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Abstract. Ontologies play a major role in life sciences, enabling a num-
ber of applications. Obtaining formalized knowledge from unstructured
data is especially relevant for biomedical domain, since the amount of
textual biomedical data has been growing exponentially. The aim of this
paper is to develop a method of creating formal definitions for biomedi-
cal concepts using textual information from scientific literature (PubMed
abstracts), encyclopedias (Wikipedia), controlled vocabularies (MeSH)
and the Web. The knowledge representation formalism of choice is De-
scription Logic as it allows for integrating the newly acquired axioms in
existing biomedical ontologies (e.g. SNOMED) as well as for automated
reasoning on top of them. The work is specifically focused on extracting
non-taxonomic relations and their instances from natural language texts.
It encompasses the analysis, description, implementation and evaluation
of the supervised relation extraction pipeline.

Keywords: knowledge representation, non-taxonomic relationships, on-
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1 Introduction

Formalization of biomedical knowledge has long been an area of active research.
Existing biomedical knowledge resources vary considerably in terms of their for-
malization principles, from databases and data collections (e.g. MEDLINE1), to
taxonomies and controlled vocabularies (e.g. MeSH2), to proper ontologies with
rich formal semantics (e.g. SNOMED3). They also vary greatly with respect to
the domains and areas they cover, size, age, ways of maintaining and integrating
new knowledge etc. Formally representing the biomedical knowledge can bridge
the gap between existing resources and enrich them as well as process the newly
generated knowledge that comes in abundance and is publicly accessible.

Research in life sciences is characterized by the exponential growth of the
published scientific materials: articles, patents, technical reports etc. MEDLINE,
one of the biggest bibliographic databases for biomedicine, currently contains

1 http://www.ncbi.nlm.nih.gov/pubmed
2 http://www.nlm.nih.gov/mesh/
3 http://www.nlm.nih.gov/research/umls/Snomed/snomed_main.html



more than 23 million articles. The average amount of newly added articles com-
prises 15000 items per week. To handle such an amount of information, multiple
initiatives have been launched for the purpose of organizing biomedical knowl-
edge formally, e.g. using ontologies [3]. An ontology is a complex formal structure
that can be decomposed into a set of logical axioms that state different relations
between formal concepts. Together the axioms model the state of affairs in a
domain. With the advances in Description Logics (DL) the process of design-
ing, implementing and maintaining large-scale ontologies has been considerably
facilitated [1]. In fact, DL has become the most widely used formalism under-
lying ontologies. Several well-known biomedical ontologies, such as GALEN or
SNOMED CT [4] are based on DL. SNOMED CT has adopted the lightweight
description logic EL++ that allows for tractable reasoning.

There are several benefits of formal knowledge representation. First of all, it
enables efficient information integration; already existing knowledge about the
entity can be aggregated from multiple resources, and the new knowledge can be
easily integrated. Secondly, formal knowledge representation makes it possible
to automatize a number of crucial tasks that deal with information processing:
efficient search, validation and reasoning. Finally, formal representation can sup-
port knowledge visualization which itself can bring about further insights about
the domain, i.e., facilitate knowledge discovery.

1.1 Two Examples of Biomedical Knowledge Formalization

In this section we present two recent works in which the application of formal on-
tologies to biomedical knowledge produced interesting results that demonstrate
the usefulness and the potential of knowledge formalization in the biomedical
domain. In [4] the authors used the Foundational Model of Anatomy (FMA),
an ontology of human anatomy, where concepts are linked with the part-of re-
lation. They annotated images of penetrating injuries with anatomic concepts,
thus disambiguating the visible regions of the body, and then performed logical
reasoning over the ontology to predict the possible internal damages caused by
the injury. The project was conducted by the U.S. Defense Advanced Research
Projects agency and has life-saving importance. [5] ran an even more large-scale
and ambitious project. Its aim was to create a robot scientist a robot that con-
ducts independent research, that is, sets a hypothesis, tests it experimentally
and reasons about the acquired data by interpreting the results, all on its own.
The developed robot had a rich knowledge base on the backbone that was used
at all stages of the research process. The robot was provided with a general
biomedical database as well as with a formal model of yeast metabolism, and
it autonomously generated and validated experimentally functional genomics
hypotheses, thus becoming the first machine that made a scientific discovery
without human intervention. The two works illustrate the huge range of appli-
cations that formal knowledge resources can have in life sciences as well as their
unbounded potential. Not only do they help sustain the ever-growing collec-
tion of already published results, but they can also lead to knowledge discovery
through formal reasoning.
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1.2 What is Formal Definition Generation?

