
Costas S. Iliopoulos Alessio Langiu (Eds.)

ICABD 2014
2nd International Conference on Algorithms
for Big Data

Palermo, Italy, April 7-9, 2014
Proceedings

c© 2014 for the individual papers by the papers’ authors. Copying permitted for private
and academic purposes. Re-publication of material from this volume requires permission
by the copyright owners.

Editors’ addresses:
King’s College London
Department of Informatics
Strand
London WC2R 2LS | England | United Kingdom

{Costas.Iliopoulos |Alessio.Langiu}@kcl.ac.uk

Preface

In recent years, there is a growing interest in applying mathematical theories and meth-
ods (algorithms, combinatorics, codes, etc.) to describe and analyse scientific regularities
of massive, complex, and fast changing data produced via Next-Generation-Sequencing
technology. Various algorithms and data structures were devised to efficiently solve bioin-
formatics problems concerning comparing, searching, analysing, storing, compressing,
and modelling this kind of data. These sequences are characterised in being massive and
high-repetitive collections of nucleotides or amino acid sequences plus some metadata like
quality score values.

Following the success of the Royal Society meeting on the Storage and Indexing of Mas-
sive Data, held last year in Chicheley Hall, UK, this second meeting intended to gather
international researchers mainly from the fields of bioinformatics, computer science, and
mathematical as well as R&D industry fellows in order to present scientific papers or sur-
vey articles on the algorithmic advancements in Big Data technology.

In this edition, sponsored by the the Algorithms and Bioinformatics Group at the Infor-
matics Department of King’s College London, UK, and the Words and Automata Research
Group at Mathematics and Informatics Department of University of Palermo, Italy, 9 orig-
inal research papers have been accepted for presentation and an invited talk has been given
by Prof Filippo Mignosi, dealing with new mathematical theories, methodologies, algo-
rithms, and data structures for Big Data.

We thanks all the participants and also we wish to thank all the members of the Pro-
gram Committee for their collaboration in the reviewing process of the papers, and the
colleagues of the Organizing Committee for their resourceful cooperation.

April 2014 Costas S. Iliopoulos, Alessio Langiu

3

Program Committee

Anthony J. Cox, Illumina Cambridge Ltd., UK
Maxime Crochemore, King’s College London, UK, and Université Paris-Est, France
Raffaele Giancarlo, University of Palermo, Italy
Roberto Grossi, University of Pisa, Italy
Costas S. Iliopoulos, King’s College London, UK, and Curtin University, Australia (Chair)
Juha Kärkkäinen, University of Helsinki, Finland
Gregory Kucherov, CNRS and Université Paris-Est, France
Alessio Langiu, King’s College London, UK, and University of Palermo, Italy (Co-Chair)
Thierry Lecroq, Université de Rouen, France
Moshe Lewenstein, Bar Ilan University, Israel
Filippo Mignosi, University of L’Aquila, Italy
Antonio Restivo, University of Palermo, Italy

Organizing Committee

Carl Barton, King’s College London, UK
Gabriele Fici, University of Palermo, Italy
Alessio Langiu, King’s College London, UK, and University of Palermo, Italy
Giovanna Rosone, University of Palermo, Italy

4

Contents

Compressing Big Data: when the rate of convergence to the entropy matters
Filippo Mignosi 7

Optimal Computation of all Repetitions in a Weighted String
Carl Barton and Solon Pissis 9

On-line String Matching in Highly Similar DNA Sequences
Nadia Ben Nsira, Thierry Lecroq and Mourad Elloumi 16

A Text Transformation Scheme for Degenerate Strings
Jacqueline Daykin and Bruce Watson 23

Block Graphs in Practice
Travis Gagie, Christopher Hoobin and Simon Puglisi 30

Compressed Spaced Suffix Arrays
Travis Gagie, Giovanni Manzini and Daniel Valenzuela 37

On Representations of Ternary Order Relations in Numeric Strings
Jinil Kim, Amihood Amir, Joong Chae Na, Kunsoo Park and Jeong Seop Sim 46

Engineering a Lightweight External Memory Suffix Array Construction Algo-
rithm
Juha Kärkkäinen and Dominik Kempa 53

Faster Average Case Low Memory Semi-External Construction of the Burrows-
Wheeler Transform
German Tischler 61

ASSP; the Antibody Secondary Structure Profile search tool
Dimitrios Vlachakis, Alexandros Armaos, Ioannis Kasampalidis, Arianna Filntisi
and Sophia Kossida 69

5

6

Compressing Big Data: when the rate of

convergence to the entropy matters

Filippo Mignosi

Computer Science Department, University of L’Aquila, Italy
Filippo.Mignosi@univaq.it

Abstract

In this talk we discuss of the rate of convergence to the entropy of dictionary based
compressors. A faster rate of convergence to the theoretical compression limit
should correspond to better compression in practice, but constants also matters.
Therefore in the analysis of the rate of convergence one must also analyse the
“transient” phase.

Concerning dictionary based compressors, it is known that LZ78-alike compres-
sors have a faster convergence than LZ77-alike compressors, when the texts to be
compressed are generated by a memoryless source. In practice instead it seems
that LZ77-alike performs better. This seems due to the effect of a strategy of
Optimal Parsing (that can be applied in both LZ77 and LZ78 cases) rather then
to the fact that the texts are generated by a memoryless source. To our best
knowledge there are no theoretical results concerning the rate of convergence to
the entropy of both LZ77 and LZ78 case when it is used a strategy of Optimal
Parsing.

We discuss some experimental results on LZ78 that show that the rate of con-
vergence to the entropy presents a kind of wave effect that become bigger and
bigger as the entropy of the memoryless source decrease. It can be a tsunami for
a zero entropy source.

Copyright c© by the paper’s authors. Copying permitted only for private and academic purposes.

In: Costas S. Iliopoulos, Alessio Langiu (eds.): Proceedings of the 2nd International Conference
on Algorithms for Big Data, Palermo, Italy, 7-9 April 2014, published at http://ceur-ws.org/

7

Compressing Big Data: when the rate of convergence to the entropy matters

8

Optimal Computation of all Repetitions

in a Weighted String

Carl Barton Solon P. Pissis

Department of Informatics, King’s College London, London, UK
{Carl.Barton | Solon.Pissis}@kcl.ac.uk

Abstract

A repetition in a string of letters consists of exact concatenations of identical
factors of the string. Crochemore’s repetitions algorithm, usually also referred
to as Crochemore’s partitioning algorithm, was introduced in 1981, and was the
first optimal O(n log n)-time algorithm to compute all repetitions in a string of
length n. A weighted string is a string in which a set of letters may occur at each
position with respective probabilities of occurrence. In this article, we present a
new variant of Crochemore’s partitioning algorithm for weighted strings, which
requires optimal time O(n log n), thus improving on the best known O(n2)-time
algorithm for computing all repetitions in a weighted string of length n.

1 Introduction

A fundamental structural characteristic of a string of letters is its periodicity.
Closely related to periodicity is the notion of repetition. Repetitions in strings
are highly periodic factors, that is, two or more adjacent identical factors. For
instance, string abab is a repetition in string aababba. In 1981, it was shown by
Crochemore that there could be O(n log n) repetitions in a string of length n and
an O(n log n)-time, thus optimal, algorithm was presented [1].

Single nucleotide polymorphisms, as well as errors from wet-lab sequencing plat-
forms during the process of DNA sequencing, can occur in some positions of a DNA
sequence. In some cases, these errors can be accurately modelled as a don’t care
letter. However, in other cases the errors can be more subtly expressed, and, at
each position of the sequence, a probability of occurrence can be assigned to each
letter of the nucleotide alphabet; this process gives rise to a weighted string.

Recently, the authors of [4] proposed an O(n2)-time algorithm for computing
all repetitions in a weighted string x of length n. The efficiency of the proposed
algorithm relies on the assumption of a given constant, the cumulative weight
threshold, defined as the minimal probability of occurrence of factors in x.

Copyright c© by the paper’s authors. Copying permitted only for private and academic purposes.

In: Costas S. Iliopoulos, Alessio Langiu (eds.): Proceedings of the 2nd International Conference
on Algorithms for Big Data, Palermo, Italy, 7-9 April 2014, published at http://ceur-ws.org/

9

Our Contribution

We present the first optimal algorithm for computing all repetitions in a weighted
string. We improve on the best-known algorithm for computing all repetitions in
a weighted string of length n from time O(n2) to an optimal O(n log n).

2 Preliminaries

An alphabet Σ is a finite non-empty set of size σ, whose elements are called letters.
A string on an alphabet Σ is a finite, possibly empty, sequence of elements of Σ.
The zero-letter sequence is called the empty string, and is denoted by ε. The length
of a string x is defined as the length of the sequence associated with the string x,
and is denoted by |x|. We denote by x[i], for all 0 ≤ i < |x|, the letter at index i of
x. Each index i, for all 0 ≤ i < |x|, is a position in x when x 6= ε. It follows that
the ith letter of x is the letter at position i in x.

The concatenation of two strings x and y is the string of the letters of x followed
by the letters of y. It is denoted by xy. A string x is a factor of a string y if there
exist two strings u and v, such that y = uxv. Consider the strings x, y, u, and v,
such that y = uxv. If u = ε, then x is a prefix of y. If v = ε, then x is a suffix
of y. Let x be a non-empty string and y be a string. We say that there exists an
occurrence of x in y, or, more simply, that x occurs in y, when x is a factor of y.
Every occurrence of x can be characterised by a position in y. Thus we say that x
occurs at the starting position.

A weighted string x on an alphabet Σ is a finite sequence of n sets. Every x[i],
for all 0 ≤ i < n, is a set of ordered pairs (sj , πi(sj)), where sj ∈ Σ and πi(sj) is
the probability of having letter sj at position i. Formally, x[i] = {(sj , πi(sj))|sj 6=
s` for j 6= `, and

∑
j πi(sj) = 1}. A letter sj occurs at position i of a weighted

string x if and only if the occurrence probability of letter sj at position i, πi(sj),
is greater than 0. A string u of length m is a factor of a weighted string if
and only if it occurs at starting position i with cumulative occurrence probabil-
ity

∏m−1
j=0 πi+j(u[j]) > 0. Given a cumulative weight threshold 1/z ∈ (0, 1], we say

that factor u is valid, or equivalently that factor u has a valid occurrence, if it
occurs at starting position i and

∏m−1
j=0 πi+j(u[j]) ≥ 1/z.

For every string x and every natural number n, we define the nth power of the
string x, denoted by xn, by x0 = ε and xk = xk−1x, for all 1 ≤ k ≤ n. A string
is said to be primitive if it cannot be written as ve, where e ≥ 2. A repetition in
x is a non-trivial power of a primitive string occurring in x. Formally, a repetition
ue, e ≥ 2, in x is defined as a triple (i, p, e) such that: u = x[i . . i + p − 1] =
x[i + p . . i + 2p − 1] = . . . = x[i + (e − 1)p . . i + ep − 1]; ue+1 does not occur at
position i; and u is primitive. A repetition is maximal if i− p < 0 or ue does not
occur at x[i − p]. The integers p and e are called the period and the exponent of
the repetition, respectively. If e = 2 the repetition is called square.

A repetition v = ue, e ≥ 2, in a weighted string x is defined as a quadruple
(i, p, b, e) such that u = v[0 . . p − 1] = v[p . . 2p − 1] = . . . = v[(e − 1)p . . ep − 1],
where v is a factor of length ep of x occurring at position i, and each occurrence of
u in v is a valid factor of x; ue+1 does not occur at position i; u is primitive; and
b is a set of ordered pairs (j, a), where 0 ≤ j < p and a ∈ Σ, denoting u[j] = a. A

Optimal Computation of all Repetitions in a Weighted String

10

repetition is maximal if i− p < 0 or ue does not occur at x[i− p]. In this article,
we are mainly concerned with the following problem.

Problem 2.1 Given a weighted string x of length n and a cumulative weight
threshold 1/z, find all repetitions in x.

3 Algorithm

We first perform a colouring stage on x, similar to the one before the construction of
the weighted suffix tree [3], which assigns a colour to every position in x according
to the following scheme: mark position i black, if none of the possible letters at
position i has probability of occurrence greater than 1− 1/z; mark position i grey,
if one of the possible letters at position i has probability of occurrence greater
than 1− 1/z; mark position i white, if one of the possible letters at position i has
probability of occurrence 1.

Lemma 3.1 ([3]) A valid factor of x contains at most dlog z/ log(z
z−1)e black

positions.

We then perform a generation stage, as the one performed during the construction
of the weighted suffix tree, where a set of factors of x is generated. We refer to
this set as extended factors (for a definition, see [3]).

Lemma 3.2 ([3]) A valid factor of x occurs in at least one of its extended factors.

An extended repetition is a repetition occurring in an extended factor of x. A
valid repetition v = ue, e ≥ 2, in x is defined as a quadruple (i, p, b, e) such that
u = v[0 . . p − 1] = v[p . . 2p − 1] = . . . = v[(e − 1)p . . ep − 1], where v is a valid
factor of length ep of x occurring at position i; ue+1 is not a valid factor of x; u
is primitive; and b is a set of ordered pairs (j, a), where 0 ≤ j < p and a ∈ Σ,
denoting u[j] = a. We define the following subproblem.

Problem 3.3 Given a weighted string x of length n and a cumulative weight
threshold 1/z, find all valid repetitions in x.

Lemma 3.4 Every valid repetition in x occurs in at least one extended factor.

For each generated extended factor, we run Crochemore’s partitioning algorithm
for maximal repetitions; the result is all the maximal extended repetitions in x.
After computing all the maximal extended repetitions we cannot simply report all
of these as valid repetitions. All valid factors must occur in an extended factor but
extended factors may contain factors which are not valid. This is a consequence of
treating grey positions as white during the generation of extended factors [3]. Since
not all maximal extended repetitions are valid repetitions, we must therefore break
up these maximal extended repetitions into valid repetitions to solve Problem 3.3.

In order to break up the maximal extended repetitions, we must compute some
additional information. To determine how long any valid repetition should be, we
must know, for each position i in an extended factor, the length of the longest valid
factor starting at position i. The computation is based on the observation that

Optimal Computation of all Repetitions in a Weighted String

11

the longest factor with probability greater than or equal to 1/z for the position
i + 1 has length greater than or equal to that of position i. To compute this, we
maintain an additional cumulative weight threshold π. We store the computed
lengths in an array LF of integers.

We start with the first position in an extended factor and naively compute the
longest factor within the threshold by multiplying together the probability of the
letters we encounter and storing this in π. If multiplying the probability of some
position j > 0 causes π < 1/z we set LF[0] := j − 1. To proceed, we remove
by division the occurrence probability of the first letter from π. If π < 1/z then
LF[1] = j − 1; otherwise, we continue as before multiplying the probability of
j+1, j+2, and so on, until the threshold is once again violated. For each extended
factor this takes time and space proportional to its length. The sum of lengths of
the extended factors is linear in n by the following statement.

Lemma 3.5 ([3]) The sum of lengths of the extended factors of x is O(n).

The next step is to determine the set b for each maximal extended repetition.
This can be done in constant time per maximal extended repetition. We compute
an array NB of integers of size n, such that for each position i in x, NB[i] stores
the index of the leftmost black position j > i; this can be done in linear time in
n. For each maximal extended repetition ue, we check all black positions in the
first occurrence of u. There can only be a constant number of black positions in
u; finding the black positions using NB takes time proportional to their number.
It is now a simple case of recording the position and the letter present in the
extended factor; this takes constant time per maximal extended repetition, so time
proportional to the number of maximal extended repetitions in total.

Given all the maximal extended repetitions, we can now begin to break them
up into valid repetitions. To achieve this, we can check the length of the longest
factor starting at position i of the extended factor, and then determine the longest
possible repetition starting from i. We can continue checking the maximal extended
repetition in this manner reporting the length as we go. Note that in the worst
case, for each maximal extended repetition ue, we may check the starting position
of each occurrence of u. As we show later (Lemma 3.7), this can be done efficiently.
We now establish the maximal number of extended repetitions in x. Note that the
work done by the algorithm so far is no more than the maximal number of extended
repetitions.

Lemma 3.6 There could be O(n log n) extended repetitions in x.

As previously mentioned, whilst breaking some maximal extended repetition ue

into valid repetitions, we may need to check up to e positions. The maximum
number of checks required will be the sum of the exponents of all maximal extended
repetitions returned by the partitioning. Now we establish the maximal sum of the
exponents of maximal extended repetitions in a weighted string.

Lemma 3.7 The sum of exponents of maximal extended repetitions in x is
O(n log n).

Note that an analogous version of Lemma 3.6 holds for valid repetitions.

Optimal Computation of all Repetitions in a Weighted String

12

Theorem 3.8 Problem 3.3 can be solved in optimal time O(n log n).

At this point, we have solved the subproblem which forms the basis for our solu-
tion. Intuitively, the subproblem finds repetitions v = ue, where factor v occurs
with probability ≥ 1/z. The idea behind our solution to Problem 2.1 is based on
the observation that a repetition of exponent e ≥ 3 is composed of overlapping
occurrences of smaller repetitions. We intend to compute smaller repetitions and,
from this, derive larger ones. Part of the process of computing valid repetitions
was to break up maximal extended repetitions below the threshold into smaller
valid repetitions. To determine the repetitions specified in Problem 2.1, we reverse
this process and compose longer repetitions from small valid repetitions.

In order to solve Problem 2.1, we start by solving Problem 3.3 for threshold
k = 1/z2. The number of valid repetitions reported for k can be shown to be
O(n log n) by the same argument as for Lemma 3.6; and the number of black
positions in a valid factor is only a constant amount higher than for the original
threshold by a similar argument to the proof of Lemma 3.1. We pick k = 1/z2 as
we wish to guarantee that we will at least find squares such that each half may
have probability greater than or equal to 1/z. We may also find repetitions with
a higher exponent and repetitions which have a probability less than 1/z, but we
will explain how to filter these out using the same techniques as for Problem 3.3.

We alter the solution to Problem 3.3 to simplify the solution to Problem 2.1.
Instead of breaking up maximal extended repetitions into valid repetitions, we
break them into all their valid overlapping squares. There are no more than
O(n log n) valid squares by [2]. This can be shown by an almost identical ar-
gument as Lemma 3.6. To split maximal extended repetitions into their valid
overlapping squares, we process them one by one and create a new square for each
overlapping square in the maximal extended repetition. We only need to perform
this on maximal extended repetitions of exponent e ≥ 3, and this will take time
proportional to the sum of the exponents which, by Lemma 3.7, is O(n log n).

To perform the filtering step, we must check if both halves of the square are
above the threshold 1/z. To check each half, we compute, for each position i in
an extended factor, the length of the longest valid factor starting at position i.
During the generation of extended factors for the threshold k, we at the same
time determine the longest factor with probability greater than or equal to 1/z
by computing an array LF′ which stores the analogous information. Filtering the
squares in time proportional to their number can be done by checking that the
length stored in the array is greater than or equal to the period of the square.

After the filtering step, we have a set of quadruples (i, p, b, e) representing all
primitive squares such that each half of a square has a probability of occurrence at
least 1/z. Now, for every position i in x, we declare an array Ai of linked lists, such
that the linked list Ai[fi(j)], fi : [1, bn/2c] → [0,O(logφ n)], stores all the squares
which occur at position i with period j ∈ [1, bn/2c]. We now wish to establish the
size of Ai and the size of the linked lists stored at any Ai[fi(j)], but first we state
a property of valid factors required to show properties of Ai.

Lemma 3.9 A valid factor of x is in O(1) extended factors of x.

Optimal Computation of all Repetitions in a Weighted String

13

Lemma 3.10 Ai is of size O(logφ n), where φ = (1 +
√

5)/2, and the size of any
linked list Ai[fi(j)] is O(1).

We can now construct the repetitions specified in Problem 2.1. For each position
i, we iterate through the linked lists of array Ai. We iterate through each linked
list Ai[fi(p)], where p is the considered period. We process each square element
(i, p, b, e) ∈ Ai[fi(p)] to extend the corresponding square as much as possible, by
checking for an occurrence of the square at position i+ p. For a linear string, it is
simple to determine this. For each pair of overlapping squares, the second half of
the first square is the first half of the second square; so it suffices to check whether
there exists a square at position i+ p with the same period.

Example Consider y = ababab that contains the following primitive squares:
(0, 2, 2), (1, 2, 2), and (2, 2, 2); we wish to find the repetition (0, 2, 3). We start at
position 0 of y with (0, 2, 2) and check if there is a square of period 2 starting at
position 2. A matching square exists so we extend the repetition and check position
4. There is no square at position 4 so we report the repetition (0, 2, 3).

For weighted strings the approach is very similar, with the addition of a few,
constant-time, checks. We must check, for each pair of overlapping squares, if
the black positions from the first square match with the black positions from the
second square. There is a constant number of black positions so this takes constant
time. Each time we find such overlapping squares, we extend our repetition and
delete the square at position i+ p from the corresponding list. As soon as we find
a position where we cannot extend the repetition we stop. We continue doing this
until we have found all repetitions.

Each time we iterate through a linked list, a square may be added to the repeti-
tion we are extending; this takes constant time per list by Lemma 3.10. After each
square is added to the repetition, it is deleted so is not considered again. There
are O(n log n) squares in the array and from the above description we can see that
each square is considered a constant number of times. It is clear that we construct
no more repetitions than there are primitive squares, so the number of constructed
repetitions is also O(n log n). These repetitions will be maximal, and to report
repetitions specified in Problem 2.1, we may check the start of each occurrence in
the repetition and report them. This takes no more than the sum of exponents
which is O(n log n). We can now state the main result of this article.

Theorem 3.11 Problem 2.1 can be solved in optimal time O(n log n).

References

[1] M. Crochemore. An optimal algorithm for computing the repetitions in a word.
Inf. Process. Lett., 12(5):244–250, 1981.

[2] M. Crochemore, L. Ilie, and W. Rytter. Repetitions in strings: Algorithms
and combinatorics. Theoretical Computer Science, 410(50):5227 – 5235, 2009.
Mathematical Foundations of Computer Science (MFCS 2007).

Optimal Computation of all Repetitions in a Weighted String

14

[3] C. S. Iliopoulos, C. Makris, Y. Panagis, K. Perdikuri, E. Theodoridis, and
A. Tsakalidis. The weighted suffix tree: An efficient data structure for handling
molecular weighted sequences and its applications. Fundam. Inf., 71(2,3):259–
277, Feb. 2006.

