
 1

Automated Specification-based Testing of
Interactive Components with AsmL

Ana C. R. Paiva, João C. P. Faria, and Raul F. A. M. Vidal

Abstract — It is presented a promising approach to test interactive components, supporting the automatic generation of test cases
from a specification. The relevance and difficulties (issues and challenges) associated with the testing of interactive components are
first presented. It is shown that a formal specification with certain characteristics allows the automatic generation of test cases while
solving some of the issues presented. The approach is illustrated with an example of automatic testing of the conformity between
the implementation of a button, in the .Net framework, and a specification, written in the AsmL language, using the AsmL Tester tool.
The conclusion discusses the characteristics of the tool and gives directions for future work.

Index Terms — Formal Methods, Interactive Systems Testing.

——————————
�

 ——————————

1 INTRODUCTION

he development of high-quality interactive systems and
applications is a difficult and time-consuming task,
requiring expertise from diverse areas (software engi-

neering, psychology). Current IDE's are not powerful
enough for specifying/modeling, building and testing
those systems in an effective way. The development of in-
teractive systems and applications based on reusable inter-
active components is the key to achieve higher quality and
productivity levels. Improving the quality of interactive
components should have a major impact in the quality of
interactive systems and applications built from them, and
should contribute to their increased reuse.
In this paper, it is presented a promising approach to the
testing of interactive components. By interactive compo-
nents we mean reusable controls or widgets or interactors,
capable of both input from the user and output to the user,
written in a general-purpose object-oriented language, such
as Java or C#. Interactive components range from the more
basic ones (such as buttons, text boxes, combo boxes, list
boxes, etc.) to the more sophisticated ones (calendars, data
grids, interactive charts, etc.) built from simpler ones. The
overhead incurred in testing reusable interactive compo-
nents pays-off, because of their wider usage and longevity,
when compared to special purpose and short lived "final"
user interfaces.

The paper is organized as follows: next section (section
2) presents some important issues and challenges of testing
interactive components. Section 3 explains the type of test
automation that is envisioned (automated specification-
based testing), discusses the type of formal specification
required, and discusses its costs and benefits. Section 4 pre-
sents an example of performing automated specification-
based tests using the AsmL language and the AsmL Tester
tool. Some conclusions and future work can be found in the

final section.

2 ISSUES AND CHALLENGES OF TESTING
INTERACTIVE COMPONENTS

Testing interactive components is particularly difficult be-
cause it shares and combines the issues and challenges of
testing object-oriented systems [1], component-based sys-
tems [2], and interactive systems. Some of the main issues
and challenges are identified and described next.

2.1 Complex Event-driven Behaviour
Interactive components (and interactive applications and
systems in general) have complex event-driven behaviour,
difficult to analyze and predict, and, consequently, also dif-
ficult to test and debug. Even basic interactive components,
such as buttons and text boxes, may react to and generate
dozens of events. Most of us have already experienced
"strange" behaviours (blocked interfaces, dirty displays,
etc.) apparently at random when using wide-spread inter-
active applications and systems. This should not be a sur-
prise given their complex event-driven behaviour.

2.2 Highly-configurable (or Customizable) Behaviour
Reusable interactive components usually have a highly-
configurable (or customizable) behaviour. This can be done
statically or dynamically by setting configuration properties
or attributes, by adding event-handlers or by defining sub-
classes and method overriding. Testing an interactive com-
ponent in all the configurations allowed is almost impossi-
ble because of the huge set of possible configurations and
the difficulty to predict the customized behaviour.

2.3 Multiple Interfaces
Interactive components have both a user interface (GUI)
and an application interface (API). The application interface
is used for customizing and composing them, and for link-
ing them with the underlying application logic. Different
kinds of inputs and outputs occur via these different inter-
faces. Adequate testing of an interactive component cannot
look at just one of these interfaces in isolation, and has to

————————————————

• All authors are with the Electrical Engineering Department, Engineering
Faculty of Porto University. E-mail: apaiva@fe.up.pt; jpf@fe.up.pt; and
rmvidal@fe.up.pt.

T

2 QUATIC’2004 PROCEEDINGS

take into account all these kinds of inputs and outputs in
the definition of test cases and in test execution.

2.4 GUI Testing is Difficult to Automate
Automating the testing of graphical user interfaces poses
well-known challenges:

1. How to properly simulate inputs from the user
(mouse, keyboard and other higher-level events that
are generated by the user)?

2. How to check the outputs to the user without exces-
sive sensitivity to formatting and rendering details?

2.5 API's with Callbacks and Reentrance
The designer of a reusable interactive component defines its
methods but does not know in advance which kind of ap-
plications will make use of them. Method calls between an
interactive component and an application occur in both
directions:

1. The application (or test driver) may call methods of
the interactive component. From the testing perspec-
tive, inputs are methods invoked with parameters
while outputs are the values returned by those
methods. This is the traditional situation in unit test-
ing.

2. The interactive component may generate events
(originated from the user or internally generated)
that cause the invocation of methods in the applica-
tion (or test stub), by some kind of callback mecha-
nism (event handlers, or subclassing and method
overriding). Again, from the testing perspective, the
outputs are the events and parameters passed to the
application, while inputs are returned parameters.

