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Abstract. This article describes the implementation of the Hidden Markov 

Models for identification of exploitation conditions of the automobile tire by 

means of analyzing tire noise while car driving.  This requires the development 

of special recognition algorithms of tire noise and cleaning of the signal from 

the background noise, it can be done by means of extraction of the clean signal 

from the noise by adaptive filters and by pattern recognition methods, typically 

used in speech recognition, to recognize a tire noise corresponding to a particu-

lar operating condition. In this way, we can diagnose the condition of a tire 

while car driving, which will reduce overloaded tire wear, due to improper use 

to a minimum and help prevent accidents as a result of tire failure. 

Keywords: Hidden Markov models, Adaptive filters, tire noise, pattern recog-

nition, feature extraction 

1  Introduction 

The problem of the road transport accidents, caused by the failure of automo-

bile tire, is one of the most important ones for traffic safety. A key reason for 

the failure of automobile tire is its increased wear as the result of improper 

use. It may be caused by many factors: the collapse of the incorrect angles of 

convergence, high or low tire pressure, overheating, etc. It is impossible to 

control all the factors, influencing the dynamics of tires while driving, and, 

therefore, there is a need for a comprehensive new indicator. We think that 

this indicator is the sound of tires. There is a lot of research of tire dynamics 

in the field of automobile safety. In general, models of tire/road noise can be 

divided into four major types. The first type includes statistical models. A 

popular example of this approach is introduced in the article by Sandberg, U. 

and Descornet, G. [1]. The second type is composed of physical models. The 



examples of such a modeling approach are analysed in the book by Kropp, W. 

[2]. The third type of models for tire/road noise is hybrid theoretical models. 

The examples of hybrid theoretical models are described by De Roo, F., Ger-

retsen, E. and Hamet, J.F., Klein, P. [3, 4]. Finally, statistical models can be 

extended with pre or post processing, based on well-known physical relations, 

often derived from theoretical models. The examples of hybrid statistical 

models are introduced by Beckenbauer, T. and Kuijpers A. [5]. We think the 

disadvantage of these models is that they only describe the noise generation 

mechanisms of the tire, independently of the condition of the tire. In contrast, 

we attempt to model dependencies between tire sounds and tire conditions, 

based on the hypothesis that the operational status of the tire is reflected in its 

noise characteristics. We must develop dedicated recognition algorithms of 

tire noise and also algorithms of clearing up the signal of the background 

noise. It can be done by means of extraction of the clean signal from the noise 

by adaptive filters and pattern recognition to classify a tire noise as corre-

sponding to a particular operating condition. 

2  Data Preparation 

2.1 Adaptive Filtering 

First, it is necessary to clear the tire signal from the background noise. It can 

be done by using adaptive filters. In our research we use adaptive filter, based 

on the least mean square algorithm [6], which is realized in the Matlab Sim-

ulink (see Fig.1). 

The acoustic signal  ( ), which contains the tire signal  ( ) and noise  ( ) is 

recorded by the first microphone, which is installed near the tire. The pattern 

of noise   ( ) is recorded by the second microphone, which is located near the 

engine of the automobile. There is a correlation between  ( ) and   ( ). The 

output of the adaptive filter will contain the measure of the noise   ̂ ( ). The 

error of the filter will contain a clear tire acoustic signal   ̂( ). The spectro-

gram of the clear tire signals which we received as the results of the experi-

ments (the experiments are described in Section 4) is shown in Fig 2. 
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Fig. 1. The scheme of adaptive filter from Matlab Simulink 

 

Fig. 2. The tire signals spectrogram 

The frequency  range of  the clean acoustic signals of the tire is between 400-

5000 Hz. 

2.2 Feature Extraction 

The next step is the feature extraction. The purpose of this step is to parame-

terize the raw tire signal waveforms into sequences of feature vectors. Here 

we use both FFT-based and LPC-based analysis with the purpose to identify 

which approach is better for the tire noise coding. The feature techniques are 

based on the widely known methods  MFCC and LPCC [7] which are often 

used for speech recognition.  We process the signal with the frame size 25 

msec and frame period 10 msec (Fig.3). 
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Fig. 3. Framing of the waveforms of the tire acoustic signal  

The tire noise feature vectors were parameterized as follows: if the target pa-

rameters are MFCC, we use     as the energy component. We use a Hamming 

window in FFT. The filterbank has 26 channels.  In output we receive 12+1 

(   ) coefficients. The performance of the tire noise recognition system can be 

enhanced by adding time derivatives (delta and acceleration coefficients) to 

the basic static parameters [7].  If the target parameters are  LPCC, we use 

linear prediction of the 14th order. The filterbank size is 22 channels and  in 

output we receive 12 coefficients. Then we add delta and acceleration. After 

feature extraction procedure we have  39 dimensional  MFCC vectors or if we 

use the LPCC method - 36 dimensional vector. 

3  HMM Training and Recognition 

3.1  Topology of the HMM  

We use the left-right HMM with seven hidden states (see Fig.4) for identifica-

tion of the tires exploitation condition. The first and the last states (   and   ) 

are not emitted as  we need these nodes to create composed HMM (see Fig.5). 
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Fig. 4. The left-right HMM for identification of the tire exploitation condition  

Here    – number of hidden states of the model ( =7);          – the ma-

trix of the transition probabilities: 

      [     
  

  
   ]                                       (1) 

   - hidden state of the HMM (       ) at the moment  ;    – next state of 

HMM;   – actual state of HMM;    (  ) – observation  probability; 

        – feature vectors of the tire noise. 