[4] H. Zhang, Q. Guo, and C. S. Iliopoulos. Locating tandem repeats in weighted
sequences in proteins. BMC Bioinformatics, 14(S-8):S2, 2013.

Optimal Computation of all Repetitions in a Weighted String

15

On-line String Matching in Highly

Similar DNA Sequences

Nadia Ben Nsira1,2, Thierry Lecroq1,∗, Mourad Elloumi2

1LITIS EA 4108, Normastic FR3638, University of Rouen, France
2LaTICE, University of Tunis El Manar, Tunisia

∗Thierry.Lecroq@univ-rouen.fr

Abstract

We consider the problem of on-line exact string matching of a pattern in a set of
highly similar sequences. This can be useful in cases where indexing the sequences
is not feasible. We present a preliminary study by restricting the problem for a
specific case where we adapt the classical Morris-Pratt algorithm to consider
borders with errors. We give an original algorithm for computing borders at
Hamming distance 1. We exhibit experimental results showing that our algorithm
is much faster than searching for the pattern in each sequences with a very fast
on-line exact string matching algorithm.

1 Introduction

High-throughput sequencing or Next Generation Sequencing (NGS) technologies
allow to produce a great amount of DNA sequences with a high rate of similarity.
For instance, the 1000 genomes project1 aimed at sequencing a large amount of
individual whole human genomes. This generates massive amounts of sequences (3
billion letters A, C, G, T) which are identical more than 99% to the reference human
genome. The generated data form a collection of sequences where each differs from
another by a few number of differences such as substitutions or single nucleotide
variants (SNVs), indels, copy number variations (CNVs) or translocations to name
a few.

With the large mass of available data, storing, indexing and support for fast
pattern matching have become important research topics.

Pattern matching can be carried out in two ways: off-line by using an index or
on-line when indexing is not possible. Although the first kind of solutions seems

Copyright c© by the paper’s authors. Copying permitted only for private and academic purposes.

In: Costas S. Iliopoulos, Alessio Langiu (eds.): Proceedings of the 2nd International Conference
on Algorithms for Big Data, Palermo, Italy, 7-9 April 2014, published at http://ceur-ws.org/

1 http://www.1000genomes.org

16

to be more suitable, the index issue might not seem significant in some cases even
if it is compressed. The main problem we can face is to have insufficient storage
space to build the index. Thus one may have to scan the whole sequence rather
than index it.

In this paper, we focus on offering a preliminary study that allows to find the
exact occurrences of a given pattern of length m in a set of highly similar sequences.
We propose a solution that follows a tight analysis of the Morris-Pratt algorithm.
We point out occurrences of the pattern by performing a left to right traversal
over the reference sequence and at the same time we take into account variations
contained in other sequences. Our approach makes a simplistic assumption that
sequences include variations only of type substitutions and that there exists at most
only one variation in a window of length m.

The rest of the paper is organized as follows. Section 2 presents related works.
We set up notations and formalize the problem in Sect. 3. We give our new
algorithm in Sect. 4 while experimental results are exhibited in Sect. 5. Finally we
give our conclusions in Sect. 6.

2 Related work

Storing genetic sequences of many individual of the same species is a major chal-
lenge in biological research. Basic structures usually store redundant information
which lead to a memory requirement proportional to the total length of input data.
Recently, several works focusing on indexing similar sequences were implemented
to allow building data structures taking advantage from high similarity between
the considered data. These works aim to reduce the memory requirement from the
length of all input sequences to the length of a single sequence (reference sequence)
plus the number of variations.

Huang et al. [10] propose a solution which assumes that the input set of DNA
sequences can be divided into common segments and non-common segments. Their
solution assumes that every sequence differs on m′ positions from the reference
and the designed data structure requires O(n log σ+m′ logm′) bits where n is the
length of the reference sequence and σ is the size of the alphabet. Though this data
structure greatly reduces the memory usage and allows fast pattern matching, the
adopted model is restricted to a specific type of similar sequences. In [3] a solution
based on the use of word level operations on bit vectors is presented. In similar way
as [10], the general scheme of this technique store the entire of a reference sequence
with only differences between the remaining sequences. The authors build a suffix
array together with an Aho-Corasick automaton [1] to store identical segments and
the non-common segments are converted into a binary word using 2 bits per base.
Due to the use of the Aho-Corasick the memory usage depends on a log n factor. In
[7] a compressed index is proposed based on the Lempel-Ziv compression scheme
[12]. Both [6, 2] propose 2 level indexes for highly repetitive sequences. In [6]
the authors implement an index based on suffix tree and traditional q-grams. The
concept of the suffix tree of alignment was proposed by [14]. It satisfies the same
properties as the classical generalized suffix tree by adding a new one: common
suffixes of two sequences are stored in an identical leaf. This result has been

On-line String Matching in Highly Similar DNA Sequences

17

extended to the suffix array of an alignment [15].

All these results are concerned with off-line string matching but to the best of
our knowledge there exists no result for on-line string matching in a set of highly
similar sequences.

3 Preliminaries

In what follows, we consider a finite alphabet Σ={A, C, T, G} for DNA sequences. A
string or a sequence is a succession of zero or more symbols of the alphabet. The
empty string is denoted by ε. The set of all non empty strings over Σ is denoted
by Σ+. All strings over the alphabet Σ are element of Σ∗ = Σ+ ∪ {ε}. The string
w of length m is represented by w[0 . .m − 1] where w[i] ∈ Σ and 0 ≤ i ≤ m − 1.
The length of w is denoted by |w|.

A string x is a factor (substring) of y if there exist u and v such y = uxv,
where u, v, x, y ∈ Σ∗. Let 0 ≤ j ≤ m − 1 be the starting position of x in y, thus
x = y[j . . j + |x| − 1]. A factor x is a prefix of y if y = xv, v ∈ Σ∗. Similarly a
factor x is a suffix of y if y = ux, for u ∈ Σ∗. A factor u is a border of x, if it is
both a prefix and a suffix of x, then there exist v, w ∈ Σ∗ such x = vu = uw. The
reverse of the string x is denoted by x∼. The longest common prefix between two
strings u and v is denoted by lcp(u, v).

The exact pattern matching problem consists in finding all the occurrences of a
pattern x in a string y. That is, all possible j such that y[j + i] = x[i] holds for
all 0 ≤ i ≤ m − 1. This problem can be extended in a very interesting way by
considering a set of sequences and find whether a given pattern occurs distributed
horizontally where different parts of the pattern can be located in consecutive posi-
tions of different texts. More formally, given a set of sequences Y = {y0, . . . , yr−1}
of equal length n, point out all positions 0 ≤ j ≤ n − m + 1, such that for
0 ≤ i ≤ m− 1 we have x[i] = yg[j + i] for some g ∈ [0; r − 1]. This latter problem
is known as distributed pattern matching [11].

The problem we focus on in this paper is formally defined as follows. Let
y0, y1, . . . , yr−1 be r highly similar sequences with the same length n defined over
the alphabet Σ. Let y0 be the reference sequence. The sequences y1, y2, . . . , yr−1
are represented by variations over y0. Thus, we consider the set Z = {(G, j, c)},
such that c = yg[j] 6= y0[j] for all 0 ≤ j ≤ n − 1, g ∈ G where 1 ≤ g ≤ r − 1
and c ∈ Σ. Furthermore, for (G, j, c), (G′, j′, c′) ∈ Z we have |j − j′| > M for some
integer M . We wish to find all occurrences of an arbitrary pattern x of length
m ≤ M in yg where 0 ≤ g ≤ r − 1. This problem can be viewed as an hybrid
between distributed pattern matching and approximate string matching with k
mismatches [4].

4 A new algorithm

We offer an algorithm to solve the problem described above in the same fashion as
the Morris-Pratt (MP) algorithm [13] using a sliding window mechanism to scan
the text. Hence we need to preprocess the query pattern before the search phase.
We adopt the same strategy of forward prefix scan presented by MP by extending

On-line String Matching in Highly Similar DNA Sequences

18

the problem to the search in highly similar data. For that we need to consider
borders at Hamming distance 0 (as in MP) and borders at Hamming distance 1.

Given the pattern x of length m, we consider three cases when a prefix x[0 . . i]
for 0 ≤ i ≤ m− 1, is recognized when scanning the r sequences at position j:

Case 1 x[0 . . i] = y0[j . . j + i] and 6 ∃(G, k, c) ∈ Z such that j ≤ k ≤ j + i.
This means that x[0 . . i] matches on y0 and there is no variation in all others
sequences in the current window then x[0 . . i] matches equally in all sequences.

Case 2 x[0 . . i] = y0[j . . j + i] and ∃(G, k, c) ∈ Z such that j ≤ k ≤ j + i. This
means that x[0 . . i− 1] matches all sequences except yg.

Case 3 x[0 . . i] = yg[j . . j + i] and ∃(G, k, c) ∈ Z such that j ≤ k ≤ j + i and
g ∈ G. Then x[0 . . i− 1] matches only sequence yg.

4.1 Preprocessing phase

The preprocessing phase consists in precomputing arrays storing positions of bor-
ders for each prefix of the pattern. Borders at Hamming distance 0 are computed
as in the MP algorithm and stored in an array called mpNext. For borders at
Hamming distance 1 we will use the two following arrays.

The classical array prefx is the array of prefixes of the pattern x: prefx[i] is the
length of the longest prefix of x starting at position i, for 0 ≤ i ≤ m− 1.

The array pref ∼x stores for each position i, the length of the longest com-
mon prefix starting at position i when reading the pattern from right to left
with each position i′ < i where lcp(x[0 . . i]∼, x[0 . . i′]∼) 6= 0. It is defined for
all 0 ≤ i ≤ m − 1 and i′ < i by pref ∼x [i] = {(i′, `) | i′ < i, x[i] = x[i′] and 0 <
` = |lcp(x[0 . . i]∼, x[0 . . i′]∼|)}. Then pref ∼x [i + 1] can be easily computed from
pref ∼x [i].

For 0 ≤ i ≤ m, B[i] contains the suffix starting positions of borders of x[0 . . i]
with one change. More formally B[i] = {i′ | Ham(x[0 . . i− i′], x[i′ . . i]) = 1}.

Proposition 4.1 For 1 ≤ i ≤ m − 1, if i′ ∈ B[i] then x[0 . . i − i′] is a border of
x[0 . . i′ + prefx[i′]− 1]x[prefx[i′]]x[i′ + prefx[i′] + 1 . . i].

ThenB[i] = {i′ | ∃(i−i′, `) ∈ pref ∼x [i] and i−i′ = prefx[i′]+`}∪{i | prefx[i] = 0}.

Proposition 4.2 The number of elements in the array B is O(m).

4.2 Searching phase

The searching phase consists in scanning the sequences from beginning to end. A
general situation is the following: a prefix x[0 . . i] of the pattern matches at least
one sequence of Y at position j. Then position j+ 1 is scanned and a decision has
to be made in accordance with the three cases.

Case 1 If x[i+ 1] = y0[j + i+ 1] then if there is no variation at position j + i+ 1
in the other sequences we remain in Case 1 otherwise we move to case 2. If
x[i + 1] 6= y0[j + i + 1] then if there is no variation in the other sequences at

On-line String Matching in Highly Similar DNA Sequences

19

 1

 1.2

 1.4

 1.6

 1.8

 2

 2.2

 2.4

 2.6

 2.8

 2 2.5 3 3.5 4 4.5 5

T
im

e
(s

)

NBseq

FJS
Our method

Figure 1: Experimental results: our algorithm vs the FJS algorithm.

position j + i+ 1 then a shift is performed as in the MP algorithm otherwise
if the variant symbol c is equal to x[i+ 1] we move to Case 3 otherwise a shift
has to be performed using mpNext and B.

Case 2 If x[i+1] = y0[j+ i+1] then we remain in Case 2. If x[i+1] 6= y0[j+ i+1]
then a shift has to be performed using B.

Case 3 If x[i+1] = y0[j+ i+1] then we remain in Case 3. If x[i+1] 6= y0[j+ i+1]
then a shift has to be performed using B.

When a shift is performed using B, the case can change according to the length of
the shift and the position of the variation.

Theorem 4.3 The searching phase runs in O(n) time.

5 Experiments

We use simulated data of length 150 MB and mutation rate 0.25% among them 30%
to 50% are at the same position in different sequences. We first generate a reference
text, then mutate it at random positions with random nucleotides. We compare
our solution with FJS [9] which is one of the most efficient exact string matching
algorithm in this setting (see [8]). For the patterns, we randomly select them from
the reference text with varying length from 8 to 128. For each pattern length, we
repeat tests 100 times and compute the average searching time. Experiments were
conducted on a machine with 12 GB RAM and 4-core CPU with 2.27 GHz.

As mentioned above our algorithm takes into account the reference sequence
with positions of variations. We consider variations every 500 positions. For FJS
algorithm we launch the execution texts one by one. We ran the FJS algorithm on

On-line String Matching in Highly Similar DNA Sequences

20

each sequence successively. Our goal is to demonstrate that from a certain number
of sequences, it is more efficient to use our solution than a classical exact string
matching solution. Results are shown in Figure 1 and show that our solution is
faster (in our settings) when considering more that 3 highly similar sequences.

6 Discussion and conclusions

We have presented a new algorithm for searching in a set of similar sequences. The
design of the algorithm follows a tight analysis of the Morris and Pratt algorithm.
Recall that we use a suitable representation of data such that we take into account
a reference sequence with only positions of variations of the other sequences. The
searching time of our algorithm depends on the size of the reference text. However,
our solution works with a particular model, since we are limited to a certain gap
between consecutive variations. We will to improve our algorithm to overcome this
point. On the other hand, we aim to use variants of the Boyer-Moore algorithm [5]
for greater efficiency. The next steps include to take into account any kind of
variation between the reference sequence and the other sequences and to be able
to perform approximate pattern matching.

References

[1] A. V. Aho and M. J. Corasick. Efficient string matching: an aid to biblio-
graphic search. Communications of the ACM, 18(6):333–340, 1975.

[2] A. Alatabbi, C. Barton, and C. S. Iliopoulos. On the repetitive collection
indexing problem. In IEEE International Conference on Bioinformatics and
Biomedicine Workshops, pages 682–687, 2012.

[3] A. Alatabbi, C. Barton, C. S. Iliopoulos, and L. Mouchard. Querying highly
similar structured sequences via binary encoding and word level operations. In
Artificial Intelligence Applications and Innovations, pages 584–592. Springer,
2012.

[4] A. Amir, M. Lewenstein, and E. Porat. Faster algorithms for string matching
with k mismatches. Journal of Algorithms, 50(2):257–275, 2004.

[5] R. S. Boyer and J. S. Moore. A fast string searching algorithm. Communica-
tions of the ACM, 20(10):762–772, 1977.

[6] X. Cao, S. C. Li, and A. K. Tung. Indexing DNA sequences using q-grams.
In Database Systems for Advanced Applications, pages 4–16. Springer, 2005.

[7] H. H. Do, J. Jansson, K. Sadakane, and W.-K. Sung. Fast relative lempelziv
self-index for similar sequences. Theoretical Computer Science, 2014. To ap-
pear.

[8] S. Faro and T. Lecroq. The exact online string matching problem: a review
of the most recent results. ACM Computing Surveys, 45(2):13, 2013.

On-line String Matching in Highly Similar DNA Sequences

21

[9] F. Franek, C. G. Jennings, and W. F. Smyth. A simple fast hybrid pattern-
matching algorithm. Journal of Discrete Algorithms, 5(4):682–695, 2007.

[10] S. Huang, T. Lam, W. Sung, S. Tam, and S. Yiu. Indexing similar DNA
sequences. In Algorithmic Aspects in Information and Management, pages
180–190. Springer, 2010.

[11] C. S. Iliopoulos, L. Mouchard, and M. S. Rahman. A new approach to pat-
tern matching in degenerate DNA/RNA sequences and distributed pattern
matching. Mathematics in Computer Science, 1(4):557–569, 2008.

[12] S. Kuruppu, S. J. Puglisi, and J. Zobel. Relative lempel-ziv compression
of genomes for large-scale storage and retrieval. In String Processing and
Information Retrieval, pages 201–206. Springer, 2010.

[13] J. H. Morris, Jr and V. R. Pratt. A linear pattern-matching algorithm. Re-
port 40, University of California, Berkeley, 1970.

[14] J. C. Na, H. Park, M. Crochemore, J. Holub, C. S. Iliopoulos, L. Mouchard,
and K. Park. Suffix tree of alignment: An efficient index for similar data. In
Internat. Workshop On Combinatorial Algorithms, pages 337–348, 2013.

[15] J. C. Na, H. Park, S. Lee, M. Hong, T. Lecroq, L. Mouchard, and K. Park. Suf-
fix array of alignment: A practical index for similar data. In String Processing
and Information Retrieval, pages 243–254. Springer, 2013.

On-line String Matching in Highly Similar DNA Sequences

22

A Text Transformation Scheme For

Degenerate Strings

Jacqueline W. Daykin1,2, Bruce Watson1,3

1Department of Informatics, King’s College London, UK
2Department of Computer Science, Royal Holloway, University of London, UK

3Information Science Department, Stellenbosch University, South Africa
Jackie.Daykin@kcl.ac.uk bwwatson@sun.ac.za

Abstract

The Burrows-Wheeler Transformation computes a permutation of a string of let-
ters over an alphabet, and is well-suited to compression-related applications due
to its invertability and data clustering properties. For space efficiency the input
to the transform can be preprocessed into Lyndon factors. We consider scenarios
with uncertainty regarding the data: a position in an indeterminate or degener-
ate string is a set of letters. We first define Indeterminate Lyndon Words and
establish their associated unique string factorization; we then introduce the novel
Degenerate Burrows-Wheeler Transformation which may apply the indeterminate
Lyndon factorization. A core computation in Burrows-Wheeler type transforms
is the linear sorting of all conjugates of the input string - we achieve this in the
degenerate case by applying lex-extension ordering. Indeterminate Lyndon fac-
torization, and the degenerate transform and its inverse, can all be computed in
linear time and space with respect to total input size of degenerate strings.

1 Introduction

This paper focuses on strings involving uncertainty – such strings are known as
indeterminate, or equivalently, degenerate strings and consist of nonempty subsets
of letters over an alphabet Σ1 Algorithms for indeterminate strings have been
described in [10].

Motivation for degenerate strings arises from applications such as interface data
entry and bioinformatics. With degenerate biological strings, nucleotide sequences

Copyright c© by the paper’s authors. Copying permitted only for private and academic purposes.

In: Costas S. Iliopoulos, Alessio Langiu (eds.): Proceedings of the 2nd International Conference
on Algorithms for Big Data, Palermo, Italy, 7-9 April 2014, published at http://ceur-ws.org/

1Terminology: indeterminate is common in theoretical computer science; degenerate is used in
molecular biology.

23

are often written using the five letter alphabet {A, T,G,C,N}, where N denotes
an unspecified nucleotide. For instance, ANTAG may correspond to four differ-
ent interpretations: AATAG, ATTAG, AGTAG and ACTAG. Such degenerate
strings can express polymorphisms in DNA/RNA sequences. Longest common
subsequence computations apply to determining the homology of two biological
sequences [20]; pattern matching techniques honed to degenerate DNA/RNA se-
quences are designed in [11].

A Lyndon word is defined as a (generally) finite word which is strictly minimal
for the lexicographic order of its conjugacy class; the set of Lyndon words permits
the unique maximal factorization of any given string [3].

In 1994, Burrows and Wheeler [2] introduced a transformation for textual data
demonstrating, not only data clustering properties, but also suitability for block
sorting compression. The Burrows-Wheeler Transform (BWT) operates by per-
muting the letters of a given text to obtain a modified text which may be more
suitable for compression – the transform is therefore used by many text compres-
sion or compression-related applications, and some self-indexing data structures
[1]. Space saving techniques with the BWT can be achieved by first factoring the
input text or string into Lyndon words [13].

In Next-Generation Sequencing (NGS), large unknown DNA sequences are frag-
mented into small segments (a few dozen to several hundreds of base pairs long).
This process generates masses of data, typically several million “short reads”.
Alignment programs attempt to align or match these reads to a reference genome;
alignment was initially performed by applying hashing or the suffix tree/array data
structures – subsequently, efficiency in memory requirement was achieved by us-
ing the BWT. Motivated by the degeneracy associated with genome sequencing,
we introduce here a collection of novel and related concepts: a linear Degenerate
Burrows-Wheeler Transform, an Indeterminate Suffix Array, Indeterminate Con-
jugacy and Indeterminate Lyndon Words.

2 Definitions and Preliminaries

A string (word) is a sequence of zero or more characters or letters over a totally
ordered alphabet Σ. The set of all non-empty strings over Σ is denoted by Σ+. The
empty string is indicated by ε; we write Σ∗ = Σ+ ∪ ε. Strings will be identified
in mathbold such as w, x. We will use standard terminology from stringology:
border, border-free, prefix, suffix, primitive, conjugate, etc. – see [19].

An indeterminate string x = x[1 . . .m] on an alphabet Σ is a sequence of
nonempty subsets of Σ; x is equivalently known as a degenerate string. Specif-
ically, an indeterminate string x has the form x = x1x2 · · ·xm, where each xi is a
set of letters over Σ, and while |x| = m, computationally we will be accounting for

the total size of the string, that is ||x|| = n =

m∑

i=1

|xi|; if some |xi| = 1 then this is

the usual case of a single letter in a string denoted as xi. So a typical instance of
a degenerate string may have the form u = u1u2u3u4u5 · · ·um−1um; in a regular
string all sets are unit size. Moreover, with degeneracy we can allow the xi to be
multisets. We also write the sets in degenerate strings in mathbold (unless they

A Text Transformation Scheme for Degenerate Strings

24

are known to be unit size) - there is no ambiguity as regular and degenerate strings
are used in different contexts here.

3 The Burrows-Wheeler Transform

The Burrows-Wheeler text transformation scheme was invented by Michael Bur-
rows and David Wheeler in 1994 [2], and has become widely applied [1].