Formal definition generation (FDG) is a type of knowledge modeling that trans-
lates a natural language definition into a formal representation using some formal
language notation. FDG can be viewed as the automatic acquisition of complex
axioms for an ontology. Unlike the taxonomy acquisition, which seeks to identify
parent-child relations in text and is usually based on simple patterns [6], FDG
focuses on highly expressive axioms containing various logical connectives and
non-taxonomic relation instances.

Formal definition generation can be illustrated by an example: a natural
language sentence with a classic definitional structure A is a type of B that
has a specific property C is translated into a formal representation A ≡ B u
∃hasProperty.C. The formalism of choice here is Description Logic (DL).

Some definitions can be straightforwardly rewritten into a formal language:

Acenocoumarol: a coumarin that is used as an anticoagulant.

It is a definition taken from the MeSH controlled vocabulary. If we assume that
Acenocoumarol, Coumarin and Anticoagulant are valid biomedical concepts, the
definition can be encoded by means of a simple DL in the following way:

Acenocoumarol ≡ Coumarin u ∃used As.Anticoagulant

The encoding is very simple since there exists an almost perfect one-to-one cor-
respondence between the lexical items in the definition and the elements of the
formal syntax. However, this is not the case for the majority of the sentences.
FDG does not boil down to a mere re-writing of textual definitions using a dif-
ferent notation; instead, it is a complex task that requires thorough analysis and
understanding of utterances and their constituents. Below are the examples of
MeSH definitions that are far more difficult to process:

Acetolactate Synthase: a flavoprotein enzyme that catalyzes the forma-
tion of acetolactate from 2 moles of pyruvate in the biosynthesis of va-
line and the formation of acetohydroxybutyrate from pyruvate and alpha-
ketobutyrate in the biosynthesis of isoleucine.

Lissamine Green Dyes: green dyes containing ammonium and aryl sul-
fonate moieties that facilitate the visualization of tissues, if given intra-
venously.

Even definitions for which finding a formal representation appears to be trivial
may in fact contain various pitfalls. How exactly should the definition Acepro-
mazin is a phenothiazine that is used in the treatment of psychoses be formal-
ized? Should the treatment correspond to an independent concept that is linked
to emphAcepromazin by the used in relation? Or should it rather correspond to
the relation treats that takes as arguments psychosis and phenothiazine, and ul-
timately acepromazin? The answer to this question is not obvious and is heavily
dependent on the way one chooses to model the knowledge.
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2 Methodology

This section describes the pipeline for formal definition generation (FDG) from
text. The core step in FDG is non-taxonomic relation extraction: not only ex-
pressive relation instances account for the most part of definition formulas, but
they also require such tasks as concept annotation and taxonomy detection as
preprocessing steps. Hence, the FDG pipeline in essence tackles the task of re-
lation extraction. It consists of the following main steps, illustrated by Figure 1
and discussed in the subsequent sections:

– syntactic parsing of the input sentence;

– semantic annotation of the sentence with biomedical concepts;

– extraction of semantic triples from syntactic paths between the annotated
concepts;

– classification of the triples as pertaining to specific biomedical relations;

– final formula generation based on the labeled triples.

Each step is discussed in detail in the subsequent sections. Figure 1 illustrates
the pipeline using the MeSH definition of Tremor :
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Fig. 1. Formal definition generation pipeline. The definition for Tremor is used as an
example.

2.1 Parsing and Annotation of Input Sentences

Parsing and annotation can be viewed as two pre-processing steps of the pipeline.
They both rely on separate components, syntactic parsers and semantic annota-
tors respectively, enriching the initial textual input with additional information,
i.e. the syntactic dependencies and the occurrences of concept mentions in the
sentence. In the present work we use external parser and annotator, since their
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creation is itself a stand-alone research problem which lie outside the scope of
formal definition generation problem.