Testing the second kind of interaction (callbacks) poses
specific issues and challenges, as already noted in [3]:

1. An application method invoked in a callback may, in
turn, invoke methods of the interactive component
(reentrancy situation) and have access or change its
intermediate state. Hence, the internal state of the in-
teractive component when it issues a callback is not
irrelevant. Moreover, some restrictions may have to
be posed on the state changes that an application
may request when processing a callback.

2. During testing, one has to check that: (1) the appro-
priate callbacks are being issued; (2) when a callback
is issued, the interactive component is put in the ap-
propriate internal state; (3) during the processing of
a callback, the application doesn't try to change the
state of the interactive component in ways that are
not allowed.

2.6 Operating System Interference
Interaction with the user is mediated by the operating sys-
tem in non trivial ways (often, several layers are involved),
introducing more dimensions of configurability, and com-
plicating the analysis and prediction of its behaviour, as
well as the testing and debugging tasks.

2.7 Insufficient Documentation
The documentation supplied with interactive components
is usually scarce and not rigorous enough for more ad-
vanced uses, such as advanced customization and thorough

testing. For example, from the documentation, it is difficult
to know precisely:

1. when are events signalled and by what order;
2. what is the internal state of a component when it

signals an event;
3. what is safe for an event handler to do;
4. what interactions exist between events.
This usually leads to a trial-and-error style of application

programming and poor application quality, and also com-
plicates the design of test cases.

2.8 Poor Testability
Testing of interactive components is usually difficult and
time-consuming due to:

1. the lack of rigorous, unambiguous and comprehen-
sive documentation;

2. the reduced observability (capability to observe the
internal state, display produced, and events raised);

3. the deficient controllability (capability to simulate
user input).

Some of the issues and challenges described in this sec-
tion will be addressed by our testing approach and dis-
cussed in the next sections.

3 AUTOMATED SPECIFICATION-BASED TESTING
Manual testing of GUIs and interactive components is la-
bour-intensive, frequently monotonous, time-consuming
and costly. Some of the reasons are the existence of varied
possibilities for user interaction and a large number of pos-
sible configurations for each component, and other issues
described in section 2, making it impractical the satisfaction
of adequate coverage criteria by manual testing. It is neces-
sary to use some type of automation to perform those tests.

3.1 Degree of Automation Envisioned
The degree of automation we envision is the automatic
generation of test cases (inputs and expected outputs) from
specification, and not just the type of automation that is
provided by unit testing frameworks and tools, such as
JUnit (www.junit.org) or NUnit (www.nunit.org), or the type
of automation provided by capture and replay tools, such
as WinRunner (www.mercure.com) and other tools
(www.stlabs.com/marick/faqs/t-gui.htm).
Unit testing frameworks and tools are of great help in orga-
nizing and executing test cases, particularly for API testing,
but not in generating test cases from a specification.

Capture and replay tools are probably the most popular
tools for GUI testing, but don’t support the automatic gen-
eration of test cases. With these tools, it is possible to record
the user interactions with a graphical user interface (mouse
input, keyboard input, etc.) and replay them later. Capture
and replay tools are of great help in several scenarios, but
also have widely recognized limitations (see e.g. the lesson
"capture replay fails" in [4]). In this type of test automation,
there is no guarantee of test coverage, and there is an exces-
sive dependency on the “physical” details of the user inter-
face.

From a higher perspective, these different approaches
and types of automation are complementary and not oppo-
nents.

3 QUATIC’2004 PROCEEDINGS

The automatic generation of test cases from specification
requires some sort of formal specification of the software to
be tested, that can be used to generate concrete input values
and sequences, as well as the expected outputs (as a test
oracle).

It is possible to design test cases (for black-box testing)
from informal specifications, but not in an automated way.
At most, inputs can be generated automatically based on
the signatures of methods and events (their calling syntax),
but expected outputs can only be generated based on a
formal specification of their semantics.

3.2 Type of Specification Needed
A popular type of specification of object-oriented systems is
based on the principles of design by contract [5], by means
of invariants and pre and post-conditions, as found in Eiffel
(www.eiffel.com), ContractJava [6] or JContract
(www.parasoft.com). An invariant is a condition that restricts
the valid states of an object, at least on the boundaries of
method calls. A pre-condition of a method is a condition on
the input parameters and the internal state of the object that
should hold when a method is called. On the opposite side,
a post-condition of a method is a condition on the input
parameters, initial state of the object (when the method is
called), final state of the object (when the method returns),
and value returned that should hold at the end of the
method execution.

Although with limitations, some test tools, such as JTest
(www.parasoft.com), have the capability of generating unit
tests based on the specification of pre and post-conditions.
While pre and post-conditions are a good mean to restrict
the allowed behaviours of an object, they are not adequate,
in general, to fully specify their intended behaviour, par-
ticularly when callbacks are involved. As already noted by
Szyperski in his book [3], the semantics of components that
issue callbacks, as is the case of interactive components (see
section 2), cannot be captured only by means of pre and
post-conditions (at least with the meaning presented
above).