The basic BWT algorithm permutes an input string T (text) of n characters
into a transform in three conceptual stages: first the n rotations (cyclic rotations
or conjugates) of T are formed; these rotations are then sorted lexicographically
giving the n× n BWT matrix M ; finally the last (right-most) character of each of
the rotations, that is the last column of the matrix M , is extracted into a string L
(last). In addition to L, the algorithm computes the index i of the occurrence of
the original text T in the sorted list of rotations. The pair (L, i) is known as the
transform, that is BWT(T) = (L, i). Furthermore, the BWT can be constructed
efficiently since the heart of the computation is sorting the rotations which, by
applying a fast suffix-sorting technique such as [12], can be achieved in linear time.
It is the data clustering properties of this transform, usually exhibiting long runs
of identical characters, together with the fact that it is invertible, that has sparked
so much interest.

Given only L and the index i, the original text T can be reconstructed in linear
time [2]. Observe that the first column F of M can be obtained by lexicographically
sorting the characters of L. By constructing a Hamiltonian cycle of L and F , the
Last-First Mapping, the input can be recovered.

A simple observation shows that, since by definition a Lyndon word is the strictly
least amongst its conjugates, if the input text forms a Lyndon word, then the index
i will be 1 and therefore redundant, thus offering a space saving of O(log n) bits.
Accordingly, BWT variants have been considered: Scott followed by Kufleitner
introduced the bijective Multi-Word BWT; Kufleitner also proposed the bijective
Sort Transform initiated earlier by Schindler – these variants are based on the
Lyndon factorization of the input [9, 13, 18].

The BWT has also been implemented in bioinformatics: to reduce the mem-
ory requirement with hashing-based sequence alignment, BWT-based alignment
utilities were developed including SOAP2 [15] and BOWTIE [14].

4 Indeterminate Lyndon Words

A Lyndon word is a primitive and border-free word which is strictly minimal for
the lexicographical order of its conjugacy class [17] – let L denote the set of Lyndon
words over the totally ordered alphabet Σ. These patterned words exhibit many
interesting properties [16], including:

Proposition 4.1 [8] A word w ∈ Σ+ is a Lyndon word if and only if it is lexico-
graphically less than each of its nonempty proper suffixes.

Proposition 4.2 [8] A word w ∈ Σ+ is a Lyndon word if and only if either w ∈ Σ
or w = uv with u, v ∈ L, u < v.

A Text Transformation Scheme for Degenerate Strings

25

Importantly, the set L of Lyndon words permits the unique maximal factoriza-
tion of any given string, hence useful for applications.

Theorem 4.3 [3] Any word w ∈ Σ+ can be written uniquely as a non-increasing
product w = u1u2 · · ·uk of Lyndon words.

In 1983, Duval [8] developed an algorithm for factorization that runs in linear time
and constant space.

We now introduce the set IL of Indeterminate Lyndon Words – given an in-
determinate string x = x1x2 · · ·xm, the first step in defining these new Lyndon
words is to assign an order to each of the sets xi (which are not necessarily dis-
tinct). So for each 1 ≤ i ≤ m, let xi denote the lexicographic ordering of xi (the
letters are lined up in the given alphabet order) written as a string. For example,
if xi = {c, a, t, g} then xi = acgt. Hence, under the convention that the order of
elements in a set doesn’t matter, we have a bijective mapping G : xi → xi for
1 ≤ i ≤ m, or simply G : x → x. Furthermore, we can allow multisets under this
mapping. Note that if ||x|| = n, and if we assume an integer alphabet, that is, if
the range of letters in the alphabet is O(n), an array of length |Σ| suffices to map
the given alphabet onto an integer alphabet {1, 2, ..., k}, k ≤ n. Therefore each of
the sets xi can be sorted in time O(|xi|); hence the total time to compute x is
O(n).

We can now state a required definition, lex-extension order, for the lexicographic
order of given indeterminate strings u,v over Σ mapped to u,v.

Definition [4, 6] Suppose that according to some factorization F , two strings
u, v ∈ Σ+ are expressed in terms of nonempty factors:
u = u1u2 · · ·um,v = v1v2 · · ·vn. Then u <LEX(F) v if and only if one of the
following holds:
(1) u is a proper prefix of v (that is, ui = vi for 1 ≤ i ≤ m < n); or
(2) for some i ∈ 1..min(m,n),uj = vj for j = 1, 2, ..., i − 1, and ui < vi (in
lexicographic order).

In the case of an indeterminate string u = u1u2 · · ·um, the factorization F is
given by the sets u1u2 · · ·um mapped to u1u2 · · ·um; for brevity we will write
u <LEX v. However, if all sets are unit size then the factorization F of regular
strings is the individual letters, each xi is xi, and u <LEX v is simply the usual
lexicographic order of strings u < v.

We can now proceed to clarify the concept of conjugacy for an indeterminate
string.

Definition An indeterminate string y = y1y2 · · ·ym is a conjugate (or cyclic rota-
tion) of an indeterminate string x = x1x2 · · ·xm if y[1 . . .m] = x[i . . .m]x[1 . . . i−
1] for some 1 ≤ i ≤ m (for i = 1,y = x).

Definition An indeterminate string x over Σ+ is an Indeterminate Lyndon Word
if it is strictly minimal for the lex-extension order of its congugacy class under the
mapping G : x→ x.

A Text Transformation Scheme for Degenerate Strings

26

Similarly to each letter being a Lyndon word for regular strings, each single
set of letters is likewise an indeterminate Lyndon word. Clearly Duval’s linear
Lyndon factorization algorithm [8] extends directly to the indeterminate case via
lex-extension order and linear comparison of the substrings xi. We can also trivially
derive results analogous to those for the classic case – we give some examples, where
IL is the set of Indeterminate Lyndon Words.

Proposition 4.4 An indeterminate word w ∈ Σ+ is an indeterminate Lyndon
word if and only if it is less in lex-extension order than each of its nonempty
proper suffixes.

Proposition 4.5 An indeterminate word w ∈ Σ+ is an indeterminate Lyndon
word if and only if either w is a single set of letters or w = uv with u, v ∈ IL,
u <LEX v.

A subset W of Σ+ is known as a factorization family (FF) if and only if for
every nonempty string x on Σ there exists a factorization of x over W – note that
Σ ⊆ W. We proceed to show that the set of indeterminate Lyndon words forms
an UMFF (unique maximal factorization family) [4].

Lemma 4.6 (The xyz Lemma [4]) An FF W is an UMFF if and only if whenever
xy,yz ∈ W for some nonempty y, then xyz ∈ W.

Lemma 4.7 [7] The set IL of Indeterminate Lyndon Words forms an UMFF.

Furthermore, as detailed in [7] we are introducing here a new circ-UMFF [5],
namely the set IL of Indeterminate Lyndon Words.

5 A Degenerate Burrows-Wheeler Transform

The degenerate Burrows-Wheeler Transform - denoted D-BWT - is a very simple
extension of the original transformation, which relies only on further use of lexi-
cographic ordering. Given a degenerate string x = x[1 . . .m] = x1x2 · · ·xm, to
construct the D-BWT, we first perform all the mappings G : xi → xi specified in
Section 4 in linear time. As in the original BWT transformation, we will generate
the sorted rotations – the D-BWT matrix – of the input string. To do this we
apply a fast suffix-sorting algorithm, such as that of Ko and Aluru [12], tweaked
to handle substrings, thus forming an indeterminate suffix array. Note that an in-
determinate suffix of x has the form xi xi+1 · · ·xm, and the indexes in the array

will be a subset of {1, 2, . . . , n}.
Given x, we first perform a pre-sorting of the substrings x1, x2, · · · ,xm into

lex-extension order, resulting in a re-labelling π1π2 · · ·πm of x, where each πi is just
a letter or ordinal number. For example, x = {abc}{e}{ad}{abc}{bce} → ADBAC
or 14213. This can be achieved using Bucket Sort on the finite ordered alphabet
Σ (assumed in Section 4), with the buckets labelled by the characters in Σ. This
process is repeated in each bucket where the length of each xi is O(n) - hence O(n)
overall.

A Text Transformation Scheme for Degenerate Strings

27

The indeterminate string x has now been re-labelled as a string of letters
π1π2 · · ·πm each according to their lex-extension order in x. Therefore we can
straightforwardly apply an existing linear letter-based suffix-sorting technique to
yield a suffix array for the indexes i ∈ {1 . . .m}. A trivial mapping of each array

element i →
i−1∑

j=1

|xj | + 1 then gives the required indeterminate suffix array. The

overall linear - O(n) - time and space complexities follow from the original O(m)
method (for instance [12]) along with O(n) total string length.

Given the D-BWT matrix, in the degenerate case the transform is the last
right-most column of ordered sets, specifically a permutation of x = x1x2 · · ·xm,
together with the index of the given text in the matrix. Using the re-labelling to
letters πi, the transform can be encoded as letters and the inverse achieved using
the classic linear Last-First mapping. Finally the inverse mappings πi → xj → xj

reconstruct the original degenerate string, hence overall linear.
Furthermore, if we assume that the input text has been factored into indetermi-

nate Lyndon words, then this avoids an index to the rotation in the matrix which is
the input text. Once factored, and again using the re-labelling to letters xj → πi,

the bijective multi-word BWT described by Kufleitner [13] can be applied directly,
followed by inverse mappings from the πi to recover the indeterminate subsets in
the input text.

References

[1] D. Adjeroh, T. Bell, and A. Mukherjee. The Burrows-Wheeler Transform:
Data Compression, Suffix Arrays, and Pattern Matching. Springer Publishing
Company, Incorporated, 1 edition, 2008.

[2] M. Burrows, D. J. Wheeler, M. Burrows, and D. J. Wheeler. A block-sorting
lossless data compression algorithm. Technical report, 1994.

[3] K. T. Chen, R. H. Fox, and R. C. Lyndon. Free differential calculus IV —
The quotient groups of the lower central series, volume 68. Ann. Math., 1958.

[4] D. E. Daykin and J. W. Daykin. Lyndon-like and v-order factorizations of
strings. J. Discrete Algorithms, 1(3-4):357–365, 2003.

[5] D. E. Daykin and J. W. Daykin. Properties and construction of unique maxi-
mal factorization families for strings. Int. J. Found. Comput. Sci., 19(4):1073–
1084, 2008.

[6] J. W. Daykin and W. . F. Smyth. A bijective variant of the burrows-wheeler
transform using v-order. 2013. Submitted.

[7] J. W. Daykin and B. Watson. Indeterminate string factorizations and degen-
erate text transformations. 2013. Submitted.

[8] J.-P. Duval. Factorizing words over an ordered alphabet. J. Algorithms,
4(4):363–381, 1983.

A Text Transformation Scheme for Degenerate Strings

28

[9] J. Y. Gil and D. A. Scott. A bijective string sorting transform. CoRR,
abs/1201.3077, 2012.

[10] J. Holub and W. F. Smyth. Algorithms on indeterminate strings. In Proc.
14th Australasian Workshop on Combinatorial Algs., pages 36–45, 2003.

[11] C. S. Iliopoulos, L. Mouchard, and M. S. Rahman. A new approach to pat-
tern matching in degenerate DNA/RNA sequences and distributed pattern
matching. Math. in Computer Science, 2(4), 2008.

[12] P. Ko and S. Aluru. Space efficient linear time construction of suffix arrays. In
Proceedings of the 14th Annual Conference on Combinatorial Pattern Match-
ing, CPM’03, pages 200–210, Berlin, Heidelberg, 2003. Springer-Verlag.

[13] M. Kufleitner. On bijective variants of the Burrows-Wheeler Transform. In
J. Holub and J. Zdárek, editors, Stringology, pages 65–79. Prague Stringology
Club, Department of Computer Science and Engineering, Faculty of Electrical
Engineering, Czech Technical University in Prague, 2009.

[14] B. Langmead, C. Trapnell, M. Pop, and S. L. Salzberg. Ultrafast and memory-
efficient alignment of short DNA sequences to the human genome. Genome
Biol., 10(3):R25, 2009.

[15] R. Li, C. Yu, Y. Li, T. W. Lam, S. M. Yiu, K. Kristiansen, and J. Wang.
SOAP2: an improved ultrafast tool for short read alignment. Bioinformatics,
25(15):1966–1967, 2009.

[16] M. Lothaire. Combinatorics on Words (Cambridge Mathematical Library).
Cambridge University Press; 2nd Edition, 1997.

[17] R. C. Lyndon. On Burnside’s problem. Transactions of the American Math-
ematical Society, 77:202–215, 1954.

[18] M. Schindler. A fast block-sorting algorithm for lossless data compression. In
Proceedings of the Conference on Data Compression, volume 469, 1997.

[19] W. Smyth. Computing Patterns in Strings. Addison-Wesley, 2003.

[20] Y.-T. Tsai. The constrained longest common subsequence problem. Informa-
tion Processing Letters, 88(4):173 – 176, 2003.

A Text Transformation Scheme for Degenerate Strings

29

Block Graphs in Practice

Travis Gagie1,∗, Christopher Hoobin2 Simon J. Puglisi1

1Department of Computer Science, University of Helsinki, Finland
2School of CSIT, RMIT University, Australia

∗Travis.Gagie@cs.helsinki.fi

Abstract

Motivated by the rapidly increasing size of genomic databases, code repositories
and versioned texts, several compression schemes have been proposed that work
well on highly-repetitive strings and also support fast random access: e.g., LZ-
End, RLZ, GDC, augmented SLPs, and block graphs. Block graphs have good
worst-case bounds but it has been an open question whether they are practi-
cal. We describe an implementation of block graphs that, for several standard
datasets, provides better compression and faster random access than competing
schemes.

1 Introduction

Advances in DNA sequencing technology have led to massive genomic databases,
the open-source movement has led to massive code repositories, and the popular-
ity of wikis has led to massive versioned textual databases. Fortunately, all these
datasets tend to be highly repetitive and, thus, highly compressible. Compress-
ing them is only useful, however, if we can still access them quickly afterwards.
Although many papers have been published about compression schemes with fast
random access (see [6] for a recent survey), most have been about schemes such as
Huffman coding, LZ78, CSAs or BWT-based coding. Only relatively recently have
researchers started proposing schemes with random access and LZ77-like compres-
sion, which is better suited highly-repetitive strings.

One approach uses variants of LZ77 itself. Kreft and Navarro’s LZ-End [7]
is practical but lacks good worst-case bounds, for both the compression and the
random-access time. Kuruppu, Puglisi and Zobel’s Relative Lempel-Ziv (RLZ) [8,
9] or Deorowicz and Grabowski’s Genome Differential Compressor (GDC) [4] are
also practical but are not general-purpose: we can apply them only when we have a
good reference sequence, or can construct one. Even then, Deorowicz, Danek and

Copyright c© by the paper’s authors. Copying permitted only for private and academic purposes.

In: Costas S. Iliopoulos, Alessio Langiu (eds.): Proceedings of the 2nd International Conference
on Algorithms for Big Data, Palermo, Italy, 7-9 April 2014, published at http://ceur-ws.org/

30

Grabowski [3] have observed that when compressing genomes, “the key to high
compression is to look for similarities across the whole collection, not just against
one reference sequence”.

Another approach uses straight-line programs (SLPs). An SLP for a string s
is a context-free grammar in Chomsky normal for that generates s and only s.
Rytter [13] and Charikar et al. [2] showed that if s has length n and its LZ77
parse consists of z phrases, then we can build a SLP for s with O(z log n) rules
and height O(log n). If we store the resulting SLP together with the size of each
non-terminal’s expansion, which takes a total of O(z log n) space, then we can
extract any substring of length ` in O(log n + `) time. This extraction time nearly
matches a lower bound by Verbin and Yiu [14]. Bille et al. [1] showed how we can
store any SLP with r rules, regardless of the height, in O(r) space with the same
time bound for extraction. These data structures are not practical, however. The
most recent and practical SLP-based scheme of which we are aware is Maruyama,
Tabei, Sakamoto and Sadakane’s Fully-Online LCA (FOLCA) [10] but, apart from
needing less resources for construction, even this is less practical than LZ-End.

In a previous paper [5] we introduced a third approach, called block graphs,
and showed that they also use O(z log n) space and O(log n + `) extraction time.
We did not implement these data structures for that paper, however, so it has
been an open question whether they are practical. In this paper we describe an
implementation that, for several standard datasets, provides better compression
and faster random access than LZ-End; thus, block graphs are competitive in both
theory and practice. In Section 2 we review the definition of the block graph for
a string. In Section 3 we describe some details of our implementation. Finally, in
Section 4 we report on our experiments.

2 Block Graphs

The block graph of the string s[1..n] is a directed acyclic graph (DAG) in which each
node in-degree up to 2 and out-degree up to 3. For simplicity, assume n is a power
of 2. Each node of the block graph corresponds to a substring, called that node’s
block: the root corresponds to the whole of s; if they exist, the children of a node
v correspond to the first half v’s substring, the middle half of v’s substring (which
overlaps the first and last halves), and the last half of v’s substring. In general,
v shares its left and right children with its left and right siblings, respectively,
because v’s left child’s block is both the last half of v’s left sibling’s block and the
first half of v’s left sibling’s block, and v’s right child’s block is both the last half
of v’s block and the first half of v’s right sibling’s block. If n is not a power of 2,
then we pad it so that it is, build the block graph, and prune redundant nodes.
Figure 1 — which is copied from our earlier paper — shows the block graph for
the eighth Fibonacci string, abaababaabaababaababa, truncated at depth 3.

We mark as an internal node each node whose block is the first occurrence of
that substring (shown in Figure 1 as ovals). We mark as a leaf all nodes whose
block is not unique and whose parents are internal nodes (shown in Figure 1 as
rectangles). We remove leaves’ children (and their descendants) and replace them
by pointers, as explained in our earlier paper:

Block Graphs in Practice

31

1..21

1..16

1..8

1..4 3..6 5..8

5..12

7..10

9..16 13..20 17..21

15..18

babaaabaabaa

9..21

9..12 13..16 17..20

Figure 1: The block graph for the eighth Fibonacci string, abaababaabaababaababa,
truncated at depth 3.

Suppose a leaf u at depth d had a child 〈i..j〉. . . Consider the first
occurrence s[i′..j′] in s of the substring s[i..j]. Notice that s[i′..j′] is
completely contained within some block at depth d — this is one reason
why we use overlapping blocks — and, since s[i′..j′] is the first occurrence
of that substring in s, that block is associated with an internal node v.
We replace the pointer from u to 〈i..j〉 by a pointer to v and the offset of
i′ in v’s block.

At some depth, we store all internal nodes’ blocks instead of their children; this
depth is 3 in Figure 1.

In our previous paper we proved that

1. the block graph for s has O(z log n) nodes and, thus, takes O(z log n) space;

2. we can extract any substring of length ` in O(log n + `) time;

3. if we store all of the nodes at depth d but removing all nodes above that depth,
we change the space usage to O

(
z(log n− d) + 2d

)
and decrease the extraction

time to O(log n− d).

For more details, we refer readers to the proofs and discussion it contains.

3 Implementation

We now describe an implementation of block graphs which is efficient in practice.
The main idea is to represent the shape of the graph (the internal nodes and
their pointers) using bitvectors and operations from succinct data structures, and
to carefully allocate space for the leaf nodes depending on their distance from the
root. Below we make use of two familiar operations for bitvectors: rank and select.
Given a bitvector B, a position i, and a type of bit b (either 0 or 1), rankb(B, i)
returns the number of occurrences of b before position i in B and selectb(B, i)
returns the position of the ith b in B. Efficient data structures supporting these
operations have been extensively studied (see, e.g., [11, 12]).

Block Graphs in Practice

32

Recall, each level of the block graph consists of a number of nodes, either internal
nodes, or leaves. Let Bd be a bitvector which indicates whether the ith node (from
the left) at depth d is a leaf, Bd[i] = 0, or an internal node, Bd[i] = 1. We define
another bitvector Rd, where Rd[i] = 1 if and only if Bd[i] = 1 and Bd[i+ 1] = 1 for
i < n−1. That is, we mark a 1 bit for each instance of two adjacent internal nodes
in Bd, otherwise Rd[i] = 0. Let Ld be an array that holds leaf nodes at depth d.
The structure of a leaf node is discussed below. Finally, let T be the concatenation
of the textual representation (ie. the corresponding substrings) of all internal nodes
at the truncated depth, d′. As adjacent text blocks share 2logn−d′−1 characters, we
concatenate only the last half of a new adjacent block to T . Non-adjacent blocks
are fully concatenated. We utilize an Rd bitvector at this level; however, we mark
Rd[i] = 1 if the ith node at the truncated depth is a text block.

Navigating the block graph

The main operation is to traverse from an internal node to one of its three children.
Say we are currently at the jth internal node at depth d of the block graph — that
is, we are at Bd[i], where i = select1(Bd, j). Each internal node has three children.
If these children were independent then locating the left child of the current node
would be simply three times the node’s position on its level, that is 3j = 3 ·
rank1(Bd, i). However, in a block graph, adjacent internal nodes share exactly
one child, so we correct for this by subtracting the number of adjacent internal
nodes at this depth prior to the current node — this is given by rank1(Rd, i). To
find the position corresponding to the left child of a node in Bd+1 we compute
leftchild(Bd, i) = 3 · rank1(Bd, i)− rank1(Rd, i).

Given the address of the left child it is easy to find the center or right child
by adding 1 or 2, respectively. If Bd[i] = 0 then we are at a leaf node, and its
leaf information is at Ld[rank0(Bd, i)]. Once we reach the truncated depth we
access the text of an internal node by computing its offset in T as T [(rank1(Bd, i) ·
2logn−d′−1)− (rank1(Rd, i) · 2logn−d′−1)].

Leaf nodes

In a block graph, leaves point to internal nodes. For each leaf we store two values,
the position of the destination node on the current level, and an offset in the
destination node pointing to the beginning of the leaf block. Note that we do not
need to store the depth of the destination node. It is, by definition, on the level
above the leaf, and we know this by keeping keep track of the depth during each
step in a traversal. To improve compression we store leaf positions and offsets in
two separate arrays. At depth d there are no more than 2d+1 − 1 possible nodes,
so we can store each position in log(2d+1−1) bits. Given that the length of a node
at depth d is b = 2dlogne−d and leaf nodes point to an internal node on the level
above, we store each offset in log(2dlogne−d−1) bits.