Given an input text and an ontology that describes the domain, concept
annotation, also called semantic indexing or concept recognition, is the task of
finding in text mentions of ontology concepts and mapping the corresponding
lexical tokens to concepts. Typically, biomedical concept annotators aim at rec-
ognizing textual occurrences of diseases, drugs, genes, body parts, species and
in principle, any other conceptual entity that exists in the input ontology.

There are multiple third-party biomedical annotators available online. As
a rule, they use specific knowledge resources, i.e. ontologies and thesauri, as
repositories of concepts they aim to find in texts. One of the most widely used
one is MetaMap [7]. It is a dictionary-based system that indexes biomedical text
with UMLS concepts [8]. We use MetaMap as the annotator of choice.

2.2 Triple Extraction

After a text string is annotated with biomedical concepts, the next step is to
group these concepts into relational instances and to form a preliminary struc-
ture of the formal definition. It is the task of the triple extraction component.
The parser takes as input a textual definition pre-annotated with biomedical
concepts as well as its syntactic parse tree and produces structures of the form
concept A – relational string – concept B, which we call unlabeled triples.
The triple extraction component runs as follows:

1) detect the parent term, if it is present
At this step we rely on the information provided by the ontology used for the
semantic annotation: if the term that appears first in the definition is not rec-
ognized by the annotator, i.e. it is not considered as concept by the ontology,
then it belongs to a relational string of some triple (Abdominal Wall example);
otherwise it is a parent concept (Cattle Diseases example).

Abdominal Wall: the outer margins of the abdomen, extending from the
osteocartilaginous thoracic cage to the pelvis.
Cattle Diseases: diseases of domestic cattle of the genus bos.

2) group coordinated concepts into conjunctive or disjunctive sets
Detecting coordination is one of the very important issues in predication ex-
traction. Coordinated concepts are organized into sets with one representative
concept. Whenever this concept is part of a triple, the rest of the concepts au-
tomatically form triples as well, using the same relational string and the same
concept as the second argument, e.g.:

Vesicular stomatitis Indiana virus: the type species of vesiculovirus caus-
ing a disease symptomatically similar to foot-and-mouth disease in cattle,
horses, and pigs.
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Foot-and-Mouth Disease — in — Cattle
Foot-and-Mouth Disease — in — Horses
Foot-and-Mouth Disease — in — Swine

Triples for coordinated concepts will further be transformed into conjunction
and disjunction of concepts in DL notation of the definition formula.

3) organize the concepts into concept pairs
This is the key step in the definition parsing as it shapes the resulting triples.
The process is heavily dependent on the syntactic structure of the sentence. One
straightforward way of linking concepts together would be to follow the depen-
dency paths across the syntactic tree and to link every concept with the nearest
dominating one (and to link the top concept with the head concept). However,
while parsing the definition, we would like to collect as much information about
the head term as possible. For this reason we link annotated concepts with the
head term whenever it is possible and does not violate the common sense. In
fact, for the majority of the triples both ways of constructing triples are possible
and comprehensive. For example, in the following definition:

Classical Lissencephalies: disorders comprising a spectrum of brain mal-
formations representing the paradigm of a diffuse neuronal migration
disorder,

if Classical Lissencephalies is a malformation that represents Diffuse neuronal
migration disorder, we can induce that it represents a disorder. Thus, by linking
concepts occurring in the definition with the main term we skip this induction
process.

4) extract relational strings
To finish the formation of unlabeled triples, we need to accompany concept
pairs with relational strings that contain the mention of the respective relation
in text. The intuitive approach is to take the strings that are located in between
the two concepts in the pair. It has two major disadvantages, though: the in-
between string might either contain more than just the relation mention and
thus cause noise during classification, or it might as well not contain the mention
altegether. To avoid such mistakes, we extract only the substring between the
current concept and the preceding one, independently of the position of the
second concept:

Hypothalamic Hormones: peptide hormones produced by neurons of var-
ious regions in the hypothalamus.
Peptide hormones — produced by — Neurons
Peptide hormones — of various regions in — Hypothalamus.