The Object Constraint Language (OCL) (see
www.uml.org) goes a step further, by allowing the specifica-
tion, in the post-condition of a method, of messages that
must have been sent (method calls and sending of signals)
during its execution. However, in general, it is not possible
to specify the order by which messages are sent and the
state of the object when each message is sent (important
because of re-entrance, as explained in section 2). The defi-
nition of post-conditions in OCL has another advantage
over its definition in Java or Eiffel, because OCL is a higher-
level formal language supporting formal reasoning and
automation.

AsmL [7] (http://research.microsoft.com/fse/asml), a formal
specification language developed at Microsoft Research,
tightly integrated with the .Net framework, bridges over
the limitations found in OCL by means of "model pro-
grams". A "model program" is an executable specification of
a method. A model program may be organized in a se-
quence of steps. For example, if a method issues a callback
in the middle of its execution, three steps should be de-
fined: a first step to lead the object to the appropriate state

before issuing the callback; a second step where the call-
back is issued; a third step to lead the object to the appro-
priate final state and return. These steps facilitate the defini-
tion of restrictions on sequences of actions/events that are
common to find in user interface modelling and are not
easy to express using just post-conditions. Each step com-
prises one or more non-contradictory "model statements"
that are executed simultaneously. Model statements are
written in a high-level action language with primitives to
create new objects, assign new values to the attributes of an
object, and call other methods. Model programs may be
used in combination with pre and post-conditions, usually
dispensing the later. Examples of specifications written in
AsmL will be presented in section 4.

3.3 Conformity Checks
With appropriate tool support (as is the case of the AsmL
Tester tool), model programs can be used as executable
specification oracles [1]. That is, the results and state
changes produced by the execution of model programs (ex-
ecutable specifications written in AsmL) can be compared
with the results produced by the execution of the corre-
sponding implementation under test (written in any .Net
compliant language in this case). Any discrepancies found
are reported by the tool. Mappings between actions and
states in the specification and the implementation have to
be defined, either explicitly or implicitly (based on name
equality). Although this is not the only way of performing
conformity checks between a specification and an
implementation (see [8] for a discussion of other possible
ways), it is a feasible way.

3.4 Finite State Machine Model and Test Case
Generation

For the generation of test cases, the AsmL Tester tool first
generates a FSM (Final State Machine) from the AsmL
specification, and then generates a test suite (with one or
more test cases) from the FSM, according to criteria pro-
vided by the user. Since the number of possible object states
(possible combinations of values of instance variables) is
usually huge, the states in the FSM are an abstraction of the
possible object states, according to some criteria provided
by the user.

It is well known that state machine models are appropri-
ate for describing the behaviour of interactive systems (and
reactive systems in general), and a good basis for the gen-
eration of test cases, but usually there is not a good integra-
tion between the object model and the state machine model.
AsmL and the AsmL Tester tool solve this problem with the
generation of the FSM from the specification (formal object
model).

3.5 Advantages of the Formal Specification of
Interactive Components

When compared to other testing techniques, automated
specification-based testing has the disadvantage of requir-
ing a formal specification (to achieve a higher degree of
automation). But the investment in the formal specification
of reusable interactive components may be largely compen-
sated by the multiple benefits it can bring:

4 QUATIC’2004 PROCEEDINGS

1. Formal specifications and models are an excellent
complement to informal specifications and docu-
mentation, because ambiguities are removed and in-
consistencies are avoided.

2. Formal specifications allow the automation of speci-
fication-based testing, as described in this paper.

3. Besides being useful as the basis for the generation
of test cases, FSM's can also be used to automatically
prove required properties of a system, with model-
checking tools that exhaustively search the state
space. The properties are written in temporal logic.
For example, Campos, in [9], uses model checking
tools to prove usability properties of user interfaces.

4. Desired properties of a system (with a finite or infi-
nite state space) may be proved in a semi-automated
way, given a formal specification or model of the
system, and a formal description of those properties
[10].

5. Executable specifications (or models) of user inter-
faces and interactive systems may be used as fully
functional prototypes. Problems in specification and
design can be discovered and corrected before im-
plementation begins.

6. In restricted domains, and with appropriate tool
support (see for example [11]), formal specifications
or models of user interfaces can be used as the basis
for the automatic generation of an implementation
in some target platform, according to refinement or
translation rules. The generated implementations are
correct by construction, and conformity tests are not
needed.

Overall, higher rigor in the description and verification
of interactive components is important to gain confidence
on their correctness and encourage their reuse [10].

4 EXAMPLE
In this example, the AsmL Tester tool is used to test the con-
formity between the implementation of the button control
in the .Net framework (� � � � � � �� � 	
 � � � � � � � � � � � � � � 	
class) and a specification of a small part of its behaviour
(related to mouse and keyboard events only) in the AsmL
language. The example is small but was selected mainly to
illustrate the testing process and turnarounds to some diffi-
culties, and not the power of the AsmL language. The ap-
proach presented can easily scale to be used in larger inter-
active controls.