Block Graphs in Practice

33

Table 1: Size in MB of repetitive corpus files encoded with ASCII, gzip, xz, LZ-End
and block graphs truncated at text length 4, 8, 16 and 32.
Collection ASCII GZIP XZ LZ-End Bg4 Bg8 Bg16 Bg32

world leaders 49 8.28 0.51 4.52 6.62 5.83 5.72 6.37
Escherichia Coli 112 31.53 5.18 49.10 49.70 49.57 45.33 46.91
influenza 154 10.63 1.59 21.50 33.16 32.97 33.32 37.89
coreutils 205 49.92 3.70 35.88 42.80 33.19 30.43 33.00
kernel 257 69.39 2.07 19.34 21.21 15.69 13.84 14.05
para 429 116.07 6.09 57.41 72.39 72.13 67.84 70.66
cere 461 120.08 5.07 41.34 57.68 57.54 54.59 57.96
einstein.en.txt 467 163.66 0.33 2.24 3.52 3.07 3.01 3.19

4 Experiments

We have developed an implementation of block graphs1 and tested it on texts from
the Pizza-Chili Repetitive Corpus2, a standard testbed for data structures designed
for repetitive strings.

We compared compression achieved by the block graph to the LZ-End data
structure by Kreft and Navarro [7], and to the general-purpose compressors gzip
and xz; the results are shown in Table 1. gzip and xz were run with their high-
est compression setting -9, while LZ-End was executed with its default settings.
Throughout our experiments we tested block graphs that were truncated such that
the smallest blocks were 4, 8, 16 and 32 bytes. Note that gzip and xz provide
compression only, not random access, and are included as reference points for
achievable compression. We did not test extraction from bookmarks because Kreft
and Navarro’s data structure does not support it (nor does any other implemented
data structure).

We then compared how quickly block graphs and LZ-End support extracting
substrings of various lengths; the results are shown in Figure 2. The mean extrac-
tion speed with LZ-End never exceeded 9 million characters per second while, for
sufficiently long extractions from the kernel file, the mean extraction speed with
the block graph was over 480 million characters per second. Each run of extrac-
tions was performed across 10,000 randomly-generated queries. Experiments were
conducted on an Intel Core i7-2600 3.4 GHz processor with 8GB of main memory,
running Linux 3.3.4; code was compiled with GCC version 4.7.0 targeting x86 64
with full optimizations. Caches were dropped between runs with sync && echo 1

> /proc/sys/vm/drop caches.

Although xz achieves much better compression, block graphs achieve better
compression than gzip except on the Escherichia Coli and influenza files. Most im-
portantly, our experiments show that block graphs generally achieve compression
comparable to that achieved by LZ-End while supporting significantly faster sub-
string extraction.

1Available at http://www.github.com/choobin/block-graph
2http://pizzachili.dcc.uchile.cl/repcorpus.html

Block Graphs in Practice

34

● ● ●
●

● ●
● ● ● ● ● ● ● ● ● ● ● ● ●

0
10

0
20

0
30

0
40

0
50

0

world_leaders (45M)

E
xt

ra
ct

io
n

sp
ee

d
(M

ch
ar

s/
s)

●

Block graph 32
Block graph 16
Block graph 8
Block graph 4
LZ−end

0 2 4 6 8 10 12 14 16 18

● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ●

0
10

0
20

0
30

0
40

0
50

0

Escherichia_Coli (108M)

●

Block graph 32
Block graph 16
Block graph 8
Block graph 4
LZ−end

0 2 4 6 8 10 12 14 16 18

● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ●

0
10

0
20

0
30

0
40

0
50

0

influenza (148M)

E
xt

ra
ct

io
n

sp
ee

d
(M

ch
ar

s/
s)

●

Block graph 32
Block graph 16
Block graph 8
Block graph 4
LZ−end

0 2 4 6 8 10 12 14 16 18

● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ●

0
10

0
20

0
30

0
40

0
50

0

coreutils (196M)

●

Block graph 32
Block graph 16
Block graph 8
Block graph 4
LZ−end

0 2 4 6 8 10 12 14 16 18

● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ●

0
10

0
20

0
30

0
40

0
50

0

kernel (247M)

E
xt

ra
ct

io
n

sp
ee

d
(M

ch
ar

s/
s)

●

Block graph 32
Block graph 16
Block graph 8
Block graph 4
LZ−end

0 2 4 6 8 10 12 14 16 18

● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ●

0
10

0
20

0
30

0
40

0
50

0

para (410M)

●

Block graph 32
Block graph 16
Block graph 8
Block graph 4
LZ−end

0 2 4 6 8 10 12 14 16 18

● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ●

0
10

0
20

0
30

0
40

0
50

0

cere (440M)

log(extract length)

E
xt

ra
ct

io
n

sp
ee

d
(M

ch
ar

s/
s)

●

Block graph 32
Block graph 16
Block graph 8
Block graph 4
LZ−end

0 2 4 6 8 10 12 14 16 18

● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ●

0
10

0
20

0
30

0
40

0
50

0

einstein.en.txt (446M)

log(extract length)

●

Block graph 32
Block graph 16
Block graph 8
Block graph 4
LZ−end

0 2 4 6 8 10 12 14 16 18

Figure 2: Extraction speeds in millions of characters per second versus the binary
logarithm of the length of the extracted substring. Each data point is averaged
over 10,000 random substring extractions.

References

[1] P. Bille, G. M. Landau, R. Raman, K. Sadakane, S. R. Satti, and O. Weimann.
Random access to grammar-compressed strings. In Proceedings of the 22nd
Symposium on Discrete Algorithms (SODA), pages 373–389, 2011.

Block Graphs in Practice

35

[2] M. Charikar, E. Lehman, D. Liu, R. Panigrahy, M. Prabhakaran, A. Sahai, and
A. Shelat. The smallest grammar problem. IEEE Transactions on Information
Theory, 51(7):2554–2576, 2005.

[3] S. Deorowicz, A. Danek, and S. Grabowski. Genome compression: a novel
approach for large collections. Bioinformatics, 29(20):2572–2578, 2013.

[4] S. Deorowicz and S. Grabowski. Robust relative compression of genomes with
random access. Bioinformatics, 27(21):2979–2986, 2011.

[5] T. Gagie, P. Gawrychowski, and S. J. Puglisi. Faster approximate pattern
matching in compressed repetitive texts. In Proceedings of the 22nd Interna-
tional Symposium on Algorithms and Computation (ISAAC), pages 653–662,
2011.

[6] R. Grossi. Random access to high-order entropy compressed text. In A. Brod-
nik, A. López-Ortiz, V. Raman, and A. Viola, editors, Space-Efficient Data
Structures, Streams, and Algorithms, pages 199–215. Springer-Verlag, 2013.

[7] S. Kreft and G. Navarro. On compressing and indexing repetitive sequences.
Theoretical Computer Science, to appear.

[8] S. Kuruppu, S. J. Puglisi, and J. Zobel. Relative Lempel-Ziv compression
of genomes for large-scale storage and retrieval. In Proceedings of the 17th
Symposium on String Processing and Information Retrieval (SPIRE), pages
201–206, 2010.

[9] S. Kuruppu, S. J. Puglisi, and J. Zobel. Optimized relative Lempel-Ziv com-
pression of genomes. In Proceedings of the 34th Australasian Computer Science
Conference (ACSC), pages 91–98, 2011.

[10] S. Maruyama, Y. Tabei, H. Sakamoto, and K. Sadakane. Fully-online grammar
compression. In Proceedings of the 20th Symposium on String Processing and
Information Retrieval (SPIRE), pages 218–229, 2013.

[11] D. Okanohara and K. Sadakane. Practical entropy-compressed rank/select
dictionary. In Proceedings of the Workshop on Algorithm Engineering and
Experiments (ALENEX), 2007.

[12] R. Raman, V. Raman, and S. R. Satti. Succinct indexable dictionaries with
applications to encoding k-ary trees, prefix sums and multisets. ACM Trans-
actions on Algorithms, 3(4), 2007.

[13] W. Rytter. Application of Lempel-Ziv factorization to the approximation of
grammar-based compression. Theoretical Computer Science, 302(1–3):211–
222, 2003.

[14] E. Verbin and W. Yu. Data structure lower bounds on random access to
grammar-compressed strings. In Proceeings of the 24th Symposium on Com-
binatorial Pattern Matching (CPM), pages 247–258, 2013.

Block Graphs in Practice

36

Compressed Spaced Suffix Arrays

Travis Gagie1,∗, Giovanni Manzini2, Daniel Valenzuela1

1Department of Computer Science, University of Helsinki, Finland
2University of Eastern Piedmont, Italy

∗Travis.Gagie@cs.helsinki.fi

Abstract

Spaced seeds are important tools for similarity search in bioinformatics, and
using several seeds together often significantly improves their performance. With
existing approaches, however, for each seed we keep a separate linear-size data
structure, either a hash table or a spaced suffix array (SSA). In this paper we show
how to compress SSAs relative to normal suffix arrays (SAs) and still support
fast random access to them. We first prove a theoretical upper bound on the
space needed to store an SSA when we already have the SA. We then present
experiments indicating that our approach works even better in practice.

1 Introduction

For the problem of similarity search, we are given two texts and asked to find each
sufficiently long substring of the first text that is within a certain Hamming distance
of some substring of the second text. Similarity search has many applications
in bioinformatics — e.g., ortholog detection, structure prediction or determining
rearrangements — and has been extensively studied (see, e.g., [19]). Researchers
used to first look for short substrings of the first text that occur unchanged in the
second text, called seeds, then try to extend these short, exact matches in either
direction to obtain longer, approximate matches. This approach is called, naturally
enough, “seed and extend”. The substrings’ exact matches are found using either
a hash table of the substrings with the right length, or an index structure such as
a suffix array (SA).

Around the turn of the millenium, Burkhardt and Kärkkäinen [5] and Ma,
Tromp and Li [15] independently proposed looking for short subsequences of the
first text that have a certain shape and occur unchanged in the second text, and
trying to extend those. A binary string encoding the shape of a subsequence, with

Copyright c© by the paper’s authors. Copying permitted only for private and academic purposes.

In: Costas S. Iliopoulos, Alessio Langiu (eds.): Proceedings of the 2nd International Conference
on Algorithms for Big Data, Palermo, Italy, 7-9 April 2014, published at http://ceur-ws.org/

37

1s indicating positions where the characters must match and 0s indicating posi-
tions where they need not, is called a spaced seed. The total number of bits in
the binary string is called the seed’s length, and the number of 1s is called its
weight. The subsequences’ exact matches are found using either a hash table of
the subsequences with the right shape, or a kind of modified SA called a spaced
suffix array [12] (SSA).

Burkhardt and Kärkkäinen, Ma et al. and subsequent authors have shown that
using spaced seeds significantly improves the performance of seeding and extend-
ing. Many papers have been written about how to design spaced seeds to minimize
the number of errors (see, e.g., [4, 8, 11] and references therein), with the specifics
depending on the model of sequence similarity and the acceptable numbers of false
positives (for which the characters indicated by 1s all match but the substrings
are not similar) and false negatives (for which those do not all match but the sub-
strings are still similar) for the application in question. Regardless of the particular
application, however, researchers have consistently observed that the best results
are obtained using more than one seed at a time. A set of spaced seeds used in
combination is called a multiple seed.

Multiple seeds are now a popular and powerful tool for similarity search, but
they have a lingering flaw: we keep a hash table or SSA for each seed, and each
instance of these data structures takes linear space. For example, SHRiMP2’s [7]
index for the human genome takes 16 GB for each seed. In contrast, Bowtie 2’s [14]
compressed SA for that genome takes only 2.5 GB. This is because a normal SA
(which supports only substring matching) can be compressed such that the number
of bits per character is only slightly greater than the empirical entropy of the text.
Unfortunately, the techniques for compressing normal SAs do not seem to apply
directly to SSAs.

In this paper we show how to compress SSAs relative to normal SAs and still
support fast random access to them. Whereas the normal SA for a text lists the
starting points of the suffixes of that text by those suffixes’ lexicographic order, the
SSA for a text and a spaced seed lists the starting points of the subsequences with
the right shape by those subsequences’ lexicographic order. Intuitively, if the seed
starts with many 1s, the SSA will be similar to the SA. In Section 2 we formalize
this intuition and prove a theoretical upper bound on the space needed to store an
SSA when we already have the SA, in terms of the text’s length, the alphabet’s
size, and the seed’s length and weight.

In Section 3 we present experiments showing that our approach works even
better in practice. That is, even when we implement our data structures using
simpler, theoretically sub-optimal components, we achieve better compression than
our upper bound predicts. In fact, in practice we can even successfully apply our
approach in some cases when the assumptions underlying our upper bounds are
violated. However, we still want to improve our compression and random-access
times for seeds with low weight-to-length ratios.

We recently learned that Peterlongo et al. [17] and Crochemore and Tischler [6]
independently defined SSAs, under the names “bi-factor arrays” and “gapped suffix
arrays”, for the special case in which the spaced seed has the form 1a0b1c. Russo
and Tischler [18] showed how to represent such an SSA in asymptotically succinct

Compressed Spaced Suffix Arrays

38

space such that we can support random access to it in time logarithmic in the length
of the text. We note, however, that the spaced seeds used for most applications do
not have this form. We also recently learned that Battaglia et al. [2] used an idea
similar to that of spaced seeds in an algorithm for finding motifs with don’t-care
symbols. It seems possible our results could be useful in reducing their algorithm’s
memory usage.

2 Theory

Suppose we want to store an SSA for a text T [0..n−1] over an alphabet of size σ and
a spaced seed S with length ` and weight w. For i < n, let Ti be the subsequence
of T [i..n− 1] that contains T [j] if and only if i ≤ j and S[j − i] = 1. Let T ′i be the
subsequence of T [i..n − 1] that contains T [j] if and only if S[j − i] = 0. Let SSA
be the permutation on {0, . . . , n − 1} in which i precedes i′ if either Ti ≺ Ti′ , or
Ti = Ti′ and T [i..n− 1] ≺ T [i′..n− 1].

For example, if T = abracadabra and S = 101 then

T0 = ar T6 = db T ′0 = b T ′6 = a
T1 = ba T7 = ar T ′1 = r T ′7 = b
T2 = rc T8 = ba T ′2 = a T ′8 = r
T3 = aa T9 = r T ′3 = c T ′9 = a
T4 = cd T10 = a T ′4 = a
T5 = aa T ′5 = d

and so SSA = [10, 3, 5, 7, 0, 8, 1, 4, 6, 9, 2], while SA = [10, 7, 0, 3, 5, 8, 1, 4, 6, 9, 2].

If Ti � Ti′ and T ′i � T ′i′ , then i precedes i′ in both SSA and SA. In particular, if
Ti = Ti′ or T ′i = T ′i′ , then i and i′ have the same relative order in SSA and SA. In
our example, T3 = T5 = aa, so 3 precedes 5 in both SSA and SA; T ′2 = T ′6 = T ′9 = a,
so 6 precedes 9 and 9 precedes 2 in both SSA and SA.

If we partition SSA into subsequences such that i and i′ are in the same subse-
quence if and only if Ti = Ti′ , then we can partition SA into the same subsequences.
Since there are at most σw + w distinct strings Ti, our partitions each consist of
at most σw +w subsequences. Similarly, if we partition based on T ′i and T ′i′ , then
our partitions each consist of at most σ`−w + `− w subsequences.

For our example, we can partition both SSA and SA into [4, 6, 9, 2], for T ′i = a;
[7, 0], for T ′i = b; [3], for T ′i = c; [5], for T ′i = d; [8, 1], for T ′i = r; and [10], for
T ′i = ε. In this particular case, however, we could just as well partition both SSA
and SA into only two common subsequences: e.g., [10, 7, 0] and [3, 5, 8, 1, 4, 6, 9, 2].

Consider the permutation SA−1◦SSA, which maps elements’ positions in SSA to
their positions in SA, and let ρ be the minimum number of increasing subsequences
into which SA−1 ◦SSA can be partitioned. Since any subsequence common to SSA
and SA corresponds to an increasing subsequence in SA−1 ◦ SSA, we have ρ ≤
min(σw+w, σ`−w+`−w). In our example, SA−1◦SSA = [0, 3, 4, 1, 2, 5, 6, 7, 8, 9, 10]
and ρ = 2.

Supowit [20] gave a simple algorithm that partitions SA−1 ◦SSA into ρ increas-
ing subsequences in O(n lg ρ) ⊆ O(nmin(w, `− w) lg σ) time. When applied to

Compressed Spaced Suffix Arrays

39

SA−1 ◦ SSA in our example, Supowit’s algorithm partitions it into [0, 3, 4] and
[1, 2, 5, 6, 7, 8, 9, 10].

Barbay et al. [1] showed how, given a partition of SA−1 ◦ SSA into ρ increasing
subsequences, we can store it in (2+o(1))n lg ρ ≤ (2+o(1))nmin(w, `−w) lg σ bits
and support random access to it in O(lg lg ρ) time. Combining their ideas with
later work by Belazzougui and Navarro [3], we can keep the same space bound and
improve the time bound to O(1).

To do this, for i ≤ ρ, we replace each element in the ith subsequence in SA−1 ◦
SSA by a character ai, and store the resulting string R such that we can support
random access to it and partial rank queries on it. We then permute R according
to SA−1 ◦ SSA and store the resulting string R′ such that we can support fast
select queries on it. In our example, R = a1a2a2a1a1a2a2a2a2a2a2 and R′ =
a1a1a1a2a2a2a2a2a2a2a2.

The partial rank query R.p rank(i) returns the number of copies of R[i] in
R[0..i], and the select query R′.selecta(i) returns the position of the ith copy of a
in R′. Barbay et al. noted that, for i < n,

(SA−1 ◦ SSA)[i] = R′.selectR[i](R.p rank(i)) .

Belazzougui and Navarro showed how we can store R in (1 + o(1))n lg ρ bits and
support random access to it and partial rank queries on it in O(1) time, and store
R′ in (1 + o(1))n lg ρ bits and support select queries on it in O(1) time.

In summary, we can store SA−1 ◦ SSA in (2 + o(1))nmin(w, ` − w) lg σ bits
such that we can support random access to it in O(1) time. We will give a longer
explanation in the full version of this paper. Since SSA = SA ◦ (SA−1 ◦ SSA), this
gives us the following result:

Theorem 2.1 Let T [0..n − 1] be a text over an alphabet of size σ and let S be a
spaced seed with length ` and weight w. If we have already stored the suffix array
SA for T such that we can support random access to SA in time tSA, then we can
store a spaced suffix array SSA for T and S in (2 + o(1))nmin(w, ` − w) lg σ bits
such that we can support random access to SSA in tSA +O(1) time.

3 Practice

Theorem 2.1 says we can store SSAs for the human Y-chromosome chrY.fa

in FASTA format (about 60 million characters over an alphabet of size
5) and SHRiMP2’s three default spaced seeds — i.e., 11110111101111,
1111011100100001111 and 1111000011001101111 — in about 560 MB, in addition
to the SA, whereas storing the SSAs näıvely would take about 720 MB. Storing
the SSAs packed such that each entry takes dlg 60 000 000e = 26 bits would reduce
this to about 580 MB.

To test our approach, we built the SSAs as described in Section 2; computed
SA−1 ◦SSA, R and R′ for each SSA; and stored each copy of R or R′ as a wavelet
tree. We chose wavelet trees because they are simple to use and often more practical
than the theoretically smaller and faster data structures mentioned in Section 2.
We ran all our tests described in this section on a computer with a quad-core Intel

Compressed Spaced Suffix Arrays

40

Xeon CPU with 32 GB of RAM, running Ubuntu 12.04. We used a wavelet-tree
implementation from https://github.com/fclaude/libcds and compiled it with
GNU g++ version 4.4.3 with optimization flag -O3.

The uncompressed SA took 226 MB, and the six wavelet trees took a total
of 215 MB and performed 10 000 random accesses each in 7.67 microseconds per
access. That is, we compressed the SSAs into about 60% of the space it would take
to store them näıvely and, although our accesses were much slower than direct
memory accesses, they were fast compared to disk accesses. Thus, our approach
seems likely to be useful when a set of SSAs is slightly larger than the memory and
fits only when compressed.

Using the same test setup, we then compressed SSAs for the ten spaced seeds
BFAST [9, Table S3] uses for 36-base-pair Illumina reads, which all have weight
18:

1. 111111111111111111

2. 11110100110111101010101111

3. 11111111111111001111

4. 1111011101100101001111111

5. 11110111000101010000010101110111

6. 1011001101011110100110010010111

7. 1110110010100001000101100111001111

8. 1111011111111111111

9. 11011111100010110111101101

10. 111010001110001110100011011111 .

Since the first seed consists only of 1s, the SSA we would build for it is the same
as the SA. The uncompressed SA again took 226 MB and the 18 wavelet trees for
the other nine seeds took a total of 649 MB — so instead of 2.26 GB, we used
875 MB (about 39%) for all ten seeds — and together performed 10 000 random
accesses to each of the ten SSAs in about 7 microseconds per access. The left side
of the top half of Figure 1 shows how many bits per character (bpc) of the text
each SSA took, and the average time per access to each SSA.

We also compressed the SSAs for the ten spaced seeds BFAST uses for 50-base-
pair Illumina reads, which all have weight 22:

1. 1111111111111111111111

2. 1111101110111010100101011011111

3. 1011110101101001011000011010001111111

4. 10111001101001100100111101010001011111

5. 11111011011101111011111111

6. 111111100101001000101111101110111

7. 11110101110010100010101101010111111

8. 111101101011011001100000101101001011101

9. 1111011010001000110101100101100110100111

Compressed Spaced Suffix Arrays

41

10. 1111010010110110101110010110111011 .

Again, the first seed consists only of 1s. This time, the 18 wavelet trees for the
other nine seeds took a total of 712 MB; each access took about 8 microseconds.
The left side of the bottom half of Figure 1 shows how many bit per character of
the text each SSA took, and the average access time per access to each SSA.

If we have a permutation π1 on {0, . . . , n−1} stored and π2 is any other permu-
tation on {0, . . . , n − 1}, then we can store π2 relative to π1 using the ideas from
Section 2. For example, we can store SSAs relative to other SSAs. Suppose we
consider the size of each SSA (except the SA) when compressed relative to each
other SSA (including the SA), build a minimum spanning tree rooted at the SA,
and compress each SSA relative to its parent in the tree. This can reduce our space
usage at the cost of increasing the random-access time, as shown for the BFAST
seeds on the right side of Figure 1.