5) detect negation
The negation is detected in the relation string using simple patterns. If the string
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contains tokens like not or other than, the triple is considered to be negated.
This information is useful and should be propagated till the step of formula
generation. After the parsing is completed, the parser outputs unlabeled triples
of the form concept A — relational string — concept B, possibly accompanied
with the NEGATION mark. The number of triples for a definition depends
directly on the number of annotated concepts.

2.3 Triple Classification

The last step of the formal definition generation pipeline takes as input the
unlabeled triples generated by the parser and substitutes the relational strings
with the relation labels reducing the relation instances to the invariants of some
domain-specific relation.

Labeling the text strings with relation names is an instance of the text clas-
sification task. Relational instances, or triples, represent the training/testing
examples and form the learning corpus. Every instance is represented as a set of
features and passed to a machine learning algorithm. The learning instances are
labeled with a class — a relation name in our case. The model is then trained
using the labeled instances and is used for the classification of new instances
that do not yet have a label. We assume that a relational instance corresponds
to a precisely one relation, thus the task of relation labeling is a single-label
classification.

Thus, the most inportant step of triple classification is to train such a model
that will perform accurately on the new input definitions. The model cannot be
trained on the textual instances per se, but rather on their formal representation
as sets of features. In this work we extracted two types of features from the
relational triples: lexical and semantic features.

Lexical features correspond to relational string of the triple. We used the
so-called character ngrams as lexical features. Given a textual instance I and a
value for the parameter n, we now examine I as an ordered series of characters
instead of words. For the extraction of the character ngrams, we are using a slid-
ing window of size n, and we do not exclude space characters in order to capture
patterns across token boundaries. For example, for a string is pneumoconio-
sis caused by the character bi-grams are: pn,ne,eu,um,mo,oc,co,on,ni,io,os,si,
c,ca,au,us,se,ed,d , b,by. Each instance I (in our case the text between the two
concepts) can be represented as a feature vector, features being ngrams and the
value of each feature being 0 or 1, depending on whether a term occurs in the
instance (1) or not (0).

Ngrams are able to implicitly capture a huge variety of information about
a string. In particular, character ngrams can reflect word order, lemmas, stems
and grammatical forms of words, important morphemes, to name a few. All
this information is utilized at a cheap cost: no sophisticated linguistic analysis
is required for the ngram extraction. Obviously, a single ngram does not play
a big role in the labeling process, but several ngrams of the same string taken
together can yield a strong signal of a particular class. For example, a set of
trigrams {cau,aus,use,sed, ed, ed ,d b, by} extracted from a relational string
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caused by captures not only the stem form of the verb, but also the fact that it
is used in passive voice and is followed by a preposition by, which reflects a very
common lexical pattern for the causative relation.

Unlike lexical features, semantic features account for the argument con-
cepts of the triple. As semantic features, we used concept types of the arguments,
i.e. broad semantic categories of concepts. In order to determine the types of
triple concepts, one needs an underlying terminology where all the concepts are
combined into an ontology. Every concept can be reduced to some upper concept
of broad semantics, which will be considered as a semantic type and used as a
features. In our work we used the UMLS Semantic Network as the source of
types. The UMLS Semantic Network [9] is an upper ontology for the biomedical
domain which forms the top level of the UMLS concept hierarchy. It has 133
semantic types and 54 semantic relations. Types and relations are very broad
and are used for high-level categorization and interlinking of concepts. Types
are assigned to all the concepts of the UMLS, thus the type information is easily
accessible.

Thus, every relational instance, i.e. triple, is represented as a set of all char-
acter tri-grams extracted from the relational string, and a pair of concept types
fo the relational arguments. A model then is trained on all processed instances
and is used for the classification of unseen instances.

2.4 Formula Generation

When all the triples are extracted from the input textual definition, the last
step is to combine them into a formula. In the current version of the pipeline we
follow the formalization of biomedical knowledge used in SNOMED CT ontology
and quantify all relational instances existentially. All triples are then combined
conjunctively.

3 Evaluation and Discussion

As it has been stated at the beginning of the paper, relation extraction is at
the core of formal definition generation. Therefore, in this section we discuss the
performance of our pipeline with respect to relation extraction. In particular, we
separately evaluate the steps of triple extraction and triple classification.