4.1 Formal Specification of a Button in AsmL
The button specification has instance variables (Specifica-
tion 1), events (Specification 2), and methods (Specifica-
tion 3).

Two types of events should be distinguished: events re-
ceived by the button (� � � � � � � , � � � � � � � � 	 , � � � � � and
� � � � � �), and events generated by the button in response
to the previous ones (� � � � �). Both these types of events
may be sent by the button to the application via event han-
dlers. There are more button events in the .Net platform but
only these events are considered in this example.
Instance variables � � � � , � 	 � � � �
 and � � � � �
 (Specifi-

cation 1) model the internal state of the button, and corre-
spond to properties existing in the � � � � � 	 class in the .Net
framework.

Instance variables � � � � � � � � 	 � � � and � � � � � � 	 � � �
represent event flags that were added to check that appro-
priate sequences of mouse and keyboard events are re-
ceived by a button (� � � � � � � after � � � � � � � � 	 , � � � � � after
� � � � � �).

Instance variable � � � � � �
 � � � was added to tell
whether the � � � � � event was generated by the button in
response to the last keyboard or mouse event received. This
instance variable is reset each time an event is received
(method � � � � ! � 	 � � � � �
 � " � 	 � � � � �).

$ % & & ' ()) * + , - . , / 0 & 1 2 3 4 5)6 % 7 8 4 9) % & :) ; < + =6 % 7 > + ? 2 @ 4 A % & ' * * @ 4 ? +6 % 7 B * 5 (C 4 A % & ' * * @ 4 ? + D E % $ & ,6 % 7 F * (C 4 G * H + B @ ? = % & ' * * @ 4 ? + D E % $ & ,6 % 7 I 4 J G * H + B @ ? = % & ' * * @ 4 ? + D E % $ & ,6 % 7 K @ < 5 L 4 A B @ ? = % & ' * * @ 4 ? + D E % $ & ,

 Specification 1 - Button instance variables.

Events are defined in a way similar to the .Net frame-
work (Specification 2). For each event named M N O P Q R S T O ,
there is an instance variable named M N O P Q R S T O U S P V W O X Y
that stores the event handlers registered with the event.
Operations �

 and � � � � " � are responsible to register and
unregister event handlers. In an AsmL specification, it is
possible to use types defined in the .Net framework. That's
the case of the type � " � 	 � Z � 	
 � � � in Specification 2, and
types � " � 	 � [� � � , � � � � " � 	 � [� � � and � � � � � � " � 	 � [� � � in
Specification 3.

\ 7] 6 % . , 6 % 7 K @ < 5 L ^ ? + A @ 4 ; C % & : 4) _ E > ` 4 +) ^ ? + A @ 4 ; D a b, 6 , / . K @ < 5 L % & > ` 4 +) ^ ? + A @ 4 ;% 0 0 % 0 0 ` ? @ (4 . _ K @ < 5 L ^ ? + A @ 4 ; C7 , c _ 6 , 7 , c _ 6 , ` ? @ (4 E 7 _ c K @ < 5 L ^ ? + A @ 4 ; Cd d C < e < @ ? ; C) ?) 4 e 4 +) C * e <)) 4 A f * ; 4 ` 4 +) Cd d I 4 J G * H + g I 4 J h i g F * (C 4 G * H + g ? + A F * (C 4 h i

 Specification 2 – Button events.

For each event named M N O P Q R S T O , there is a method
named j P M N O P Q R S T O that executes when the event occurs.
The method is responsible for calling the event handlers
that were registered with the event (Specification 3).
Methods are public by default. In the case of events re-
ceived by the button (� � � � � � � , � � � � � � � � 	 , � � � � � and
� � � � � �), the reception of the event may be simulated (for
testing purposes) by calling the method j P M N O P Q R S T O from
the outside of the class. This explains why those methods
are marked as public. In the case of events generated inter-
nally by the button (� � � � �), the method is marked as pro-
tected, because it should only be called internally.

Some of the methods have a pre-condition indicated
with the keyword � � k � � � � . The pre-condition restricts the
states where the method can execute. For instance, the
method l 	 � � � � � can only execute when the property � 	 m
� � � �
 is true. After the pre-condition, comes the model
program (described in section 3). In some cases, the model
program is organized in steps.

5 QUATIC’2004 PROCEEDINGS

\ 7 _ . , # . , 0 1 + K @ < 5 L � 4 % & > ` 4 +) � ; = C �7 , � �] 7 , > + ? 2 @ 4 A D . 7 � ,E _ 7 % $ $ � ? + A @ 4 ;] / K @ < 5 L ^ ? + A @ 4 ; C � ? + A @ 4 ; � c , g 4 �K @ < 5 L 4 A B @ ? = �D . 7 � ,
1 + I 4 J G * H + � 4 % & I 4 J > ` 4 +) � ; = C �7 , � �] 7 , > + ? 2 @ 4 A D . 7 � , % / 0 B * 5 (C 4 A D . 7 � , % / 0I 4 J G * H + B @ ? = D E % $ & ,& . , \ � 4 C 4) � 4 + 4 ; ?) 4 A > ` 4 +) B @ ? = C � �& . , \ E _ 7 % $ $ � ? + A @ 4 ;] / I 4 J G * H + ^ ? + A @ 4 ; C