There are other circumstances in which we can ignore SSAs’ semantics and
consider them only as permutations. For example, spaced seeds can be generalized
to subset seeds [13], such as ternary strings in which 1s indicate positions where the
characters must match, 0s indicate positions where they need not, and Ts indicate
positions where characters must fall within the same equivalence class (such as
the pyrimidines C and T and the purines A and G). It is not difficult to generalize
Theorem 2.1 to subset seeds — we will do so in the full version of this paper —
but it is also not necessary to obtain practical results. The Iedera tool (available
at http://bioinfo.lifl.fr/yass/iedera.php) generates good subset seeds.

A more challenging change is from fixed-length seeds to repetitive seeds [12]. A
repetitive seed is a string in whose repetition the digits indicate which characters
must match and how. For example, with respect to the repetitive spaced seed
10110, ATCGATCGGT matches ACCGTTGGGA but not ACCGTTGAGA. Repetitive seeds
are useful when looking for approximate matches of substrings that have been
extended until they become sufficiently infrequent. It is not clear how or if we
can extend Theorem 2.1 to repetitive seeds. Nevertheless, the LAST tool (available
at http://last.cbrc.jp) generates SSAs for repetitive spaced or subset seeds,
which we can still try to compress in practice; see also [10, 16].

Our current goal is to achieve reasonable compression and access times for a
set of repetitive subset seeds that we received from Martin Frith, which have av-
erage length 19.85 and average weight about 10.44, counting “same equivalence
class” digits as 0.5. Unfortunately, at the moment we use nearly 24 bits per en-
try in the corresponding SSAs (including the overhead for the uncompressed SA),
which is only marginally better than the 26 bits we would use with simple pack-
ing. Meanwhile, random accesses take about 12 microseconds on average, which is
significantly slower than access to a packed array. On the other hand, these seeds
have an unusually low average weight-to-length ratio. We used Iedera and LAST to
generate SSAs for a set of eight repetitive subset seeds, with average length 17.875
and average weight 12. For these, we used only 20.15 bits per entry, with random
accesses taking about 10 microseconds on average.

Compressed Spaced Suffix Arrays

42

space time
seed (bpc) (µs)

1 32.00 0
2 11.29 9
3 4.41 4
4 9.75 8
5 11.54 9
6 13.77 11
7 13.14 10
8 3.85 3
9 10.10 7

10 13.91 11

space time
seed reference (bpc) (µs)

1 - 32.00 0
2 8 9.71 11
3 1 4.41 4
4 8 9.22 10
5 4 9.23 19
6 8 12.27 14
7 3 12.58 14
8 1 3.85 3
9 1 10.10 7

10 7 12.59 26

space time
seed (bpc) (µs)

1 32.00 0
2 9.03 8
3 12.30 10
4 13.86 11
5 8.13 7
6 10.80 9
7 11.14 8
8 11.09 8
9 11.77 9

10 12.54 10

space time
seed reference (bpc) (µs)

1 - 32.00 0
2 1 9.03 6
3 1 12.30 10
4 2 12.59 18
5 1 8.13 6
6 1 10.80 8
7 1 11.14 8
8 1 11.09 9
9 8 11.34 18

10 8 8.94 17

Figure 1: The space usage of the SSAs of the spaced seeds BFAST uses for Illumina
reads, in bits per character of the text, and the average time for a random access.
On top, the seeds are for 36-base-pair reads; on the bottom, the seeds are for 50-
base-pair reads. On the left, all the SSAs are compressed relative to the SA; on
the right, some of the SSAs are compressed relative to other SSAs.

Acknowledgments

Many thanks to Francisco Claude, Maxime Crochemore, Matei David, Martin
Frith, Costas Iliopoulos, Juha Kärkkäinen, Gregory Kucherov, Bin Ma, Ian Munro,
Taku Onodera, Gonzalo Navarro, Luis Russo, German Tischler and the anonymous
reviewers.

References

[1] J. Barbay, F. Claude, T. Gagie, G. Navarro, and Y. Nekrich. Efficient fully-
compressed sequence representations. Algorithmica. To appear.

[2] G. Battaglia, D. Cangelosi, R. Grossi, and N. Pisanti. Masking patterns
in sequences: A new class of motif discovery with don’t cares. Theoretical

Compressed Spaced Suffix Arrays

43

Computer Science, 410:4327–4340, 2009.

[3] D. Belazzougui and G. Navarro. Alphabet-independent compressed text in-
dexing. ACM Transactions on Algorithms. To appear.

[4] D. G. Brown. Bioinformatics Algorithms: Techniques and Applications, chap-
ter A survey of seeding for sequence alignment, pages 126–152. Wiley-
Interscience, 2008.

[5] S. Burkhardt and J. Kärkkäinen. Better filtering with gapped q-grams. Fun-
damenta Informicae, 56:51–70, 2003.

[6] M. Crochemore and G. Tischler. The gapped suffix array: A new index struc-
ture for fast approximate matching. In Proceedings of the 17th Symposium on
String Processing and Information Retrieval (SPIRE), pages 359–364, 2010.

[7] M. David, M. Dzamba, D. Lister, L. Ilie, and M. Brudno. SHRiMP2: Sensitive
yet practical short read mapping. Bioinformatics, 27:1011–1012, 2011.

[8] L. Egidi and G. Manzini. Better spaced seeds using quadratic residues. Journal
of Compututer and System Sciences, 79:1144–1155, 2013.

[9] N. Homer, B. Merriman, and S. F. Nelson. BFAST: An alignment tool for
large scale genome resequencing. PLOS One, 4:e7767, 2009.

[10] P. Horton, S. M. Kie lbasa, and M. C. Frith. DisLex: A tranformation for
discontiguous suffix array construction. In Proceedings of the Workshop on
Knowledge, Language, and Learning in Bioinformatics (KLLBI), pages 1–11,
2008.

[11] L. Ilie, S. Ilie, S. Khoshraftar, and A. Mansouri Bigvand. Seeds for effective
oligonucleotide design. BMC Genomics, 12:280, 2011.

[12] S. M. Kie lbasa, R. Wan, K. Sato, P. Horton, and M. C. Frith. Adaptive seeds
tame genomic sequence comparison. Genome Research, 21:487–493, 2011.

[13] G. Kucherov, L. Noé, and M. A. Roytberg. A unifying framework for seed
sensitivity and its application to subset seeds. Journal of Bioinformatics and
Computational Biology, 4:553–570, 2006.

[14] B. Langmeand and S. L. Salzberg. Fast gapped-read alignment with Bowtie
2. Nature Methods, 9:357–359, 2012.

[15] B. Ma, J. Tromp, and M. Li. PatternHunter: faster and more sensitive ho-
mology search. Bioinformatics, 18:440–445, 2002.

[16] T. Onodera and T. Shibuya. An index structure for spaced seed search. In
Proceedings of the 22nd International Symposium on Algorithms and Compu-
tation (ISAAC), pages 764–772, 2011.

Compressed Spaced Suffix Arrays

44

[17] P. Peterlongo, N. Pisanti, F. Boyer, and M.-F. Sagot. Lossless filter for finding
long multiple approximate repetitions using a new data structure, the bi-
factor array. In Proceedings of the 12th Symposium on String Processing and
Information Retrieval (SPIRE), pages 179–190, 2005.

[18] L. M. S. Russo and G. Tischler. Succinct gapped suffix arrays. In Proceed-
ings of the 17th Symposium on String Processing and Information Retrieval
(SPIRE), pages 290–294, 2011.

[19] Y. Sun and J. Buhler. Designing multiple simultaneous seeds for DNA simi-
larity search. Journal of Computational Biology, 12:847–861, 2005.

[20] K. J. Supowit. Decomposing a set of points into chains, with applications to
permutation and circle graphs. Information Processing Letters, 21:249–252,
1985.

Compressed Spaced Suffix Arrays

45

On Representations of Ternary Order

Relations in Numeric Strings

Jinil Kim1,∗, Amihood Amir2,3, Joong Chae Na4, Kunsoo Park1,∗,

Jeong Seop Sim5

1Dep. of Computer Science and Engineering, Seoul National University, Korea
2Department of Computer Science, Bar-Ilan University, Israel

3Johns Hopkins University, USA
4Dep. of Computer Science and Engineering, Sejong University, Korea

5Dep. of Computer and Information Engineering, Inha University, Korea
∗{jikim | kpark}@theory.snu.ac.kr

Abstract

Order-preserving matching is a string matching problem of two numeric strings
where the relative orders of consecutive substrings are matched instead of the
characters themselves. The order relation between two characters is a ternary
relation (>,<,=) rather than a binary relation (>,<), but it was not sufficiently
studied in previous works [5, 7, 1]. In this paper, we extend the representations of
order relations by Kim et al. [5] to ternary order relations, and prove the equiva-
lence of those representations. The extended prefix representation takes logm+1
bits per character, while the nearest neighbor representation takes 2 logm bits
per character. With our extensions, the time complexities of order-preserving
matching in binary order relations can be achieved in ternary order relations as
well.

1 Introduction

Order-preserving matching is a string matching problem of two numeric strings
where the relative orders of substrings are matched instead of the characters them-
selves. It has many practical applications such as stock price analysis and musical
melody matching. The study on this field was introduced by Kubica et al. [7]
and Kim et al. [5] where Kubica et al. [7] defined order relations by order isomor-
phism of two strings, while Kim et al. [5] defined them explicitly by the sequence

Copyright c© by the paper’s authors. Copying permitted only for private and academic purposes.

In: Costas S. Iliopoulos, Alessio Langiu (eds.): Proceedings of the 2nd International Conference
on Algorithms for Big Data, Palermo, Italy, 7-9 April 2014, published at http://ceur-ws.org/

46

of rank values (which they called the natural representation). Recently, variants
of order-preserving matching have been studied such as order-preserving suffix
trees [2], approximate matching with k mismatches [3], and a Boyer-Moore type
algorithm [1].

An order relation between two characters is a ternary relation (>,<,=) rather
than a binary relation (>,<), but the representations of order relations were not
sufficiently studied for ternary order relations. Kim et al. [5] considered only binary
order relations by assuming that all the characters in a string are distinct, while
Kubica et al. [7] considered ternary order relations but their match condition on
equal characters was faulty and it was fixed later by Cho et al. [1]. As there
was no integrated study on the relationship between the representations of order
relations, previous works [1, 2, 3] individually handled the cumbersome details of
ternary order relations on their own works.

The number of order relations on a sequence of n elements is n! in binary order
relations, but it is the ordered Bell number [4] in ternary order relations. The

ordered Bell number is the solution of the recurrence f(n) = 1+
∑n−1

j=1

(
n
j

)
f(n−j),

which is exponentially greater than n!. The representations of order relations
should be extended for ternary order relations, which might incur some space
overhead on the representations.

In this paper, we extend the representations of order relations by Kim et al. [5]
to ternary order relations, and prove the equivalence of those representations.
With the extended prefix representation, order-preserving matching can be done
in O(n logm) time, and the representation of order relations takes (logm+ 1)-bit
per character. With the nearest neighbor representation, the matching can be done
in O(n + m logm), but the representation takes (2 logm)-bit per character. The
nearest neighbor representation is suitable for the single pattern matching while
the extended prefix representation is space-efficient and can be useful in order-
preserving multiple pattern matching [5] and order-preserving suffix trees [2].

2 Problem Formulation

Let Σ denote the set of numbers such that a comparison of two numbers can be
done in constant time, and let Σ∗ denote the set of strings over the alphabet Σ. For
a string x ∈ Σ∗, let |x| denote the length of x. A string x is described by a sequence
of characters (x[1], x[2], ..., x[|x|]). Let a substring x[i..j] be (x[i], x[i + 1], ..., x[j])
and a prefix xi be x[1..i]. For a character c ∈ Σ, let rankx(c) = 1 + |{i : x[i] <
c for 1 ≤ i ≤ |x|}|, and let existx(c) be 1 if c exists in x, and 0 otherwise. Let
ex-rankx(c) = (rankx(c), existx(c)). For any boolean condition cond, let δ(cond)
be 1 if cond is true, 0 otherwise.

Order Isomorphism [7] For two strings x and y of length n, x and y are order-
isomorphic if ∀i, j ∈ [1..n], x[i] ≤ x[j]⇔ y[i] ≤ y[j].

Order isomorphism implicitly deals with ternary order relations because each of
ternary order relations (>,<,=) can be checked by variants of the proposition in
Definition 2 (changing i and j, taking the contrapositive, or both). For example,

On Representations of Ternary Order Relations in Numeric Strings

47

if x[i] > x[j], then y[i] > y[j] by the contrapositive of x[i] ≤ x[j] ⇐ y[i] ≤ y[j]. If
x[i] = x[j], then y[i] = y[j] by x[i] ≤ x[j]⇒ y[i] ≤ y[j] and x[j] ≤ x[i]⇒ y[j] ≤ y[i].

The definition of order isomorphism looks simple, but it is somewhat compli-
cated to handle in practice. The number of the order relations involved in checking
order isomorphism of two strings of length n is O(n2), hence it has an inherent
quadratic term if the definition is used directly for order-preserving matching.

Natural Representation [5] For a string x of length n, the nat-
ural representation of the order relations is defined as Nat(x) =
(rankx(x[1]), rankx(x[2]), ..., rankx(x[n])).

In the natural representation, ternary order relations are explicitly stated in
terms of ranks. For example, x[i] > x[j] if and only if Nat(x)[i] > Nat(x)[j], and
x[i] = x[j] if and only if Nat(x)[i] = Nat(x)[j]. That is, the order relations of two
strings coincide if and only if Nat(x) = Nat(y). The comparison of two natural
representations takes O(n) time if the natural representations are given.

These two definitions are equivalent because the natural representations of two
strings are identical if and only if they are order-isomorphic. We adopt the natural
representation throughout this paper because the definition itself and subsequent
analysis are more intuitive.

Order-Preserving Matching [5] Given a text T [1..n] ∈ Σ∗ and a pattern
P [1..m] ∈ Σ∗, P matches T at position i if Nat(P) = Nat(T [i−m+ 1..i]). Order-
preserving matching is the problem of finding all positions of T matched with P .

Equivalent Representation For any two representations R1(·) and R2(·), R1 is
equivalent to R2 if R1(x) = R1(y)⇔ R2(x) = R2(y) for any two strings x, y.

For KMP-based algorithms [6], the length of matches is incrementally increased
when the next character of the text matches that of the pattern. Such a match
operation is formalized by the match condition as follows.

Match Condition A match condition of a representation R(·) is a boolean func-
tion Match(x, y,R(x), t + 1) such that Nat(xt+1) = Nat(yt+1) holds if and only
if Nat(xt) = Nat(yt) and Match(x, y,R(x), t + 1) where x, y ∈ Σ∗, |x| = |y| and
t ∈ [1..|x| − 1].

3 Prefix Representation

Prefix Representation [5] For a string x, the prefix representation of the order
relations is defined as Pre(x) = (rankx1(x[1]), rankx2(x[2]), ..., rankx|x|(x[|x|])).

The prefix representation has an ambiguity between different strings in ternary
order relations [1]. For example, when x = (10, 30, 20), and y = (10, 20, 20), the
prefix representations of both x and y are (1, 2, 2). The ambiguity is resolved in
the extended prefix representation.

On Representations of Ternary Order Relations in Numeric Strings

48

i 1 2 3 4 5 6 7 8

x 30 10 50 20 30 20 25 20
Nat(x6) 4 1 6 2 4 2

Ex-pre(x7)
(

1
0

) (
1
0

) (
3
0

) (
2
0

) (
3
1

) (
2
1

) (
4
0

)

NN(x7)
(
−∞
∞

) (
−∞

1

) (
2
1

) (
2
1

) (
1
1

) (
4
4

) (
6
5

)

Nat(x7) 5 1 7 2 5 2 4

Ex-pre(x8)
(

1
0

) (
1
0

) (
3
0

) (
2
0

) (
3
1

) (
2
1

) (
4
0

) (
2
1

)

NN(x8)
(
−∞
∞

) (
−∞

1

) (
2
1

) (
2
1

) (
1
1

) (
4
4

) (
6
5

) (
6
6

)

Nat(x8) 6 1 8 2 6 2 5 2

Figure 1: Example of Lemma 3.1 and Lemma 4.1

Extended Prefix Representation For a string x, the extended prefix
representation is defined as Ex-pre(x) = (ex-rankx1(x[1]), ex-rank(x2[2]),
..., ex-rank(x|x|[|x|])).

For any t ∈ [1..|x| − 1], Nat(xt+1) can be computed from Nat(xt) and
Ex-pre(xt+1).

Lemma 3.1 (Representation Conversion) Given Nat(xt) and Ex-pre(xt+1),

Nat(xt+1)[i] =

{
a+ δ((a > c) ∨ (a = c ∧ d = 0)) for 1 ≤ i ≤ t
c for i = t+ 1

where a = Nat(xt)[i] and
(
c
d

)
= Ex-pre(xt+1)[t+ 1].

An example of Lemma 3.1 is shown in Figure 1 for x =
(30, 10, 50, 20, 30, 20, 25, 20). Let’s consider when t + 1 = 7. For i = 1, we

have Nat(x6)[1] = a = 4 and Ex-pre(x7)[7] =
(
c
d

)
=
(

4
0

)
. Since a = c and d = 0,

we have Nat(x7)[1] = a + 1 = 5. For i = 2,
(
c
d

)
is the same as for i = 1, and we

have Nat(x6)[2] = a = 1. Since a < c, Nat(x7)[2] = a = 1. Let’s consider the next

step when t + 1 = 8. For i = 4, we have Nat(x7)[4] = a = 2 and
(
c
d

)
=
(

2
1

)
. As

a = c and d = 1, Nat(x8)[4] = a = 2.

Theorem 3.2 Ex-pre(·) is equivalent to Nat(·).

Theorem 3.3 (Match Condition) Given x, y and t, the condition
Ex-pre(xt+1)[t + 1] = Ex-pre(yt+1)[t + 1] is a match condition of Ex-pre(·).

4 Nearest Neighbor Representation

Let LMaxx[i] = j if x[j] = max{x[k] : x[k] ≤ x[i] for 1 ≤ k ≤ i− 1}, or −∞ if no
such j. Let LMinx[i] = j if x[j] = min{x[k] : x[k] ≥ x[i] for 1 ≤ k ≤ i − 1}, or

On Representations of Ternary Order Relations in Numeric Strings

49

∞ if no such j. If there are multiple j’s for LMaxx[i] or LMinx[i], we choose the
rightmost one. In Figure 1, LMaxx[8] = 6 since x[6] is the rightmost one among
the maximum values which are less than or equal to x[8] in x[1..7]. Similarly,
LMinx[8] = 6.

Nearest Neighbor Representation [5, 7, 1] For a string x, the nearest neigh-
bor representation can be defined as

NN(x) =
(
LMaxx[1]
LMinx[1]

)(
LMaxx[2]
LMinx[2]

)
· · ·

(
LMaxx[|x|]
LMinx[|x|]

)

For convenience, let x[−∞] = −∞, x[∞] = ∞, Nat(x)[−∞] = 0 and
Nat(x)[∞] = |x| + 1 for any string x. Then, Nat(x)[LMaxx[i]] ≤ Nat(x)[i] ≤
Nat(x)[LMinx[i]] holds for any i ∈ [1..|x|] even when LMaxx[i] = −∞ or
LMinx[i] =∞.

Lemma 4.1 (Representation Conversion) Given Nat(xt) and NN(xt+1),

Nat(xt+1)[i] =

{
a+ δ((a > f) ∨ (a = f ∧ e 6= f)) for 1 ≤ i ≤ t
f for i = t+ 1

where a = Nat(xt)[i],
(
c
d

)
= NN(xt+1)[t+ 1], e = Nat(xt)[c] and f = Nat(xt)[d].

An example of Lemma 4.1 is shown in Figure 1 for x =
(30, 10, 50, 20, 30, 20, 25, 20). Let us consider when t + 1 = 7. For i = 1, we

have Nat(x6)[1] = a = 4, NN(x7)[7] =
(
c
d

)
=
(

6
5

)
, e = 2 and f = 4. Since a = f

and e 6= f , we get Nat(x7)[1] = a + 1 = 5. For i = 2,
(
c
d

)
, e and f are the same

as for i = 1, and we have a = 1. Since a < e, we have Nat(x7)[2] = a = 1. For
i = 3, we have a = 6 and a > f , and thus Nat(x7)[3] = a + 1 = 7. For i = 4, we
have a = 2. Since a = e and e 6= f , we get Nat(x7)[4] = a = 2. For i = 7, we get
Nat(x7)[7] = f = 4 since i = t + 1. Consider the next step when t + 1 = 8. For

i = 4, we have a = 2, NN(x8)[8] =
(
c
d

)
=
(

2
1

)
, e = 2 and f = 2. Since a = e = f ,

we get Nat(x8)[4] = a = 2.

Theorem 4.2 NN(·) is equivalent to Nat(·).

A naive match condition of the nearest neighbor representation is NN(xt+1)[t+
1] = NN(yt+1)[t+ 1] as that of the extended prefix representation in Theorem 3.3,
which requires computing the nearest neighbor representations of both x and y.
Kubica et al. [7] proposed an efficient match condition for ternary order relations
which can be checked in constant time when the nearest neighbor representation
of x is given, but it was faulty. Cho et al. [1] presented a modified match condition
in ternary order relations, which can produce an O(n + m logm) algorithm as in
binary order relations.

On Representations of Ternary Order Relations in Numeric Strings

50

Theorem 4.3 (Match Condition of Nearest Neighbor Representation [1])
Given x, y and t, the condition (y[c] < y[t+ 1] < y[d]) ∨ (y[t+ 1] = y[c] = y[d]) is

a match condition of NN(·) where
(
c
d

)
= NN(xt+1)[t+ 1].

We can generalize order-preserving matching algorithms in binary order rela-
tions [5] to ternary order relations using the representations above. For single
pattern matching, we can obtain an O(n logm) algorithm with the extended prefix
representation, and an O(n+m logm) algorithm with the nearest neighbor repre-
sentation, both of which are consistent with the results in [5, 7, 1]. For multiple
pattern matching, we can obtain an O((n + m) logm) algorithm in ternary order
relations using the extended prefix representation.

Acknowledgements

The work of Jinil Kim and Kunsoo Park was supported by Next-Generation Informa-

tion Computing Development Program through the National Research Foundation of

Korea (NRF) funded by the Ministry of Science, ICT & Future Planning (2011-0029924).

