and verification techniques have been used mainly in the 
development of critical systems, but, from our point of 
view, they also have a major role to play in the develop-
ment and verification of reusable components, as is the case 
of interactive components. 

It was presented an example of automatic testing the 
conformity between the implementation of a button, in the 
.Net framework, and a specification, written in the AsmL 
language, using the AsmL Tester tool. Some test code was 
needed to overcome testability limitations of the target 
code. Although, only a small part of the behaviour of a but-
ton was specified and tested, the tests were successful, that 
is, a bug was detected. A larger example could be used 
since the approach can easily scale but it would be difficult 
to explain that example in few pages. 

However, in its current state, the AsmL Tester tool also 
has some limitations: 

1. It still requires too much user intervention.  
2. While the tight integration with the .Net framework 

has some advantages, one of its shortcomings arises 
from the fact that the level of abstraction of the 
specification is not as high as should be. 

3. Interactive components can have lots of states and 
actions or events that can be hard to manipulate and 
test. The AsmL Tester tool allows the selection of 
which actions should appear in the FSM diagram 
(and in the test cases generated from the FSM). Con-
sequently, it is possible to test separately parts of the 
behaviour of the object or component under test. But 
a rigorous method is needed to define those parts 
and “sum” the results obtained in each part to take 
coverage criteria conclusions. 

The approach presented in this paper has to be extended 
and matured in several directions: 

1. Use the approach presented in larger examples. 
2. Explore other ways to generate test cases from the 

FSM model – some criteria to generate specification-
based tests can be found at [12]. 

3. Define additional check points – for instance, when a 
callback is issued and on return. 

4. Model Checking – integrate the approach with model 
checking techniques to prove properties about the 
model.  

5. Verification of the user interface contract – particularly 
challenging is the problem of checking that the outputs 
sent by an interactive component to the user obey to 
some kind of specification or contract. For example, 
the user interface contract of a textbox is to allow the 
user to insert and visualize a string through a small 

Error 
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window. 
Above points and possible others will be subject of future 

work. 

ACKNOWLEDGMENT  
The authors wish to thank the anonymous reviewers for 
their comments and suggestions. 

REFERENCES 
[1] R. V. Binder, Testing Object-Oriented Systems: Models, Patterns and 

Tools: Addison-Wesley, 2000. 
[2] J. Z. Gao, H.-S. J. Tsao, and Y. Wu, Testing and Quality Assurance 

for Component-Based Software: Artech House Publishers, 2003. 
[3] C. Szyperski, Component Software: Beyond Object-Oriented Pro-

gramming: Addison-Wesley, 1999. 
[4] C. Kaner, J. Bach, and B. Pettichord, Lessons Learned in Software 

Testing: A Context-Driven Approach: John Wiley & Sons, 2002. 
[5] B. Meyer, "Applying Design by Contract," IEEE Computer, pp. 40-

51, 1992. 
[6] F. Findler, "Contract Soundness for Object-Oriented Languages," 

presented at Object-Oriented Programming Systems, Languages 
and Applications (OOPSLA), 2001. 

[7] Microsoft, "Introducing AsmL: A Tutorial for the Abstract State 
Machine Language," Foundations of Software Research, 2002. 

[8] A. C. Paiva, J. P. Faria, and R. M. Vidal, "Specification-based Test-
ing of User Interfaces," presented at 10th DSV-IS Workshop - De-
sign, Specification and Verification of Interactive Systems, Fun-
chal - Madeira, 2003. 

[9] J. Campos and M. D. Harrison, "Model Checking Interactor 
Specifications," in Automated Software Engineering, vol. 8, 2001. 

[10] I. MacColl and D. Carrington, "User Interface Correctness," pre-
sented at Human Computer Interaction - HCI'97, 1997. 

[11] M. D. Lozano, "Entorno Metodológico Orientado a Objectos para 
la Especificación y Desarrollo de Interfaces de Usuario," in Siste-
mas Informáticos y Computación. Valencia: Universidad Politécnica 
de Valencia, 2001. 

[12] J. Offutt, S. Liu, A. Abdurazik, and P. Ammann, "Generating test 
data from state-based specifications," Software Testing, Verification 
and Reliability, vol. 13, pp. 25-53, 2003. 

 
Ana C. R. Paiva received M.Sc degree in Electrical and Computers 
Engineering from Engineering Faculty of Porto University (FEUP) and 
a degree in Information Systems Engineering from Minho University of 
Portugal in 1997 and 1995 respectively. She is currently developing 
hers doctorate in formal methods applied to user interfaces at FEUP, 
Electrical and Computers Engineering Department, where she is an 
Assistant Lecture since 1999. 
 
João C. P. Faria  received a Ph.D. in Electrical and Computer Engi-
neering from the Engineering Faculty of Porto University (FEUP) in 
1999, and a degree in Electrical Engineering from FEUP in 1985. He is 
an Assistant Professor at FEUP, Electrical and Computers Engineering 
Department, Informatics. 
 
Raul F. A. M. Vidal  received a Ph.D. in Digital Electronics at UMIST in 
1978, an M.Sc in Communication Engineering at UMIST in 1974 and a 
degree in Electrical Engineering at Engineering Faculty of Porto Uni-
versity (FEUP) in 1972. He is an Associate Professor at FEUP, Electri-
cal and Computers Engineering Department, Informatics. 
 
 