3.1 Triple Extraction

As a preliminary evaluation of the parser, we have run it over a small corpus of 40
definitions and manually annotated the generated triples as correct or incorrect.
MeSH serves the source for textual definitions to be parsed. The triples were
evaluated as follows: we mark a triple as correct if the two concepts serving as
arguments of the relation are chosen correctly and the relational string is also
parsed correctly (it does not miss anything). If any of the two conditions was
violated, the triple was considered incorrect. For 40 randomly selected MeSH
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definitions annotated with 147 concepts from MeSH and from the extended
vocabulary the parser generated 110 triples. 98 triples are manually labeled as
correct, only 11 triples (10%) are incorrect. In particular, for 32 definitions out
of 40 the triples are generated correctly (80%).

3.2 Triple Classification

For the evaluation of relation classification process given the set of features we
designed (see section 2.3), we relied on the external corpus. An external corpus
is needed to exclude the errors passed from the previous steps of FDG pipeline
which would affect the classification performance. We used SemRep Gold Stan-
dard corpus, which consists of 500 MEDLINE sentences manually annotated with
relational triples. The annotation includes concepts, concept types, relational
strings and relation labels. The corpus contains 1357 instances of 26 distinct
relations. The the top occurring relations are process of, location of, part of, af-
fects, treats. The corpus was used for training and testing of the SVM classifier
using 10-fold cross-validation. The tests were run for top 5, top 10 and for all 26
relations. The resulting F-measure is 94%, 89.1%, 82.7%, respectively. It should
be noted, that the top 5 relations account for 63% of all relational instances,
which means that with our learning method we can classify the majority of
relational instances with an expremely high F-measure of over 90%.

3.3 Related Approaches

One previous approach of Formal Definition Generation is described in [10]. The
authors reformulate the task into an automatic acquisition of ontology axioms
from natural language texts. The formalism of choice is SHOIN, a very expressive
DL that is able to model negation, conjunction, disjunction, and quantitative
restrictions. The developed system LExO is based on full syntactic parsing of
input sentences. The dependency tree is transformed into DL formulas through
a chain of hand-written syntactic rules that take into account parts of speech,
sentence positions, tree positions and syntactic roles of all words. The rules cover
a broad set of syntactic structures, such as relative clauses, prepositional, noun
and verbal phrases.

Another related approach [11] belongs to the area of ontology acquisition.
Ontologies consist of terminological axioms (TBox) and assertional facts (ABox).
In this paper, we focus on acquiring a special but common TBox knowledge
— formal definitions — from texts. [11] mainly studies the ABox extraction,
whereas the enlisted TBox acquisition approaches are mainly based on syntax
transformation.

The mentioned systems have several limitations in formalizing the definitional
sentences, which stem from their rule-based nature. Two main problems are
semantically ambiguous relation mentions, e.g., of, and relation mentions with
similar semantics, but dissimilar lingistic form, e.g., Causative agent relation in
SNOMED CT can be expressed both by caused by and due to. Natural language
is versatile and complicated, and the same meaning can be expressed in multiple
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ways. Hence, it is not possible to cover all ways of expression of a relation
by hand-crafted rules. In our work we attempt to solve this issue by applying
machine learning techniques to learn the models of axioms, thus avoiding hand-
crafted patterns on the lexicon or the syntactic structure of a sentence and
instead implicitly learning probable language relation expressions.

4 Conclusion

In this work we addressed a novel problem of generating formal definitions from
textual descriptions of biomedical concepts. Formal definition generation is a
complex task. We approached it from a text mining perspective and split it into
several consecutive steps. We were particularly focused on the non-taxonomic
relation extraction as expressive relations contain the core information about
the concepts to be defined. We implemented and evaluated relation extraction
and relation classification steps, integrating state-of-the-art domain resources
and external tools, i.e. semantic annotators, achieving high-performance and
and setting the scene for further research of the FDG problem. Formal definition
generation pipeline can be used as a standalone tool for concept formalization,
and it can also be integrated into ontology learning tools as a semi-automatic
tool for the assistance to domain experts.
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