Amihood Amir was partly supported by NSF grant CCR-09-04581, ISF grant 347/09,

and BSF grant 2008217. Joong Chae Na was supported by the IT R&D program of

MKE/KEIT [10038768, The Development of Supercomputing System for the Genome

Analysis], and by Basic Science Research Program through the National Research
Foundation of Korea (NRF) funded by the Ministry of Science, ICT & Future
Planning (2011-0007860). Jeong Seop Sim was supported by the National Research
Foundation of Korea (NRF) grant funded by the Korea government (MSIP) (No.
2012R1A2A2A01014892), and by the Industrial Strategic technology development
program (10041971, Development of Power Efficient High-Performance Multime-
dia Contents Service Technology using Context-Adapting Distributed Transcoding)
funded by the Ministry of Knowledge Economy (MKE, Korea).

References

[1] S. Cho, J. C. Na, K. Park, and J. S. Sim. Fast order-preserving pattern match-
ing. In COCOA, 2013.

[2] M. Crochemore, C. S. Iliopoulos, T. Kociumaka, M. Kubica, A. Langiu, S. P.
Pissis, J. Radoszewski, W. Rytter, and T. Walen. Order-preserving incomplete
suffix trees and order-preserving indexes. In SPIRE, pages 84–95, 2013.

[3] P. Gawrychowski and P. Uznanski. Order-preserving pattern matching with k
mismatches. CoRR, abs/1309.6453, 2013.

[4] O. A. Gross. Preferential arrangements. The American Mathematical Monthly,
69:4–8, 1962.

[5] J. Kim, P. Eades, R. Fleischer, S.-H. Hong, C. S. Iliopoulos, K. Park, S. J.
Puglisi, and T. Tokuyama. Order-preserving matching. To appear in Theor.
Comput. Sci.

On Representations of Ternary Order Relations in Numeric Strings

51

[6] D. E. Knuth, J. H. M. Jr., and V. R. Pratt. Fast pattern matching in strings.
SIAM J. Comput., 6(2):323–350, 1977.

[7] M. Kubica, T. Kulczynski, J. Radoszewski, W. Rytter, and T. Walen. A linear
time algorithm for consecutive permutation pattern matching. Inf. Process.
Lett., 113(12):430–433, 2013.

On Representations of Ternary Order Relations in Numeric Strings

52

Engineering a Lightweight

External Memory Suffix Array

Construction Algorithm∗

Juha Kärkkäinen, Dominik Kempa

Department of Computer Science, University of Helsinki, Finland
{Juha.Karkkainen | Dominik.Kempa}@cs.helsinki.fi

Abstract

We describe an external memory suffix array construction algorithm based on
constructing suffix arrays for blocks of text and merging them into the full suffix
array. The basic idea goes back over 20 years and there has been a couple of
later improvements, but we describe several further improvements that make the
algorithm much faster. In particular, we reduce the I/O volume of the algorithm
by a factor O(logσ n). Our experiments show that the algorithm is the fastest
suffix array construction algorithm when the size of the text is within a factor
of about five from the size of the RAM in either direction, which is a common
situation in practice.

1 Introduction

The suffix array [12, 9], a lexicographically sorted array of the suffixes of a text,
is the most important data structure in modern string processing. It is the basis
of powerful text indexes such as enhanced suffix arrays [1] and many compressed
full-text indexes [14]. Modern text books spend dozens of pages in describing appli-
cations of suffix arrays, see e.g. [16]. In many of the applications, the construction
of the suffix array is the main bottleneck in space and time, even though a great
effort has gone into developing better algorithms [17].

For internal memory, there exists an essentially optimal suffix array construction
algorithm (SACA) that runs in linear time using little extra space in addition to
what is needed for the input text and the output suffix array [15]. However, little ex-
tra space is not good enough for large text collections such as web crawls, Wikipedia

Copyright c© by the paper’s authors. Copying permitted only for private and academic purposes.

In: Costas S. Iliopoulos, Alessio Langiu (eds.): Proceedings of the 2nd International Conference
on Algorithms for Big Data, Palermo, Italy, 7-9 April 2014, published at http://ceur-ws.org/

∗ Supported by the Academy of Finland grant 118653 (ALGODAN).

53

or genomic databases, which may be too big for holding even the text alone in RAM.
There are also external memory SACAs that are theoretically optimal with inter-

nal work O
(
n logM/B(n/B)

)
and I/O complexity O

(
(n/B) logM/B(n/B)

)
[11, 4],

where M is the size of the RAM and B is the disk block size. Furthermore, they are
practical and have implementations [7, 4] that are fully scalable in the sense that
they are not seriously limited by the size of the RAM. However, constant factors
in practical running time and disk space usage are significant. The currently best
implementation, eSAIS [4], needs 28n bytes of disk space, which is probably the
main factor limiting its practical scalability.

In this paper, we focus on an algorithm, which we call SAscan, that lies between
internal memory SACAs and eSAIS in scalability. SAscan is a true external memory
algorithm in the sense that it can handle texts that do not fit in internal memory,
but its time complexity Ω(n2/M) makes it hopelessly slow when the text is much
larger than the RAM. However, when the text is too large for an internal memory
SACA, i.e., larger than about one fifth of the RAM size, but not too much bigger
than the RAM, SAscan is probably the fastest SACA in practice. SAscan is also
lightweight in the sense that it uses less than half of the disk space of eSAIS, and
can be implemented to use little more than what is needed for the text and the
suffix array.

The basic approach of SAscan was developed already in the early days of suffix
arrays by Gonnet, Baeza-Yates and Snider [9]. The idea is to partition the text
into blocks that are small enough so that the suffix array for each block can be
constructed in RAM. The block suffix arrays are then merged into the full suffix
array. After constructing the suffix array for each block, the algorithm scans the
previously processed part of the text and determines how each suffix of the scanned
text compares to the suffixes of the current block. The information collected during
the scan is then used for performing the merging.

The early version of SAscan depended heavily on the text not having long repeats
and thus had a poor worst case time complexity. This problem was solved by
Crauser and Ferragina [6], who developed an improved version with worst case time
complexity O

(
(n2/M) logM

)
and I/O complexity of O

(
n2/(MB)

)
. The algorithm

was further improved by Ferragina, Gagie and Manzini [8], who reduced the time
complexity to O

(
(n2/M) log σ

)
, where σ is the size of the text alphabet, and the

disk space usage to little more than what is needed for the input and the output.

In this paper, we describe several further improvements to the SAscan algorithm.
The first improvement is a new merging technique that reduces the I/O complexity
of SAscan to O

(
n2/(MB logσ n) + n/B

)
and provides a substantial speedup in

practice too. Another target of improvement is the rank data structure that plays
a key role in the algorithm. In theory, we observe that the time complexity can
be reduced to O

(
(n2/M) log(2 + (log σ/ log log n))

)
by plugging in the rank data

structure of Belazzougui and Navarro [3]. In practice, we improve the rank data
structure used in the implementation by Ferragina, Gagie and Manzini by applying
alphabet partitioning [2] and fixed block boosting [10]. Finally, we reduce the size
of the internal memory data structures by more than one third, which allows the
algorithm to use bigger and fewer blocks improving the running time significantly.

Engineering a Lightweight External Memory Suffix Array Construction Algorithm

54

We show experimentally that our practical improvements reduce the running
time of SAscan by more than a factor of three. We also show that the algorithm
is faster than eSAIS when the text size is less than about six times the available
RAM, at which point the disk space usage of eSAIS is already well over 150 times
the available RAM.

2 Preliminaries

Let X = X[0..m) be a string over an integer alphabet [0..σ). For i = 0, . . . ,m − 1
we write X[i..m) to denote the suffix of X of length m − i, that is X[i..m) =
X[i]X[i+1] . . .X[m−1]. Similarly, we write X[i..j) to denote the substring X[i]X[i+
1] . . .X[j− 1] of length j− i. If i = j, the substring X[i..j) is the empty string, also
denoted by ε.

The suffix array SAX of X contains the starting positions of the non-empty
suffixes of X in the lexicographical order, i.e., it is an array SAX[0..m) which contains
a permutation of the integers [0..m) such that X[SAX[0]..m) < X[SAX[1]..m) < · · · <
X[SAX[m− 1]..m).

The partial suffix array SAX:Y is the lexicographical ordering of the suffixes of
XY with a starting position in X, i.e., it is an array SAX:Y[0..m) that contains a
permutation of the integers [0..m) such that X[SAX:Y[0]..m)Y < X[SAX:Y[1]..m)Y <
· · · < X[SAX:Y[m−1]..m)Y. Note that SAX:ε = SAX and that SAX:Y is usually similar
but not identical to SAX. Also, SAX:Y can be obtained from SAXY by removing all
entries that are larger or equal to m.

3 Overview of the Algorithm

Let a string T[0..n) be the text. It is divided into blocks of size (at most) m, where
m is chosen so that all the in-memory data structures of O(m log n) bits fit in the
RAM. The blocks are processed starting from the end of the text. Assume that
so far we have processed Y = T[i..n) and constructed the suffix array SAY. Next
we will construct the partial suffix array SAX:Y for the block X = T[i −m..i) and
merge it with SAY to form SAXY.

The suffixes in SAX:Y and SAY are in the same relative order as in SAXY and
we just need to know how to merge them. For this purpose, we compute the
gap array gapX:Y[0..m], where gapX:Y[i] is the number of suffixes of Y that are
lexicographically between the suffixes SAX:Y[i − 1] and SAX:Y[i] of XY. Formally,
for i ∈ [1..m),

gapX:Y[0] = |{j ∈ [0..|Y|) : Y[j..|Y|) < X[SAX:Y[0]..m)Y}|
gapX:Y[i] = |{j ∈ [0..|Y|) : X[SAX:Y[i− 1]..m)Y < Y[j..|Y|) < X[SAX:Y[i]..m)Y}|

gapX:Y[m] = |{j ∈ [0..|Y|) : X[SAX:Y[m− 1]..m)Y < Y[j..|Y|)}| .

The construction of gapX:Y scans Y and is the computational bottleneck of the
algorithm.

The merging of SAX:Y and SAY is trivial with the help of gapX:Y but involves a
lot of I/O for reading SAY and writing SAXY. The total I/O volume is O

(
n2/m

)

in units of O(log n)-bit words. However, we can reduce the I/O by delaying the

Engineering a Lightweight External Memory Suffix Array Construction Algorithm

55

merging. We write SAX:Y and gapX:Y to disk and then proceed to process the
next block. Once all partial suffix arrays and gap arrays have been computed, we
perform one multiway merging of the partial suffix arrays with the help of the gap
arrays. The I/O volume for merging is reduced to O(n) words.

Suppose that during the construction of SAX:Y or gapX:Y we need to compare
two suffixes of SAXY, at least one of which begins in X. In the worst case, the
suffixes could have a very long common prefix, much longer than m, making it
impossible to perform the comparison without a lot of I/O — unless we have extra
information about the order of the suffixes. In our case, that extra information is
provided by a bitvector gtY, which tells whether each suffix of Y is lexicographically
smaller or larger than Y itself. Formally, for all i ∈ [0..|Y|),

gtY[i] =

{
1 if Y[i..|Y|) > Y
0 if Y[i..|Y|) ≤ Y

With the help of gtY, two suffixes of XY, at least one of which begins in X, can
be compared in O(m) time. The algorithms for constructing SAX:Y and gapX:Y
perform more complex operations than plain comparisons, but they use the same
bitvector to avoid extra I/Os resulting from long common prefixes.

In summary, for each text block X we perform the following steps:
1. Given X, Y[0..m) and gtY[0..m), compute SAX:Y.
2. Given X, SAX:Y, Y and gtY, compute gapX:Y and gtXY.

The output bitvector gtXY is needed as input for the next block. The two other
arrays SAX:Y and gapX:Y are stored on disk until all blocks have been processed.
The final phase of the algorithm takes all the partial suffix arrays and gap arrays
as input and produces the full suffix array SAT.

4 Details and Analysis

The first stage in processing a block X is constructing the partial suffix array
SAX:Y. In the full paper, we show how to construct a string Z such that SAZ =
SAX:Y. We can then construct the suffix array using any standard SACA; In the
implementation we use Yuta Mori’s divsufsort [13].

The partial Burrows–Wheeler transform [5] of X is an array BWTX:Y[0..m) de-
fined by:

BWTX:Y[i] =

{
X[SAX:Y[i]− 1] if SAX:Y[i] > 0
$ if SAX:Y[i] = 0

,

where $ is a special symbol that does not appear in the text. For a character
c and an integer i ∈ [0..m], the answer to the rank query rankBWTX:Y

(c, i) is the
number of occurrences of c in BWTX:Y[0..i). Rank queries can be answered in
O(log(2 + (log σ/ log log n))) time using a linear space data structure [3]. In prac-
tice, we use a simpler data structure, described in the full paper, that requires
4.125m bytes of space.

For a string S, let sufrankX:Y(S) be the number of suffixes of XY starting in X
that are lexicographically smaller than S. Let C[0..σ) be an array, where C[c] is the
number of positions i ∈ [0..m) such that X[i] < c. In the full paper, we prove the
following lemma.

Engineering a Lightweight External Memory Suffix Array Construction Algorithm

56

Lemma 4.1 Let k = sufrankX:Y(S) for a string S. For any symbol c,

sufrankX:Y(cS) = C[c] + rankBWTX:Y
(c, k) +

{
1 if X[m− 1] = c and Y < S
0 otherwise

.

Note that when S = Y[j..|Y|), we can replace the comparison Y < S with gtY[j] =
1. Thus, given sufrankX:Y(Y[j..|Y|)), we can easily compute sufrankX:Y(Y[j−1..|Y|))
using the lemma, and we only need to access Y[j−1] in Y and gtY[j] in gtY. Hence,
we can compute sufrankX:Y(Y[j..|Y|)) for j = |Y| − 1, . . . , 0 with a single sequential
pass over Y and gtY. This is all that is needed to compute gapX:Y and gtXY, which
are the output of the second stage of processing X.

The final phase of the algorithm is merging the partial suffix arrays into
the full suffix array SAT. For k ∈ [0..dn/me), let Xk = T[km..(k + 1)m),
Yk = T[(k + 1)m..n), SAk = SAXk:Yk

and gapk = gapXk:Yk
. The algorithm shown

below moves suffixes from the input suffix arrays to the output suffix array in
ascending lexicographical order.

1: for k = 0 to dn/me − 1 do ik ← 0
2: for i = 0 to n− 1 do
3: k ← 0
4: while gapk[ik] > 0 do
5: gapk[ik]← gapk[ik]− 1
6: k ← k + 1
7: SAT[i]← SAk[ik] + km
8: ik ← ik + 1

The correctness of the algorithm is based on the following invariants maintained by
the algorithm: (1) ik is the number of suffixes already moved from SAk to SAT, and
(2) gapk[ik] is the number of suffixes remaining in SAk+1, SAk+2, . . . , SAdn/me−1
that are smaller than SAk[ik].

Theorem 4.2 SAscan can be implemented to construct the suffix array of a

text of length n over an alphabet of size σ in O
(
n2

M log
(

2 + log σ
log logn

))
time and

O
(
n2 log σ
MB logn + n

B log M
B

n
B

)
I/Os in the standard external memory model (see [18])

with RAM size M and disk block size B, both measured in units of Θ(log n)-bit
words. Under the reasonable assumption that M ≥ B logσ n, the I/O complexity is

O
(
n
B

(
1 + n log σ

M logn

))
.

In the full paper, we describe an implementation that needs 5.2m bytes of RAM
and at most 11.5n bytes of disk space, and could be implemented to use just 6.5n
bytes of disk space.

5 Experimental Results

We performed experiments on a machine with a 3.16GHz Intel Core 2 Duo CPU
with 6144KiB L2 cache running Linux (Ubuntu 12.04, 64bit, kernel 3.2). All

Engineering a Lightweight External Memory Suffix Array Construction Algorithm

57

2 4 6 8 10
0

2

4

6

8

●
●

●
●

●
●

●

●
●

●

T
im

e
 

s
M

iB
 

Input size GiB

●

eSAIS
bwtdisk
SAscan

enwik

2 4 6 8
0

2

4

6

8

●
●

●
●

●
●

●
●

●

Input size GiB

●

eSAIS
bwtdisk
SAscan

hg

Figure 1: Scalability of SAscan compared to eSAIS and bwtdisk.

programs were compiled using g++ version 4.6.4 with -O3 -DNDEBUG options. To
reduce the time to run the experiments, we artificially restricted the RAM size to
2GiB using the Linux boot option mem, and the algorithms were allowed to use at
most 1.5GiB. We used two big test files: a concatenation of three different Human
genomes1,2,3 (hg) and a prefix of the English Wikipedia dump4 (enwik).

The first experiment measures the scalability of our new algorithm. We com-
puted the suffix array for varying length prefixes of each testfile using our algorithm
and compared to eSAIS – currently the fastest algorithm for building SA in external
memory. In addition, we also show the runtimes of bwtdisk5, which is essentially
the Ferragina–Gagie–Manzini version of SAscan though it constructs the BWT in-
stead of the suffix array. The suffix array version of bwtdisk would be slower as it
needs more I/O during merging. The results are given in Figure 1. SAscan is faster
than eSAIS up to input sizes of about 9GiB, which is about six times the size of the
RAM available to the algorithms. It is this ratio between the input size and the
RAM size that primarily determines the relative speeds of SAscan and eSAIS. Note
that the main limitation to the scalability of eSAIS is the disk space requirement,
which is about 170 times the available RAM at the crossing point. The runtime of
bwtdisk is always at least 3.5 times the runtime of SAscan, showing the dramatic
effect of our improvements. In the second experiment, we take a closer look at
the effect of our improvements on the runtime. More precisely, we show a detailed
runtime breakdown after turning on individual improvements one by one: the fast
merging of partial suffix arrays, the space-efficient representation of the gap array
(which reduces the RAM usage from 8m to 5.2m bytes), and the optimized rank
data structure. The results are presented in Figure 2. Each of the improvements
produces a significant speedup. The combined effect is more than a factor of three.

1http://hgdownload.soe.ucsc.edu/goldenPath/hg19/chromosomes/
2ftp://public.genomics.org.cn/BGI/yanhuang/fa/
3ftp.ncbi.nlm.nih.gov/genbank/genomes/Eukaryotes/vertebrates_mammals/Homo_

sapiens/
4http://dumps.wikimedia.org/enwiki/
5http://people.unipmn.it/manzini/bwtdisk/

Engineering a Lightweight External Memory Suffix Array Construction Algorithm

58

ba
se

lin
e

fa
st

 m
er

ge

fa
st

 m
er

ge
+

sm
al

l g
ap

fa
st

 m
er

ge
+

sm
al

l g
ap

+
fa

st
 r

an
k0

1

2

3

4

5

6
merge
gap
other

T
im

e
 

s
M

iB
 

enwik (4GiB)

ba
se

lin
e

fa
st

 m
er

ge

fa
st

 m
er

ge
+

sm
al

l g
ap

fa
st

 m
er

ge
+

sm
al

l g
ap

+
fa

st
 r

an
k0

1

2

3

4

5

6
merge
gap
other

hg (4GiB)

Figure 2: Effects of various optimizations on runtime. We separated the runtime
into three components: merging suffix arrays, gap array construction and other
(O(n) time) computations.

References

[1] M. I. Abouelhoda, S. Kurtz, and E. Ohlebusch. Replacing suffix trees with
enhanced suffix arrays. J. Discrete Algorithms, 2(1):53–86, 2004.

[2] J. Barbay, T. Gagie, G. Navarro, and Y. Nekrich. Alphabet partitioning for
compressed rank/select and applications. In Proc. ISAAC, pages 315–326,
2010.

[3] D. Belazzougui and G. Navarro. New lower and upper bounds for representing
sequences. In Proc. ESA, pages 181–192, 2012.

[4] T. Bingmann, J. Fischer, and V. Osipov. Inducing suffix and LCP arrays in
external memory. In Proc. ALENEX, pages 103–112, 2013.

[5] M. Burrows and D. Wheeler. A block sorting lossless data compression al-
gorithm. Technical Report 124, Digital Equipment Corporation, Palo Alto,
California, 1994.

[6] A. Crauser and P. Ferragina. A theoretical and experimental study on the
construction of suffix arrays in external memory. Algorithmica, 32(1):1–35,
2002.

Engineering a Lightweight External Memory Suffix Array Construction Algorithm

59

[7] R. Dementiev, J. Kärkkäinen, J. Mehnert, and P. Sanders. Better external
memory suffix array construction. ACM J. Experimental Algorithmics, 12:Ar-
ticle 3.4, 2008.

[8] P. Ferragina, T. Gagie, and G. Manzini. Lightweight data indexing and com-
pression in external memory. Algorithmica, 63(3):707–730, 2012.

[9] G. H. Gonnet, R. A. Baeza-Yates, and T. Snider. New indices for text: Pat
trees and Pat arrays. In Information Retrieval: Data Structures & Algorithms,
pages 66–82. Prentice–Hall, 1992.

[10] J. Kärkkäinen and S. J. Puglisi. Fixed-block compression boosting in FM-
indexes. In Proc. SPIRE, pages 174–184, 2011.

[11] J. Kärkkäinen, P. Sanders, and S. Burkhardt. Linear work suffix array con-
struction. J. ACM, 53(6):918–936, 2006.

[12] U. Manber and G. W. Myers. Suffix arrays: a new method for on-line string
searches. SIAM J. Computing, 22(5):935–948, 1993.

[13] Y. Mori. libdivsufsort, a C library for suffix array construction. http://code.
google.com/p/libdivsufsort/.

[14] G. Navarro and V. Mäkinen. Compressed full-text indexes. ACM Computing
Surveys, 39(1):Article 2, 2007.

[15] G. Nong. Practical linear-time O(1)-workspace suffix sorting for constant
alphabets. ACM Trans. Inf. Syst., 31(3):Article 15, 2013.

[16] E. Ohlebusch. Bioinformatics Algorithms: Sequence Analysis, Genome Rear-
rangements, and Phylogenetic Reconstruction. Oldenbusch Verlag, 2013.

[17] S. J. Puglisi, W. F. Smyth, and A. Turpin. A taxonomy of suffix array con-
struction algorithms. ACM Computing Surveys, 39(2):Article 4, 2007.

[18] J. S. Vitter. Algorithms and data structures for external memory. Foundations
and Trends in Theoretical Computer Science, 2(4):305–474, 2006.