 

Fig. 5. Composed HMM;         –exploitation conditions of the tire 

3.2 HMM Training  

For HMM training we use the same method as for speech recognition [7]. We 

record a training database of the tire noise which relate to every exploitation 

condition of the tire. It is necessary to make 3-5 recordings of the tire noise 
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10-15 seconds long for every exploitation condition with the purpose to create 

the robust recognition system. Then for each exploitation condition of the tire 

        we initialize one HMM with seven hidden states.  

Using maximum likelihood we estimate the matrix of transitions between the 

states in the hidden part of the model. After that we estimate the mean  ̂  and 

the matrix of covariance  ̂  by means of these formulas: 

 ̂  
 

 
   

 
                                                       (2) 
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 (     )
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                                  (3) 

where T – is a number of the feature vectors;  

Then we can calculate the observation probability of the feature vectors of the 

tire noise: 
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Where n – is a dimensionality of the feature vectors. 

It is necessary to estimate corresponding probability for each state, and to use 

the Viterbi algorithm [7] for reassigning the observation vectors for each state. 

We re-estimate model parameters in this way until we stop getting their im-

provements.  

The next step is to create      Gaussian mixtures [9]. It is necessary to 

create a robust system of the tire exploitation condition recognition.  

We use the Baum – Welch [8] algorithm to define     
 ( ) – the probability of 

observation vector being in the particular state. Here   is the number of train-

ing data          After that, we re-estimate the parameters of the model. 

The observation probability    (  ) is: 
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Re-estimation of the mean and covariance matrix is: 
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where     – is the number of the observation vectors.  
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The weights of the Gaussian mixture components are: 
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We re-estimate the parameters of the model until   (  ) stop getting im-

provements of the model parameters.  

3.3 Recognition 

We use the Viterbi decoding [7] for the tire noise recognition (Fig.6).  This 

algorithm could be used to find the maximum likelihood state sequence of 

HMM and identify the tire exploitation condition. Let    ( ) represent the 

maximum likelihood of the observing tire noise vectors    to    in state j at 

time t.   This likelihood can be computed efficiently using the following re-

cursion: 

  ( )           ( )         (  )                                  (10) 

where 

  ( )                                    (11) 

  ( )       (  )                              (12) 

The maximum likelihood for observing sequence of vectors    to     given 

the HMM model: 

  ( )         ( )                                        (13) 

As for the re-estimation case, the direct computation of likelihoods leads to 

underflow, so it will be better to compute log likelihood: 

  ( )           ( )      (   )      (  (  )                  (14) 

This algorithm can be visualized as searching the best path through a matrix, 

where the vertical dimension represents the states of the HMM and the hori-

zontal dimension represents the frames of the tire noise. 
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Fig. 6. – Scheme of the Viterbi decoding 

Each large dot in the picture represents the log probability of observing that 

frame at that time and each arc between dots corresponds to the log transition 

probability. The log probability of any path is computed simply by summing 

the log transition probabilities and the log output probabilities along that path. 

The paths grow from left-to-right, column-by-column. At time t, each partial 

path     ( ) is known for all states  , hence, equation 14 can be used to com-

pute   ( ),thereby, extending the partial paths by one time frame. 

4  Experiments and Results 

4.1 Experiments 

We carried out field tests with the purpose to record the tire noise while car 

driving with different exploitation conditions of the tire. Our experiment is 

based on the standards ISO 10844 [10] and ISO 13325:2003 [11], which de-

termine the conditions for the tire noise measurement, but we included the 

following changes: 

 The noise of the tire was measured with the engine working  

  Microphones were installed near the front right wheel (Fig.7) with the  

purpose to provide adaptive filtering of the background noise 
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Fig. 7.   – Scheme of the microphones’ positions, during field tests: a) Upside view b). Front 

view 

We   recorded the tire noise with three different speeds of the automobile 20, 

40 и 60 km per hour and three different pressure levels: 1.9, 2.1 and 2.3 at-

mospheres. The automobile used for field tests was Mitsubishi L200 (year of 

construction: 2011), with new tires 265/75R16. 

4.2  Evaluation 

We made three different experiments. For each experiment we used 405 rec-

ords of the tire noise, the total duration of 1 hour 41 minute 15 seconds for 

HMM training. 

Table 1.  The experiment results 

Features HMM (1 

Gaussian) 

HMM (8  

Gaussian 

 mixtures) 

HMM (16 

Gaussian 

mixtures) 

The results of the tire pressure identification 

LPC/LPCEPSTRA 78% 87.5% 88.2% 

MFCC 68% 77.4% 78.2% 

The results of the automobile’s speed identification 

LPC/LPCEPSTRA 81.2% 94.3% 95.7% 

MFCC 78.6% 89.4% 91.8% 

The results of the identification of the tire  speed and pressure 

LPC/LPCEPSTRA 61.4% 74.7% 75% 

MFCC 58.6% 59.4% 61.9% 

To evaluate the efficiency of the system we used 50 records,  a total duration 

of 12 minutes  30 seconds. As we can see in table 1 the accuracy of our meth-

od for the tire pressure is 88,2%;  for the automobile speed - 95,7%; and for 

both the speed and tire pressure -  75%.  
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5 Conclusions 

We have found the correlation between the tire noise and the tire exploitations 

characteristics. The cleaning mechanism, based on adaptive filters, and the 

recognition mechanism, based on the HMM have shown prospective results. 

We found out that the performance of the recognition system depends on ex-

ploitation parameters. They show better results for the automobile speed than 

for the tire pressure identification. Moreover, we have also discovered, that 

the performance of the recognition system runs low when more than one pa-

rameter are identified. 
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