� ? + A @ 4 ; � c , g 4 �I 4 J G * H + B @ ? = �D . 7 � ,
1 + I 4 J h i � 4 % & I 4 J > ` 4 +) � ; = C �7 , � �] 7 , > + ? 2 @ 4 A D . 7 � , % / 0 B * 5 (C 4 A D . 7 � , % / 0I 4 J G * H + B @ ? = D . 7 � ,& . , \ � 4 C 4) � 4 + 4 ; ?) 4 A > ` 4 +) B @ ? = C � �& . , \ E _ 7 % $ $ � ? + A @ 4 ;] / I 4 J h i ^ ? + A @ 4 ; C � ? + A @ 4 ; � c , g4 �& . , \] E � 4 	 I 4 J G ?) ? D: J C) 4 e 	
 < + A * H C 	 B * ; e C 	 I 4 J C 	 : i ? 5 4 �. � , / 1 + K @ < 5 L � / , � > ` 4 +) � ; = C � � �I 4 J G * H + B @ ? = �D E % $ & ,
1 + F * (C 4 G * H + � 4 % & F * (C 4 > ` 4 +) � ; = C �7 , � �] 7 , > + ? 2 @ 4 A D . 7 � , % / 0 F * (C 4 G * H + B @ ? = D E % $ & ,& . , \ � 4 C 4) � 4 + 4 ; ?) 4 A > ` 4 +) B @ ? = C � �& . , \ E _ 7 % $ $ � ? + A @ 4 ;] / F * (C 4 G * H + ^ ? + A @ 4 ; C

� ? + A @ 4 ; � c , g 4 �B * 5 (C 4 A �D . 7 � ,F * (C 4 G * H + B @ ? = �D . 7 � ,
1 + F * (C 4 h i � 4 % & F * (C 4 > ` 4 +) � ; = C �7 , � �] 7 , > + ? 2 @ 4 A D . 7 � , % / 0 B * 5 (C 4 A D . 7 � , % / 0F * (C 4 G * H + B @ ? = D . 7 � ,& . , \ � 4 C 4) � 4 + 4 ; ?) 4 A > ` 4 +) B @ ? = C � �& . , \ E _ 7 % $ $ � ? + A @ 4 ;] / F * (C 4 h i ^ ? + A @ 4 ; C

� ? + A @ 4 ; � c , g 4 �& . , \ 1 + K @ < 5 L � / , � > ` 4 +) � ; = C � � �F * (C 4 G * H + B @ ? = �D E % $ & ,
& � % 7 , 0 ' ()) * + � C % & :) ; < + = g 2 % & ' * * @ 4 ? + �8 4 9) �D C> + ? 2 @ 4 A �D 2% 0 0 c , . _ ' + C) ? + 5 4 C
� 4 C 4) � 4 + 4 ; ?) 4 A > ` 4 +) B @ ? = C � �K @ < 5 L 4 A B @ ? = �D E % $ & ,

 Specification 3 – Button methods.

4.2 Extension of the Button Implementation Class
for Testability

In order to overcome the limited testability of the � � � � � 	
class in the .Net framework, a � � � � � � 	 (Testable Button)
class, inheriting from � � � � � 	 , was created in C# (
Implementation 1).

Event flag � � � � � �
 � � � is similar to the one used in the
specification. This flag was marked as public, to facilitate
the mapping of states between the specification and the
implementation.

Method l 	 � � � � � overrides a protected method with the
same name defined in the � � � � � 	 class, in order to ma-
nipulate the added event flag and record the occurrence of
the � � � � � event. It calls the base method, so that the event
handlers are called (i.e., so that the event is sent to the ap-
plication).

For each event received (from the user) with name
M N O P Q R S T O , it was added a public method name � j P �
M N O P Q R S T O (U-User) that can be called from outside the

class to simulate user events.

\ � � $] # # $ % & & 8 ' ()) * + � ' ()) * + a\ � � $] # ' * * @ 4 ? + K @ < 5 L 4 A B @ ? = D E % $ & , �\ � � $] # 8 ' ()) * + � :) ; < + = C g ' * * @ 4 ? + 2 � � 2 ? C 4 � � a8 4 9) D C �> + ? 2 @ 4 A D 2 � b\ 7 _ . , # . , 0 _ 6 , 7 7] 0 , 6 _] 0 1 + K @ < 5 L � > ` 4 +) � ; = C 4 � a2 ? C 4 	1 + K @ < 5 L � 4 � �K @ < 5 L 4 A B @ ? = D) ; (4 � b\ � � $] # 6 _] 0 h 1 + I 4 J G * H + � I 4 J > ` 4 +) � ; = C 4 � aK @ < 5 L 4 A B @ ? = D f ? @ C 4 �1 + I 4 J G * H + � 4 � � bd d C < e < @ ? ; e 4) � * A C * e <)) 4 A f * ; 4 ` 4 +) Cd d I 4 J h i g F * (C 4 G * H + g ? + A F * (C 4 h ib

 Implementation 1 – Implementation of a testable button class
(TButton).