Engineering a Lightweight External Memory Suffix Array Construction Algorithm

60

Faster Average Case Low Memory

Semi-External Construction of the

Burrows-Wheeler Transform

German Tischler∗

The Wellcome Trust Sanger Institute, Wellcome Trust Genome Campus
Hinxton, Cambridge, CB10 1SA, United Kingdom

german.tischler@sanger.ac.uk

Abstract

The Burrows Wheeler transform has applications in data compression as well as
full text indexing. Despite its important applications and various existing algo-
rithmic approaches the construction of the transform for large data sets is still
challenging. In this paper we present a new semi external memory algorithm
capable of constructing the transform in time O(n log2 log n) on average if suffi-
cient internal memory is available to hold a fixed fraction of the input text. In
the worst case the run-time is O(n log n log log n).

1 Introduction

The Burrows-Wheeler transform (BWT) was introduced to facilitate the lossless
compression of data (cf. [3]). It has an intrinsic connection to some data structures
used for full text indexing like the suffix array (cf. [11]) and is at the heart of some
compressed full text self indexes like the FM index (see [8]). The FM index requires
no more space than the k’th order entropy compressed input text plus some asymp-
totically negligible supporting data structures. Many construction algorithms for
the BWT are based on its relation to the suffix array, which can be computed from
the input text in time linear in the length of that text (see e.g. [10, 13]). While
these algorithms run in linear time and are thus theoretically optimal they require
O(n log n)1 bits of space for the uncompressed suffix array given an input text of

Copyright c© by the paper’s authors. Copying permitted only for private and academic purposes.

In: Costas S. Iliopoulos, Alessio Langiu (eds.): Proceedings of the 2nd International Conference
on Algorithms for Big Data, Palermo, Italy, 7-9 April 2014, published at http://ceur-ws.org/

∗ Supported by the Wellcome Trust
1 by log we mean log2 in this paper

61

length n while the text itself can be stored in a space of ndlog σe bits for an alphabet
of size σ where we often have σ � n and in most applications σ is constant. Algo-
rithms for computing the suffix array in external memory have been proposed (see
e.g. [2, 5]) but these algorithms require large amounts of space and input/output in
external memory. An asymptotically optimal internal memory solution concerning
time and space has been proposed [9]. However the space usage of this algorithm
is O(n) bits for constant alphabets, where an inspection of the algorithm suggests
that the actual practical memory usage of the algorithm is several times the size of
the text in bits. The practical space usage of the algorithm subsequently presented
in [14] is lower (i.e. the involved constants are smaller) while theoretically not
linear. It however still requires multiple times as much space as the input text. A
sample implementation given by the authors only works for input sizes of up to
232 (see [1]) and only handles a single level of the recursive algorithm. Given the
implementation complexity of the algorithm it remains unclear if it would scale
well. Crochemore et al present an algorithm computing the BWT in quadratic
time with constant additional space (see [4]). In [1] Beller et al propose a semi
external algorithm for the construction of the BWT based on induced sorting. An
algorithm is called semi external if it uses non negligible amounts of internal as well
as external memory. According to the authors the algorithm scales to arbitrary
input sizes and uses about one byte (i.e. 8 bits) per input symbol in internal mem-
ory. An algorithm constructing the BWT of a text by block-wise merging using a
finite amount of internal memory is presented in [7]. The algorithm partitions the
text into a set of fixed size blocks. The run-time is O(n2/b) for a block size of b
and a text length of n. It requires an amount of internal memory which is roughly
sufficient to compute the suffix array of a single of these block. In particular the
amount of internal memory used can be smaller than the space required for the
text. In this paper we modify this algorithm to run in time O(n log n log log n) in
the worst case and O(n log2 log n) on average for the case where we are able to
keep a fixed fraction of the text in memory. Assuming the practically common
case of a finite alphabet the algorithm in [7] uses blocks of size O(n/ log n) blocks
when provided with O(n) bits of space in internal memory so its total run-time for
this setting is O(n log n). In consequence our algorithm is faster on average and
slower by O(log log n) for a very unlikely worst case. Compared to the algorithm
presented in [1] our algorithm can work with less internal memory. For DNA for
instance the complete text can be held in memory using about 2 bits per symbol
which is significantly less than a full byte (8 bits) per character.

2 Definitions

For a string s = s0s1s2 . . . sm−1 of length |s| = m we define s[i] = si for 0 ≤ i < m
and for s = s0s1 . . . we define s[i] = si for 0 ≤ i. For a finite word u and a finite or
infinite word v we write their concatenation as uv. For any finite words u, x and
finite or infinite words w, v such that w = uxv we call u a prefix, v a suffix and x a
factor of w. The empty word consisting of no symbols is denoted by ε. For a string
s and indices 0 ≤ i ≤ j < |s| we denote the factor s[i]s[i+ 1] . . . s[j] by s[i, j]. For
any i, j such that i > j the term s[i, j] denotes the empty word. A finite word w

Faster Average Case Low Memory Semi-External Construction of the Burrows-Wheeler
Transform

62

has period p iff w[i] = w[i + p] for i = 0, . . . , |w| − p − 1 and an infinite word w
has period p iff w[i] = w[i + p] for i = 0, 1, For a finite word u and k ∈ N the
k’th power uk of u is defined by u0 = ε and ui+1 = uiu for i ∈ N. A word w is
primitive if it is not a power of a word u such that |u| < |w|. A word u is a root of
w if w = uk for some k ∈ N. A word w is a square if there is a word u such that
w = u2. Throughout this paper let Σ = {0, 1, . . . , σ − 1} denote a finite alphabet
for some σ > 0 and let t = t0t1 . . . tn−1 ∈ Σn denote a finite string of length n > 0.
We define the semi infinite string t̃ by t̃[i] = t[i− bi/ncn] for i ≥ 0. We define the
suffix t̃i of t̃ as t̃i = t̃[i]t̃[i+ 1] . . . and t̃i < t̃j for i, j ∈ N, i 6= j iff either t̃i = t̃j and
i < j or for the smallest ` ≥ 0 such that t̃[i+ `] 6= t̃[j+ `] we have t̃[i+ `] < t̃[j+ `].
The suffix array A of t is defined as the permutation of the numbers 0, 1, . . . , n− 1
such that t̃A[i] < t̃A[i+1] for i = 0, 1, . . . , n− 2 and the Burrows-Wheeler transform

(BWT) B = b0b1 . . . bn−1 of t is given by bi = t̃[A[i] + n− 1] for i = 0, 1, . . . , n− 1.

3 BWT construction by block-wise merging

We give a short high level description of the algorithm by Ferragina et al. in [7]
as we will be modifying it. Unlike our algorithm it assumes the input string to
have a unique minimal terminator symbol. Given a block size b the input string
t is partitioned into c = dn/be blocks T0, T1, . . . , Tc−1 of roughly equal size. The
algorithm starts by suffix sorting the last block, computing its BWT Bc−1 and
the bit array gtc−1 which denotes for each suffix in Tc−1 but the first whether it is
smaller or larger than the first. The BWT of Ti . . . Tc−1 for i < c−1 is computed by
first computing the suffix array for the suffixes starting in Ti by using the text of Ti
and Ti+1 in memory and handling the comparison of suffixes starting in Ti but equal
until both have entered Ti+1 by using the bit vector gti+1 which explicitly stores
the result of this comparison. The BWTs of Ti and Ti+1Ti+2 . . . Tc−1 are merged by
computing the ranks of the suffixes starting in Ti+1Ti+2 . . . Tc−1 in the sorted set of
suffixes of Ti and computing a gap array Gi which denotes how many suffixes from
Ti+1Ti+2 . . . Tc−1 are to be placed before the suffixes in Ti, between two adjacent
suffixes in Ti and after all suffixes in Ti. This process follows a backward search
of Ti+1Ti+2 . . . Tc−1 in Ti. Using the array Gi it is simple to merge the two BWTs
together. For computing the rank of a suffix from Ti+1 . . . Tc−1 it is necessary to
know whether it is smaller or larger than the one at the start of Ti+1Ti+2 . . . Tc−1 as
Bi is not a conventional BWT. For further details about the algorithm the reader
is referred to [7].

4 Sorting single blocks

The algorithm by Ferragina et al processes each single block relying on knowledge
about the priorly fully processed following block, in case of the last block the
terminator. For our algorithm we need to be able to sort a single block without
knowing the complete sorted order of the next block. For this purpose we need to be
able to handle repetitions, one of the major challenges along the way, efficiently. For
our block sorting only repetitions with a period not exceeding the maximum block
size are relevant. Consider a block of b suffixes t̃i+j for some i ∈ N+, 0 ≤ j < b. We
say it generates a repetition with period p, 1 ≤ p ≤ b iff t̃[b−p, b−1] = t̃[b, b+p−1]

Faster Average Case Low Memory Semi-External Construction of the Burrows-Wheeler
Transform

63

and propagates a repetition with period p, 1 ≤ p ≤ b iff t̃i[0, b+2p−1] has period p.
If it propagates repetitions of any periods, then there is a unique minimal period
dividing all other propagated periods. This unique minimal period can then be
computed in time O(b) and space O(b log σ) bits using minor modifications of
standard string algorithms. As there is a unique minimal period propagated by a
block if any and we are only interested in generated periods which are propagated
by the next block we can compute the relevant generation properties of a block
in the same time and space bounds. Given a target block size b′ we partition the
given text into a set of blocks of size either b = d n

d(n/b′)ee ≤ b′ or b − 1 where the

first n mod b blocks have length b and the rest length b−1. For the propagation of
repetitions we extend the blocks of length b− 1 to size b by adding the (circularly)
next character to the right. Using this information about short period repetitions
in the input string, we are able to handle the sorting of a single block of suffixes
extending beyond the end of the block efficiently by reducing long repetitions.

Lemma 4.1 A block of b circular suffixes of t̃ can be sorted in lexicographical order
using time O(b) and space O(b log b) bits using precomputed repetition propagation
data.

For forward searching using the suffix array it is useful to in addition have
the longest common prefix (LCP) array. For two strings u, v let LCP(u, v) =

argmax
min{|u|,|v|}
l=0 u[0, `−1] = v[0, `−1]. For a block t̃[i, i+ b−1] for i, b ∈ N, b > 0

let A denote the permutation of i, i+ 1, . . . , i+ b− 1 such that t̃A[j] < t̃A[j+1] for
j = 0, 1, . . . , b− 2. Then the LCP array of the block is defined by LCP[0] = 0 and
LCP[i] = LCP(t̃A[i−1], t̃A[i]) for i = 1, 2, . . . , b − 1. Using a repetition reduction
method similar to the suffix sorting case we obtain the following result.

Lemma 4.2 The LCP array for a block of b circular suffixes on t̃ can be computed
in time O(b) and space O(b log b) bits using precomputed repetition propagation
data.

5 Merging Pairs of Adjacent Blocks

In our modified algorithm we replace the completely skewed binary merge tree used
in [7] by a balanced binary merge tree. Consequently we will need to be able to
merge blocks with a block size in Ω(n). For merging two adjacent blocks we need
the following components:

1. The BWT of the left and right block. These can be compressed and in external
memory as they will be scanned sequentially.

2. An internal memory index of the left block suitable for backward search in
O(1) time per step. An FM type index using space blHk + o(n log σ) bits can
be used where bl is the length of the left block and Hk denotes the k’th order
entropy of the left block (see [12]).

3. The gt bit vectors for the left and right block. Scanned sequentially and thus
can be read streaming from external memory.

4. The number of circular suffixes in the left block smaller than the rightmost
suffix of the right block. Used as the start point for the backward search.

Faster Average Case Low Memory Semi-External Construction of the Burrows-Wheeler
Transform

64

5. The gap array G.

The first three are equivalent to those used in [7]. The rank of the rightmost
suffix in the right block relative to the suffixes of the left block can be obtained by
employing forward search on one or more text blocks. If the left block is a single
block which was produced by explicit suffix sorting using the method of Section
4, then the rank can be obtained using classical forward search in the suffix array
while using the adjoined LCP array. This takes time O(n + log b) in the worst
case (on average this can be expected to be O(log n + log b), see [15]). If the left
block was already obtained by merging c blocks together, then the desired rank
can be obtained as the sum of the ranks of the suffix relative to all single blocks
composing the left block in time O(c(n+ log b)). Assuming the blocks are merged
together in a balanced binary merge tree the total time used for forward searches
is O(nb log n

b n) in the worst case and O(nb log n
b log n) on average. If we choose

b ∈ O(n
logn) then this becomes O(n log n log log n). The memory required for the

index of the left block in internal memory will be bl log σ + o(bl log σ) for a left
block size of bl assuming that the entropy compression is ineffective. This leaves
us with the space required for the gap array. In the original algorithm this is a
conventional array in internal memory taking space O(b log n) bits for a left block
size of b. As we want to be able to merge blocks with size in Ω(n) this space
requirement is too high. Using Elias γ code (cf. [6]) we can store the gap array for
merging a left and right block of length bl and br respectively in O(bl + br) bits
of space. γ code however is not suitable for efficient updating as we would need it
for computing the gap array. We solve this by producing partial sparse gap arrays
and merging these together as needed. These sparse gap arrays are encoded using
two γ coded number sequences where one encodes the indices of non-zero values
in differential coding and the other encodes the non-zero values. The array G is
produced by backward searching the suffixes of the right block in a suitable index
of the left block. After each step exactly one element of G is incremented. The
sum over the elements of G increases by exactly one for each step. For computing
a complete gap array one option is to start by producing sparse arrays consisting
of a single element of value 1. Whenever we have produced two partial arrays of
sum s we immediately merge them together to a partial array of sum 2s in time
O(s). This method guarantees that the set of sparse gap arrays present at any one
time is bounded in space by O(bl+br) bits. The total merging of partial gap arrays
to obtain the final gap array then takes time O(br log br). If we accumulate br

log2 br
indices for incrementing before writing a partial gap array then we can reduce the
merging time to O(br log log br) without increasing the space used by the algorithm.

The gt array for the merged block can be composed by concatenating the gt
array for the left block and an array storing the respective information for the
right block computed while performing the backward search for filling the gap
array. For this purpose we need to know the rank of the leftmost suffix in the
left block. This can either be computed using forward search on the suffix arrays
of the basic blocks or extracted from a sampled inverse suffix array which can be
computed along the way. The sampled inverse suffix arrays of two blocks can just
like the BWTs of the two blocks be merged using the gap array. This is also an

Faster Average Case Low Memory Semi-External Construction of the Burrows-Wheeler
Transform

65

operation based on stream accesses, so it can be done in external memory in time
O(b).

6 BWT Computation by Balanced Tree Block Merging

Using the building blocks described above we can now describe the complete algo-
rithm for computing the BWT of t by merging basic blocks according to a balanced
binary tree.

1. Choose a target block size b′ ∈ O(n
logn) and deduce a block size b = d n

d n
b′ e
e

such that the number of blocks c satisfies c = dnb e = d nb′ e and n can be split
into blocks of size b and b−1 only. Split t such that the blocks of size b appear
before those of size b′. This step takes constant space and time.

2. Compute which blocks in t propagate repetitions of period at most b and for
each block which is followed by a block propagating a repetition whether it is
generating this repetition. This takes timeO(n) in total and spaceO(b log σ) =
O(n log σ

logn) ⊆ O(n) bits. The result data can be stored in external memory.
3. Compute a balanced merge tree for the blocks. Start with a root representing

all blocks. If a node containing a single block is considered produce a leaf and
stop. Otherwise for an inner node representing k > 1 blocks produce a left
subtree from the dk2 e leftmost blocks and a right subtree from bk2 c rightmost
blocks in t. The tree has O(log n) nodes. Each node stores at most two (start
and end) block indices taking O(log log n) bits and two node pointers also
taking space O(log log n) bits. So the total tree takes space O(log n log log n)
bits. It can be computed in time O(log n).

4. Sort the blocks and store the resulting BWT, gt and sampled inverse suffix
arrays in external memory. Using the suffix and LCP arrays of the basic
blocks also compute the start ranks necessary for the backward searches when
merging the blocks together. This takes time O(n log n log log n) in the worst
case and O(n) on average and space O(b log b) = O(n

logn log n
logn) = O(n) bits

of internal memory.
5. Process the merge tree. Mark all leafs as finished and all inner nodes as unfin-

ished. While there are unfinished nodes choose any unfinished node with only
finished children, merge the respective blocks and mark the node as finished.
There are O(log n) leafs and the tree is balanced, so it has O(log log n) levels.
Each single level can be processed in time O(n log log n). So the total run time
for the tree merging phase is O(n log2 log n). The maximum internal memory
space usage appears when performing the merge operation at the root of the
tree. Here we need space blHk + o(bl log σ) bits where bl denotes the sum of
the length of the blocks in the left subtree which is O(n) and Hk denotes the
k’th order entropy of the text comprising those text blocks.

Summing over all steps the run-time of the algorithm is O(n log n log log n) in the
worst case and O(n log2 log n) on average. In practice this means we can compute
the BWT of a text as long as we are able to hold the text (more precisely the text
for the left subtree of the merge tree) in internal memory. If we can hold a fixed
fraction of the text in main memory, then we can still compute the BWT of the
text in the same run-time by resorting to the original iterative merging scheme

Faster Average Case Low Memory Semi-External Construction of the Burrows-Wheeler
Transform

66

from [7]. We decompose the text into blocks of size b′ such that b′ ≤ n log σ
c logn where

1
c is the fixed fraction of the text we can hold in internal memory and compute a
partial BWT for each of these blocks where the suffixes sorted are considered as
coming from the whole text, i.e. suffix comparisons are still over t̃ and not limited
to a single of the blocks. Then we merge these blocks along a totally skewed
merge tree such that the left block always has size about b′. The size of the set
of partial sparse gap arrays required at any time remains bounded by O(n) bits.
As the number of blocks is fixed, the total asymptotical run-time of the algorithm
remains O(n log n log log n) in the worst case and O(n log2 log n) on average.

7 Conclusion

We have presented a new semi external algorithm for computing the Burrows-
Wheeler transform. On average our new algorithm is faster then the algorithm of
Ferragina et al published in [7]. In comparison with the algorithm by Beller et
in [1] our algorithm can be applied for the case when less than 8 bits per symbol
of internal memory are available. Due to space constraints proofs, parallelisation
of our algorithm and the discussion of an implementation study are postponed
to another paper. Sample code implementing parts of the ideas in this paper is
available from the author on request.

References

[1] T. Beller, M. Zwerger, S. Gog, and E. Ohlebusch. Space-Efficient Construc-
tion of the Burrows-Wheeler Transform. In O. Kurland, M. Lewenstein, and
E. Porat, editors, SPIRE, volume 8214 of Lecture Notes in Computer Science,
pages 5–16. Springer, 2013.

[2] T. Bingmann, J. Fischer, and V. Osipov. Inducing Suffix and LCP Arrays in
External Memory. In P. Sanders and N. Zeh, editors, ALENEX, pages 88–102.
SIAM, 2013.

[3] M. Burrows and D. Wheeler. A Block-Sorting Lossless Data Compression
Algorithm. Digital Systems Research Center. RR-124, 1994.

[4] M. Crochemore, R. Grossi, J. Kärkkäinen, and G. M. Landau. A Constant-
Space Comparison-Based Algorithm for Computing the Burrows-Wheeler
Transform. In J. Fischer and P. Sanders, editors, CPM, volume 7922 of Lecture
Notes in Computer Science, pages 74–82. Springer, 2013.

[5] R. Dementiev, J. Kärkkäinen, J. Mehnert, and P. Sanders. Better external
memory suffix array construction. ACM Journal of Experimental Algorith-
mics, 12, 2008.

[6] P. Elias. Universal codeword sets and representations of the integers. Infor-
mation Theory, IEEE Transactions on, 21(2):194–203, 1975.

[7] P. Ferragina, T. Gagie, and G. Manzini. Lightweight Data Indexing and
Compression in External Memory. Algorithmica, 63(3):707–730, 2012.

Faster Average Case Low Memory Semi-External Construction of the Burrows-Wheeler
Transform

67

[8] P. Ferragina and G. Manzini. Opportunistic Data Structures with Applica-
tions. In Foundations of Computer Science, 2000. Proceedings. 41st Annual
Symposium on, pages 390–398. IEEE, 2000.

[9] W.-K. Hon, K. Sadakane, and W.-K. Sung. Breaking a Time-and-Space Bar-
rier in Constructing Full-Text Indices. In FOCS, pages 251–260. IEEE Com-
puter Society, 2003.

[10] J. Kärkkäinen and P. Sanders. Simple Linear Work Suffix Array Construction.
In Automata, Languages and Programming, pages 943–955. Springer, 2003.

[11] U. Manber and G. Myers. Suffix Arrays: a New Method for On-line String
Searches. SIAM Journal on Computing, 22(5):935–948, 1993.

[12] G. Navarro and V. Mäkinen. Compressed Full-Text Indexes. ACM Computing
Surveys (CSUR), 39(1):2, 2007.

[13] G. Nong, S. Zhang, and W. H. Chan. Two Efficient Algorithms for Linear Time
Suffix Array Construction. Computers, IEEE Transactions on, 60(10):1471–
1484, 2011.

[14] D. Okanohara and K. Sadakane. A Linear-Time Burrows-Wheeler Transform
Using Induced Sorting. In J. Karlgren, J. Tarhio, and H. Hyyrö, editors,
SPIRE, volume 5721 of Lecture Notes in Computer Science, pages 90–101.
Springer, 2009.

[15] W. Szpankowski. On the Height of Digital Trees and Related Problems. Al-
gorithmica, 6(1-6):256–277, 1991.