4.3 Specification and Implementation of a Test
Container

In order for a user to interact with a button, it must be
made visible by putting it inside some window or con-
tainer. With this purpose, a class � � � � � was created both
at the specification level (Specification 4) and at the im-
plementation level (Implementation 2). Due to limitations
of the test tool, auxiliary methods � � � � � � � � � � 	 ,
� � � � � � � � � , � � � � � � � � 	 and � � � � � � � had to be created to
simulate user events that are sent to the button contained in
the form. These methods are selected to trigger the transi-
tions in the state transition diagram (Figure 1). Each test
case will be constructed as a sequence of calls to these
methods.

# $ % & & 8 ' B * ; e6 % 7 8 ' % & ' ()) * + D / , � ' ()) * + � � 8 ' ()) * + � g . 7 � , �� � � � � � � � � � � � � � ! " � # � $ %& ' � (� � � %) � * $ � % � � � � � + , � � # - * . � /8 ' 	1 + F * (C 4 G * H + � 4 �� � � � � � � 0 1 � � � ! " � # � $ % & ' � (� � � %) � * $ � % � � � � � + , � � # - * . � /8 ' 	1 + F * (C 4 h i � 4 �8 ' I 4 J G * H + � 4 % & : J C) 4 e 	
 < + A * H C 	 B * ; e C 	 I 4 J > ` 4 +) � ; = C �8 ' 	1 + I 4 J G * H + � 4 �8 ' I 4 J h i � 4 % & : J C) 4 e 	
 < + A * H C 	 B * ; e C 	 I 4 J > ` 4 +) � ; = C �8 ' 	1 + I 4 J h i � 4 �& � % 7 , 0 8 ' B * ; e � �d d < + C 4 ;)) � < C < + C) ? + 5 4 < +) � 4 C 4) * f < + C) ? + 5 4 Cd d) * 2 4) 4 C) 4 A% 0 0 c , . _ < + C) ? + 5 4 C

 Specification 4 – Container class TBForm.

� &] / 2 : J C) 4 e �
� &] / 2 : J C) 4 e 	 G ; ? H < + = �
� &] / 2 : J C) 4 e 	
 < + A * H C 	 B * ; e C �/ % c , & \ % # , 8 ' B * ; ea \ � � $] # # $ % & & 8 ' B * ; e � B * ; e a\ 7] 6 % . , 8 ' ()) * + 8 ' �\ � � $] # 8 ' B * ; e � � a

 + <) < ? @ < 3 4 K * e i * + 4 +) � � �) � < C 	8 ' D + 4 H 8 ' ()) * + � 4 8 ' ()) * + 4 g) ; (4 � �) � < C 	8 ' 	 5 * 5 ?) < * + D/ , � : J C) 4 e 	 G ; ? H < + = 	 6 * < +) � 7 8 g 7 9 � �) � < C 	8 ' 	 : ? e 4 D 4 8 ' 4 �) � < C 	 K * +) ; * @ C 	� A A �) � < C 	8 ' � �) � < C 	 : � * H � � � d d e ? + A ?) * ; Jb

6 QUATIC’2004 PROCEEDINGS

� ; 4 = < * +
 < + A * H C B * ; e G 4 C < = + 4 ; = 4 + 4 ; ?) 4 A 5 * A 4\ 7] 6 % . , 6 _] 0 + <) < ? @ < 3 4 K * e i * + 4 +) � � a) � < C 	� () * : 5 ? @ 4 ' ? C 4 : < 3 4 D/ , � : J C) 4 e 	 G ; ? H < + = 	 : < 3 4 � � g � 7 � �) � < C 	 K @ < 4 +) : < 3 4 D/ , � : J C) 4 e 	 G ; ? H < + = 	 : < 3 4 � � � � g � � � � �) � < C 	 : ? e 4 D 4 8 ' B * ; e 4 �) � < C 	8 4 9) D 4 8 ' B * ; e 4 �) � < C 	 � 4 C (e 4 5 ? J * () � f ? @ C 4 � �b� 4 + A ; 4 = < * +� : 8 � 8 � ; 4 ? A � & . % .] # 6 _] 0 F ? < + � � a
� i i @ < 5 ?) < * + 	 � (+ � / , � 8 ' B * ; e � � � �b\ � � $] # 6 _] 0 8 ' I 4 J G * H + �: J C) 4 e 	
 < + A * H C 	 B * ; e C 	 I 4 J > ` 4 +) � ; = C 4 � a8 ' 	 h 1 + I 4 J G * H + � 4 � �b\ 7] 6 % . , 6 _] 0 8 ' I 4 J h i �: J C) 4 e 	
 < + A * H C 	 B * ; e C 	 I 4 J > ` 4 +) � ; = C 4 � a8 ' 	 h 1 + I 4 J h i � 4 � �b\ 7] 6 % . , 6 _] 0 8 ' F * (C 4 G * H + �: J C) 4 e 	
 < + A * H C 	 B * ; e C 	 F * (C 4 > ` 4 +) � ; = C 4 � a8 ' 	 h 1 + F * (C 4 G * H + � 4 � �b\ 7] 6 % . , 6 _] 0 8 ' F * (C 4 h i �: J C) 4 e 	
 < + A * H C 	 B * ; e C 	 F * (C 4 > ` 4 +) � ; = C 4 � a8 ' 	 h 1 + F * (C 4 h i � 4 � �bbb

 Implementation 2 – Container class TBForm.

4.4 Generation of the Finite State Machine Model
The AsmL Tester tool was used to automatically generate
the finite state machine (FSM) from the AsmL specification,
based on the following configuration information:

1. List of state variables - all the event flags defined in
the specification of the � � � � � 	 class (� � � � � � � � 	 m
 � � � , � � � � � � 	 � � � and � � � � � �
 � � �);

2. List of actions that trigger transitions – the construc-
tor and methods defined in the � � � � � class
(� � � � � � � � � � 	 , � � � � � � � � � , � � � � � � � � 	 and � � � � m
� � �).

3. Domains (values to consider) for the previous state
variables and actions’ arguments. For each state
variable the domain is � � � � � 	
 � � � � � . In the case
of the mouse actions, a single argument was pro-
vided, specifying the left mouse button and a posi-
tion inside the form button, more precisely, the value
� 	 � � � � � � � � �� � 	
 � � � � � � � � � � � � � � � " � 	 � [� � �� � � � � � � �� � 	
 � � � � � � � � � � � � � � � � � � 	 � � �
 � 	� 	 � 	 � 	 � � � � In the case of the keyboard actions, a
single argument was provided, specifying the ‘A’
key, that is, the value � 	 � � � � � � � � �� � 	
 � � � �
 � � � � � � � � � " � 	 � [� � � � � � � � � � �� � 	
 � � � � � � � � �
� � � � �[� � �

The FSM obtained is shown in Figure 1. Each state cor-
responds to a combination of values of the state variables.
Apart from the start state (greyed), the FSM has 6 states.
This means that two of the possible combinations of values
of the three state variables cannot occur (� , � � � � , � � � � �

.
The possible transitions departing from each state are con-
strained by the methods’ pre-conditions (� � k � � � � clause).

 Figure 1 – Finite State Machine (FSM) diagram.

4.5 Definition of Mappings between the Specificatio n
and the Implementation

To perform conformity tests it is necessary to define map-
pings (conformance relations) between specification and
implementation methods and data (state) [8]. These rela-
tions can be established manually or in an automated way.
It was defined a relation between the classes
� �
 � � �� � � � � (specification) and � � 	
 � � � [� � � � � � m
� � � 	 � �� � � � � (implementation). After this, the methods
with the same names and arguments in both classes are
automatically related. In the current version of the test tool,
data relations have to be defined manually. In this example,
only the � � � � � �
 � � � instance variable was mapped, as
shown in Figure 2. Conformance tests will execute related
methods in both levels (specification and implementation)
and will compare results obtained from both and also com-
pare the related data.

 Figure 2 – Conformance relations configuration.

4.6 Generation of the Test Suite
After generating the FSM, it is possible to generate a test
suit automatically (Figure 3), based on coverage criteria
selected by the user. In this case, it was used the default
criteria that ensures full coverage of states and transitions.
A test suite with a single test case (sequence) was sufficient
to cover all the transitions. This test suit will be used as the
input to conformance testing.

7 QUATIC’2004 PROCEEDINGS

 Figure 3 – Test suit generated.

4.7 Test Execution and Results
As soon as the conformity relations are defined and the
FSM and the test suit are generated, it is possible to execute
conformance tests. Every time there is an inconsistence, the
tool stops and reports the error.
The tool reports a conformance error when the sequence of
events � � � � � � � � 	 , � � � � � � 	 , and � � � � � is executed
(Figure 4), with key 'A'. The error is an inconsistency be-
tween the value of the � � � � � �
 � � � value at the imple-
mentation (the value is true) and the specification (the value
is false). This means that the implementation (the � � � � � 	
class in the .Net framework) generates a � � � � � event, when
it receives from the user the sequence of events � � � � � � � � 	 ,
� � � � � � 	 , and � � � � � . According to the documentation of
the .Net framework, this should only happen when the key
pressed is the spacebar (which is not the case here).

 Figure 4 – Conformance test inconsistency (the path to the error is
shown in red).

To reproduce this abnormal behaviour manually it is
necessary to press the left mouse button on a .Net button,
and press and release a keyboard key without releasing the
mouse button. This will have the effect of selecting the but-
ton and executing the action associated with it. According
to the documentation, this should only happen with the

spacebar key.

5 CONCLUSION
An approach to test interactive components, with the
automatic generation of test cases from a specification was
described. In comparison with others, the approach pre-
sented in this paper requires a formal specification with
demonstrated benefits in the development and verification
of interactive components. In the past, formal specification
and verification techniques have been used mainly in the
development of critical systems, but, from our point of
view, they also have a major role to play in the develop-
ment and verification of reusable components, as is the case
of interactive components.