Faster Average Case Low Memory Semi-External Construction of the Burrows-Wheeler
Transform

68

ASSP; the Antibody Secondary Structure

Profile search tool

Dimitrios Vlachakis†, Alexandros Armaos†, Kasampalidis I, Arianna
Filntisi, Sophia Kossida∗

Bioinformatics & Medical Informatics Team, Biomedical Research Foundation
Academy of Athens, Soranou Efessiou 4, Athens 11527, Greece

∗skossida@bioacademy.gr

Abstract

Antibodies constitute the first line of defense against harmful invaders. In the
post genomics era the sheer size of antibody related NGS information is a major
bottleneck in the quest of understanding and tackling complex genetic diseases
and immunological disorders. Bioinformatics is becoming hugely involved in the
processing of this data with the development of new, more accurate and effi-
cient algorithms. However, one of the major drawbacks of modern bioinformatics
is the fact that protein similarity and blast searches are still based on primary
amino acid sequence rather than structural data. Primary sequence searches are
inadequate, as they fail to provide a realistic fingerprint for the query protein.
Antibody function is much more related to its 3D structure and physicochemical
profile rather than its primary amino acid sequence. After all, structure is much
more conserved than sequence in nature. In this direction, a novel platform has
been developed, which is capable of performing a customized hydropathy blast
using traditional sequence blast filtering and an integrated fast similarity search
algorithm that uses protein secondary structure information. The Antibody Sec-
ondary Structure Profile (ASSP) tool will use secondary structural information
from the PDB database when available, whereas if the query antibody is not in-
dexed in the RCSB PDB database, it will automatically determine the secondary
elements of the given antibody by performing an “on the fly” secondary struc-
ture prediction. All query antibodies are then blasted against the RCSB PDB
secondary elements database. Hits are scored, ranked and returned to the user
via a well-organized and user friendly graphical interface.

Copyright c© by the paper’s authors. Copying permitted only for private and academic purposes.

In: Costas S. Iliopoulos, Alessio Langiu (eds.): Proceedings of the 2nd International Conference
on Algorithms for Big Data, Palermo, Italy, 7-9 April 2014, published at http://ceur-ws.org/

† These authors have contributed equally to this study.
∗ Corresponding author: Sophia Kossida, Bioinformatics & Medical Informatics Team, Biomedi-

cal Research Foundation, Academy of Athens, Soranou Efessiou 4, Athens 11527, Greece

Tel: + 30 210 6597 199, Fax: +30 210 6597 545 E-mail: skossida@bioacademy.gr

69

1 Introduction

The hydrophobic effect is the tendency of non-polar substances to avoid contact
with water. The hydropathy of an amino acid, which is derived from the physico-
chemical properties of its side chains, determines in part the orientation of its side
chains in the three-dimensional protein structure. In particular, when a protein
folds into a three-dimensional structure, the majority of the hydrophobic side-
chains cluster together within the core of the protein. This removal of the hy-
drophobic side-chains out of contact with water generates sufficient free energy to
maintain the folded structure of the protein. The determination of the hydrophobic
or hydrophilic inclinations of a given amino acid side-chain has been approached
in a number of ways. Measuring the partition coefficient of a given amino acid
side-chain between water and a non-interacting, isotropic phase as well as calcu-
lating a transfer free energy from that coefficient is one such approach. Another
way to calculate the hydropathy of a given side-chain is the tabulation of residue
accessibilities from the atomic co-ordinates of twelve globular proteins, taking into
consideration that the ensemble average of the actual locations of a side-chain
should be a direct evaluation of its hydropathy. An additional approach combined
those previously mentioned methods, resulting in the construction of a hydropathy
scale, according to which each amino acid has been given a value reflective of its
relative hydrophilicity and hydrophobicity [4, 17].

The twenty amino acids found in nature have been categorized in hydropathy
classes based on the previously mentioned amino acid hydropathy index developed
by Kyte and Doolittle (1982). Specifically, the amino acids with a hydropathy index
equal to or more than 1.8 were defined as hydrophobic. The amino acids with a
hydropathy index equal to or less than −3.3 were defined as hydrophilic, while the
amino acids with a hydropathy index less than 1.8 and more than -3.3 were defined
as neutral. Three classes were thus defined: the hydrophobic class (I, V, L, F, C, M,
A, W), the neutral class (G, T, S, Y, P, H) and the hydrophilic class (D, N, E, Q, K,
R). Tryptophan (W) was included in the hydrophobic class, its hydropathy index
varying from −0.9 to 1.9, depending on the study. As a general observation, amino
acids with large, nonpolar or largely nonpolar side-chains tend to be hydrophobic,
while the least hydrophobic amino acids are the ones that are charged and largely
polar, such as asparagine. Statistical analysis, in particular correspondence analysis
(COA) and hierarchic classification (CAH), has been conducted according to those
three hydropathy classes upon 2474 sequences of antibody variable regions, which
were extracted from human productively rearranged sequences [17, 25, 8]. There
is a significant variation among the hydrophobicities of the amino acids. Some
are strongly hydrophobic, others are strongly hydrophilic, while others include
both hydrophobic and hydrophilic parts and are called amphiphilic. For such
amphiphilic molecules it is sometimes useful to define a hydrophobic moment,
which is analogous to a dipole moment. For a single amino acid, the hydrophobic
moment can be defined as a line that points from the Ca atom to the middle of
the side-chain, and whose length is proportional to the hydrophobicity of the side-
chain. The dipole moment of a protein, or a part of it, is obtained by summing the
individual vectors (in magnitude and direction) corresponding to the amino acids

ASSP; the Antibody Secondary Structure Profile search tool

70

the protein is composed of. For example, an α helix located on the surface of a
protein will have one side of the helix exposed to solvent and the other side facing
the interior of the protein. The amino acids that comprise the buried side of the α
helix will, in general, be much more hydrophobic than those on the solvent-exposed
side of the helix. This asymmetry results in the α helix having a large hydrophobic
moment directed towards the center of the protein [21].

The three-dimensional structure of a protein is determined by the balance be-
tween a number of destabilizing and stabilizing forces, such as conformational en-
tropy, electrostatic interactions, hydrogen bonds, van der Waals interactions and
hydrophobic interactions. However, hydropathy is considered to be the most promi-
nent driving force responsible for the folding of proteins. Protein folding occurs
in the presence of water, the properties of which are dominated by its inclination
to form hydrogen bonds. Polar compounds can share hydrogen bonds with water
and, for this reason, are readily soluble. In contrast, when a hydrophobic nonpolar
surface is introduced into an aqueous environment, it prevents hydrogen bonding
from occurring, which forces the water molecules to adopt alternative arrangements
that permit hydrogen bonding to other water molecules. This inflicted restriction
on the alignment of the water molecules has an energetic cost and is the physical
basis of the hydrophobic effect. It has been calculated that when a protein folds,
81% of the nonpolar side-chains (Ala, Val, Ile, Leu, Met, Phe, Trp, Cys), 70% of
the peptide groups, 63% of the polar side chains (Asn, Gln, Ser, Thr, Tyr) and
54% of the charged side chains (Arg, Lys, His, Asp, Glu) are buried in the interior
of the protein, out of contact with water [21, 23].

2 Description of ASSP

Hydropathy is a physicochemical property known to be well conserved among an-
tibodies, which can be explained to a large extent by the significant contribution
of the hydrophobic residues to the folding of antibodies. Numerous studies on
proteins and antibodies have demonstrated that the information necessary to pro-
duce a given three dimensional protein structure can be encoded by many different
amino acids. In contrast, it has been demonstrated that the periodicity of po-
lar and nonpolar amino acids is the major determinant of secondary structure in
self-assembling oligomeric peptides. In fact, the choice between α-helical and β-
sheet secondary structure is influenced by the sequence periodicity of polar and
nonpolar amino acids. Even though amino acid residues may differ in their intrin-
sic preferences for one secondary structure versus another, these preferences can
be overwhelmed by the drive to form amphiphilic structures capable of burying
hydrophobic surface area. It can be observed that structural similarity among an-
tibodies is reflected on the distribution of hydropathicity along their amino acid
sequences, since the hydrophobicity patterns of residues match the periodicity of
secondary structures.

Homologous antibodies and proteins within a antibody/protein family as well
as proteins with related structures appear to have similarities in their hydropathy
distributions, even when sequence similarities could not be detected [14, 2, 32, 24].

Since the hydropathy distribution along the antibody sequence has been recog-

ASSP; the Antibody Secondary Structure Profile search tool

71

nized as a feature useful for the characterization of protein structure in the form of
hydropathy profiles, a number of methods based on hydropathy have been devel-
oped in order to explain the folding and the structural features of antibodies. The
realization that protein sequence contains hydropathy patterns led to the develop-
ment of reduced amino acid alphabets based on hydropathy for the prediction of
secondary structure.

Hydropathy has also been utilized for the detection of analogous and distantly
related proteins and the classification of new protein sequence data. The use of
hydropathy profile analysis has made possible the identification of more distantly
related antibodies than could be done by sequence comparison. In addition, anti-
body sequence databases have been analyzed using hydropathy patterns with the
goal of identifying new members of functional classes [17, 24, 7, 26, 5, 33, 19, 20, 6].

Many homologous proteins share very low primary sequence identity and sim-
ilarity scores amongst them. The most characteristic example of such proteins is
viral enzymes. Helicases, proteases and polymerases are just few of the many ex-
amples of protein families that are structurally conserved but may share no more
than 10% sequence identity with each other. Consequently, looking for homologues
of a certain viral enzyme or even for a suitable template structure during homol-
ogy modelling using traditional amino acid based blast searches is futile. However,
careful structural analysis of any of the above enzymes reveals that those proteins
are actually highly conserved in their secondary, tertiary and quaternary struc-
tures. Moreover, all evolutionary protein relationships as well as protein function
analysis should also be based on searches that utilize structural information. Over-
all, it has been established that homologous proteins are much more conserved in
their structures than in their amino acid primary sequences [4, 17].

Herein, the ASSP tool takes advantage of the full RCSB PDB secondary struc-
ture database in order to perform blast-like searches in the secondary element level
amongst proteins. To date, even though long studies have been conducted in many
fields of structural biology and modern bioinformatics this problem not been yet
satisfactorily addressed [15, 1, 22]. This is a fact that necessitates the need to the
development of such a platform.

ASSPs main-window is a menu-driven interface as well as a tab step-by-step
layout. Initially the user has an option regarding the query input type that will
be used. ASSP will handle both primary amino acid sequence as well as DSSP-
formatted secondary element protein sequence [13]. The user can follow two main
routes for the ASSP run: Firstly, the user may input either raw primary amino
acid sequence for a conventional blast search or opt for a quick secondary struc-
ture prediction of the amino acid sequence using the built-in STRAP module [9].
STRAP will perform a very fast, over the internet secondary structure prediction,
which will eventually return the predicted secondary element composition of the
query protein [9]. Eventually a DSSP compatible secondary structure determi-
nation code will have been obtained for the actual secondary structure similarity
search [13]. Secondly, an existing DSSP compatible secondary structure determi-
nation code may be used as input from the user straightaway, which will then be
automatically blasted against the secondary structural index database of the RCSB
Protein Databank. If a secondary element antibody sequence description is used,

ASSP; the Antibody Secondary Structure Profile search tool

72

Figure 1: The graphical user interface for the ASSP platform provides an intuitive
pipeline for running similarity searches that eliminate the chance for human error,
while at the same time providing a graphical, easy to comprehent results output
window. The graphical user interface of the ASSP platform, consists of the follow-
ing main windows: 1. The blast type selection option. 2. The input query window.
3. Sequence name and number of hits selections 4. The result-output area. The
alignmed regions are color-coded in accordance to the IMGT coloring scheme for
hydropathy. The identical residues are colored green, the hydrophobic residues are
colored blue, the neutral residues are colored red and the hydrophilic residues are
colored yellow.

then ASSP will move swiftly to the actual similarity blast search.

The screening process of ASSP is broken down in two steps. First a conventional
primary sequence-based blast is performed with a threshold value of 30% identity,
when temporary file is created with all sequences sharing more than 30% identity
with the query antibody sequence (using the blosum62 substitution matrix). Then
the custom made hydropathy substitution matrix is engaged and the previously
filtered entries are ranked according to their identity/similarity scores based on
their hydropathy profiles.

The hydropathy matrix has been created using the antibody hydropathy index
from IMGT [18]. Results in the form of alignments and similarity percentages are
calculated, scored, ranked and returned to the user through the same graphical
interface that has been specifically designed to simplify the task for the user and
to eliminate the possibility of a user-inflicted error (see Figure 1). The output
window is color-coded in accordance to the IMGT coloring scheme for hydropathy.
The identical residues are colored green, the hydrophobic residues (4, 5 to −0, 9)
are colored blue, the neutral residues (−0, 4 to −3, 2) are colored red and the
hydrophilic residues (−3, 5 to −4, 5) are colored yellow. The results are outputted
and saved in easy to manipulate text-based text/ascii files for future analysis.

The secondary description code that ASSP has adopted is the same with the
one DSSP has been using for many years now [13]. This was intentionally done
for ease of use and backward compatibility issues. More specifically an eight-letter
description code is used. Using just eight letters, instead of the traditional twenty

ASSP; the Antibody Secondary Structure Profile search tool

73

amino acid letters, makes similarity searches ever more efficient and faster than
ever before. The eight letter secondary element code comprises of the following
letters: H for α helix conformation, B for residues in isolated beta-bridge, E for
extended strands that participate in beta ladders, G for 3/10 helices, I for pi helices,
T for hydrogen bonded turns and S for bends. C is used for the blank space in
the DSSP secondary structure, which represents a loop or an irregular element.
Other major suites, such as the PDBFINDER suite, also adopt this convention
with unstructured protein regions [11]. Same WHATIF uses C, as many times
leaving a blank may be confusing, misleading and inconvenient [31, 10, 12]. A
batch execultion mode has also been prepared for the ASSP suite. A simple text
file is required with as many sequences as the user wishes, each one stored in a
different line. The ASSP algorithm will then automatically read that file line by
line and execute the antibody similarity search for as many times as the lines of the
input batch file. This comes quite handy for those who wish to perform secondary
structure similarity searches on large databases of protein or peptide sequences
[28, 30, 29, 3, 27, 16]. Finally, an extensive manual and use-case based examples
for the use of ASSP, will pop-up through the Help button, using the operating
systems HTML browser application.

3 Conclusions

In conclusion, the ASSP toolkit provides a novel, quick and reliable tool for in
silico antibody similarity searches in one pipelined platform under a user friendly
graphical user interface. We therefore, propose that our structural similarities
application described here would yield results of great interest to many antibody-
related scientific disciplines. The ASSP platform is distributed as freeware under
a GNU license.

4 Availability

Availability: ASSP can be freely downloaded via our dedicated server system at
http://www.bioacademy.gr/bioinformatics/assp/index.html

ASSP is an open source, cross platform application available freely to all users
under a GNU license basis. The full package, including installation scripts, figures,
a full description, a detailed manual, complete tutorials as hands-on use cases,
software prerequisites and various examples can be downloaded at: http://www.

bioacademy.gr/bioinformatics/assp/. Prior to download; check the provided
information on the website about software prerequisites. Please email comments
and bug reports at dvlachakis@bioacademy.gr.

Acknowledgements

This work was partially supported by:
1. The BIOEXPLORE research project. BIOEXPLORE research project falls un-
der the Operational Program “Education and Lifelong Learning” and is co-financed
by the European Social Fund (ESF) and National Resources.
2. European Union (European Social Fund - ESF) and Greek national funds

ASSP; the Antibody Secondary Structure Profile search tool

74

through the Operational Program “Education and Lifelong Learning” of the
National Strategic Reference Framework (NSRF) - Research Funding Program:
Thales. Investing in knowledge society through the European Social Fund.

The authors would like to thank Prof. Marie-Paule LeFranc and the IMGT
institute for their constructive comments and support.

References

[1] C. Berbalk, C. S. Schwaiger, and P. Lackner. Accuracy analysis of multiple
structure alignments. Protein Sci., 18(10):2027–2035, Oct 2009.

[2] J. U. Bowie, J. F. Reidhaar-Olson, W. A. Lim, and R. T. Sauer. Decipher-
ing the message in protein sequences: tolerance to amino acid substitutions.
Science (New York, N.Y.), 247(4948):1306–1310, Mar. 1990.

[3] C. S. Carvalho, D. Vlachakis, G. Tsiliki, V. Megalooikonomou, and S. Kossida.
Protein signatures using electrostatic molecular surfaces in harmonic space.
PeerJ, 1:e185, 2013.

[4] C. Chothia. The nature of the accessible and buried surfaces in proteins.
Journal of Molecular Biology, 105(1):1–12, July 1976.

[5] S. Y. Chung and S. Subbiah. A structural explanation for the twilight zone
of protein sequence homology. Structure, 4(10):1123–1127, Oct. 1996.

[6] J. D. Clements and R. E. Martin. Identification of novel membrane proteins by
searching for patterns in hydropathy profiles. Eur. J. Biochem., 269(8):2101–
2107, Apr 2002.

[7] D. Eisenberg, R. M. Weiss, and T. C. Terwilliger. The hydrophobic moment
detects periodicity in protein hydrophobicity. Proc Natl Acad Sci U S A,
81(1):140–144, Jan. 1984.

[8] D. M. Engelman, T. A. Steitz, and A. Goldman. Identifying nonpolar trans-
bilayer helices in amino acid sequences of membrane proteins. Annual review
of biophysics and biophysical chemistry, 15:321–353, 1986.

[9] C. Gille. STRAP: Structure based sequences alignment program. http://

www.bioinformatics.org/strap/index2.html.

[10] M. L. Hekkelman, T. A. Te Beek, S. R. Pettifer, D. Thorne, T. K. Attwood,
and G. Vriend. WIWS: a protein structure bioinformatics Web service collec-
tion. Nucleic Acids Res., 38(Web Server issue):W719–723, Jul 2010.

[11] R. Hooft, C. Sander, M. Scharf, and G. Vriend. The pdbfinder database: a
summary of pdb, dssp and hssp information with added value. Computer
applications in the biosciences : CABIOS, 12(6):525–529, 1996.

[12] R. W. W. Hooft, G. Vriend, C. Sander, and E. E. Abola. Errors in protein
structures. Nature, 381(6580):272, May 1996.

ASSP; the Antibody Secondary Structure Profile search tool

75

[13] W. Kabsch and C. Sander. Dictionary of protein secondary structure: pat-
tern recognition of hydrogen-bonded and geometrical features. Biopolymers,
22(12):2577–2637, Dec 1983.

[14] S. Kamtekar, J. M. Schiffer, H. Xiong, J. M. Babik, and M. H. Hecht. Protein
design by binary patterning of polar and nonpolar amino acids. Science,
262(5140):1680–1685, 1993.

[15] R. Kolodny, P. Koehl, and M. Levitt. Comprehensive evaluation of protein
structure alignment methods: scoring by geometric measures. J. Mol. Biol.,
346(4):1173–1188, Mar 2005.

[16] E. Krissinel. Enhanced fold recognition using efficient short fragment cluster-
ing. Journal of Molecular Biochemistry, 1(2), 2012.

[17] J. Kyte and R. F. Doolittle. A simple method for displaying the hydropathic
character of a protein. Journal of Molecular Biology, 157(1):105–132, May
1982.

[18] M. P. Lefranc, V. Giudicelli, C. Ginestoux, J. Bodmer, W. Muller, R. Bontrop,
M. Lemaitre, A. Malik, V. Barbie, and D. Chaume. IMGT, the international
ImMunoGeneTics database. Nucleic Acids Res., 27(1):209–212, Jan 1999.

[19] J. S. Lolkema and D. J. Slotboom. Estimation of structural similarity of mem-
brane proteins by hydropathy profile alignment. Mol. Membr. Biol., 15(1):33–
42, 1998.

[20] J. S. Lolkema and D. J. Slotboom. Hydropathy profile alignment: a tool
to search for structural homologues of membrane proteins. FEMS Microbiol.
Rev., 22(4):305–322, Oct 1998.

[21] B. W. Matthews. Hydrophobic Interactions in Proteins. John Wiley & Sons,
Ltd, 2001.

[22] G. Mayr, F. S. Domingues, and P. Lackner. Comparative analysis of protein
structure alignments. BMC Struct. Biol., 7:50, 2007.

[23] C. N. Pace, B. A. Shirley, M. McNutt, and K. Gajiwala. Forces contributing
to the conformational stability of proteins. FASEB journal, 10(1):75–83, Jan.
1996.

[24] J. Pánek, I. Eidhammer, and R. Aasland. A new method for identification of
protein (sub)families in a set of proteins based on hydropathy distribution in
proteins. Proteins, 58(4):923–934, 03 2005.

[25] C. Pommié, S. Levadoux, R. Sabatier, G. Lefranc, and M.-P. Lefranc. Imgt
standardized criteria for statistical analysis of immunoglobulin v-region amino
acid properties. Journal of Molecular Recognition, 17(1):17–32, 2004.

ASSP; the Antibody Secondary Structure Profile search tool

76

[26] R. B. Russell, M. A. Saqi, R. A. Sayle, P. A. Bates, and M. J. Sternberg.
Recognition of analogous and homologous protein folds: analysis of sequence
and structure conservation. J Mol Biol, 269(3):423–439, June 1997.

[27] D. Vlachakis, D. Tsagkrasoulis, V. Megalooikonomou, and S. Kossida. Intro-
ducing drugster: a comprehensive and fully integrated drug design, lead and
structure optimization toolkit. Bioinformatics, 29(1):126–128, 2013.

[28] D. Vlachakis, D. Tsagkrasoulis, G. Tsiliki, and S. Kossida. The future of
structural bioinformatics in the post-genomic era. EMBnet. journal, 18(1):pp–
3, 2012.

[29] D. Vlachakis, S. C. Tsaniras, C. Feidakis, and S. Kossida. An in silico 3D study
of the biglycan core protein, using homology modelling techniques. Journal of
Molecular Biochemistry, 2(2), 2013.

[30] D. Vlachakis, G. Tsiliki, D. Tsagkrasoulis, C. S. Carvalho, V. Mega-
looikonomou, and S. Kossida. Speeding up the drug discovery process: struc-
tural similarity searches using molecular surfaces. EMBnet.journal, 18(1),
2012.

[31] G. Vriend. WHAT IF: a molecular modeling and drug design program. J Mol
Graph, 8(1):52–56, Mar 1990.

[32] H. Xiong, B. L. Buckwalter, H. M. Shieh, and M. H. Hecht. Periodicity of polar
and nonpolar amino acids is the major determinant of secondary structure in
self-assembling oligomeric peptides. Proceedings of the National Academy of
Sciences, 92(14):6349–6353, 1995.

[33] X. J. Yu and D. H. Walker. Sequence and characterization of an Ehrlichia
chaffeensis gene encoding 314 amino acids highly homologous to the NAD A
enzyme. FEMS Microbiol. Lett., 154(1):53–58, Sep 1997.

ASSP; the Antibody Secondary Structure Profile search tool

77