It was presented an example of automatic testing the
conformity between the implementation of a button, in the
.Net framework, and a specification, written in the AsmL
language, using the AsmL Tester tool. Some test code was
needed to overcome testability limitations of the target
code. Although, only a small part of the behaviour of a but-
ton was specified and tested, the tests were successful, that
is, a bug was detected. A larger example could be used
since the approach can easily scale but it would be difficult
to explain that example in few pages.

However, in its current state, the AsmL Tester tool also
has some limitations:

1. It still requires too much user intervention.
2. While the tight integration with the .Net framework

has some advantages, one of its shortcomings arises
from the fact that the level of abstraction of the
specification is not as high as should be.

3. Interactive components can have lots of states and
actions or events that can be hard to manipulate and
test. The AsmL Tester tool allows the selection of
which actions should appear in the FSM diagram
(and in the test cases generated from the FSM). Con-
sequently, it is possible to test separately parts of the
behaviour of the object or component under test. But
a rigorous method is needed to define those parts
and “sum” the results obtained in each part to take
coverage criteria conclusions.

The approach presented in this paper has to be extended
and matured in several directions:

1. Use the approach presented in larger examples.
2. Explore other ways to generate test cases from the

FSM model – some criteria to generate specification-
based tests can be found at [12].

3. Define additional check points – for instance, when a
callback is issued and on return.

4. Model Checking – integrate the approach with model
checking techniques to prove properties about the
model.

5. Verification of the user interface contract – particularly
challenging is the problem of checking that the outputs
sent by an interactive component to the user obey to
some kind of specification or contract. For example,
the user interface contract of a textbox is to allow the
user to insert and visualize a string through a small

Error

8 QUATIC’2004 PROCEEDINGS

window.
Above points and possible others will be subject of future

work.

ACKNOWLEDGMENT
The authors wish to thank the anonymous reviewers for
their comments and suggestions.

REFERENCES
[1] R. V. Binder, Testing Object-Oriented Systems: Models, Patterns and

Tools: Addison-Wesley, 2000.
[2] J. Z. Gao, H.-S. J. Tsao, and Y. Wu, Testing and Quality Assurance

for Component-Based Software: Artech House Publishers, 2003.
[3] C. Szyperski, Component Software: Beyond Object-Oriented Pro-

gramming: Addison-Wesley, 1999.
[4] C. Kaner, J. Bach, and B. Pettichord, Lessons Learned in Software

Testing: A Context-Driven Approach: John Wiley & Sons, 2002.
[5] B. Meyer, "Applying Design by Contract," IEEE Computer, pp. 40-

51, 1992.
[6] F. Findler, "Contract Soundness for Object-Oriented Languages,"

presented at Object-Oriented Programming Systems, Languages
and Applications (OOPSLA), 2001.

[7] Microsoft, "Introducing AsmL: A Tutorial for the Abstract State
Machine Language," Foundations of Software Research, 2002.

[8] A. C. Paiva, J. P. Faria, and R. M. Vidal, "Specification-based Test-
ing of User Interfaces," presented at 10th DSV-IS Workshop - De-
sign, Specification and Verification of Interactive Systems, Fun-
chal - Madeira, 2003.

[9] J. Campos and M. D. Harrison, "Model Checking Interactor
Specifications," in Automated Software Engineering, vol. 8, 2001.

[10] I. MacColl and D. Carrington, "User Interface Correctness," pre-
sented at Human Computer Interaction - HCI'97, 1997.

[11] M. D. Lozano, "Entorno Metodológico Orientado a Objectos para
la Especificación y Desarrollo de Interfaces de Usuario," in Siste-
mas Informáticos y Computación. Valencia: Universidad Politécnica
de Valencia, 2001.

[12] J. Offutt, S. Liu, A. Abdurazik, and P. Ammann, "Generating test
data from state-based specifications," Software Testing, Verification
and Reliability, vol. 13, pp. 25-53, 2003.

Ana C. R. Paiva received M.Sc degree in Electrical and Computers
Engineering from Engineering Faculty of Porto University (FEUP) and
a degree in Information Systems Engineering from Minho University of
Portugal in 1997 and 1995 respectively. She is currently developing
hers doctorate in formal methods applied to user interfaces at FEUP,
Electrical and Computers Engineering Department, where she is an
Assistant Lecture since 1999.

João C. P. Faria received a Ph.D. in Electrical and Computer Engi-
neering from the Engineering Faculty of Porto University (FEUP) in
1999, and a degree in Electrical Engineering from FEUP in 1985. He is
an Assistant Professor at FEUP, Electrical and Computers Engineering
Department, Informatics.

Raul F. A. M. Vidal received a Ph.D. in Digital Electronics at UMIST in
1978, an M.Sc in Communication Engineering at UMIST in 1974 and a
degree in Electrical Engineering at Engineering Faculty of Porto Uni-
versity (FEUP) in 1972. He is an Associate Professor at FEUP, Electri-
cal and Computers Engineering Department, Informatics.

