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Abstract

The Burrows Wheeler transform has applications in data compression as well as
full text indexing. Despite its important applications and various existing algo-
rithmic approaches the construction of the transform for large data sets is still
challenging. In this paper we present a new semi external memory algorithm
capable of constructing the transform in time O(n log2 log n) on average if su�-
cient internal memory is available to hold a fixed fraction of the input text. In
the worst case the run-time is O(n log n log log n).

1 Introduction

The Burrows-Wheeler transform (BWT) was introduced to facilitate the lossless
compression of data (cf. [3]). It has an intrinsic connection to some data structures
used for full text indexing like the su�x array (cf. [11]) and is at the heart of some
compressed full text self indexes like the FM index (see [8]). The FM index requires
no more space than the k’th order entropy compressed input text plus some asymp-
totically negligible supporting data structures. Many construction algorithms for
the BWT are based on its relation to the su�x array, which can be computed from
the input text in time linear in the length of that text (see e.g. [10, 13]). While
these algorithms run in linear time and are thus theoretically optimal they require
O(n log n)1 bits of space for the uncompressed su�x array given an input text of
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length n while the text itself can be stored in a space of ndlog �e bits for an alphabet
of size � where we often have � ⌧ n and in most applications � is constant. Algo-
rithms for computing the su�x array in external memory have been proposed (see
e.g. [2, 5]) but these algorithms require large amounts of space and input/output in
external memory. An asymptotically optimal internal memory solution concerning
time and space has been proposed [9]. However the space usage of this algorithm
is O(n) bits for constant alphabets, where an inspection of the algorithm suggests
that the actual practical memory usage of the algorithm is several times the size of
the text in bits. The practical space usage of the algorithm subsequently presented
in [14] is lower (i.e. the involved constants are smaller) while theoretically not
linear. It however still requires multiple times as much space as the input text. A
sample implementation given by the authors only works for input sizes of up to
232 (see [1]) and only handles a single level of the recursive algorithm. Given the
implementation complexity of the algorithm it remains unclear if it would scale
well. Crochemore et al present an algorithm computing the BWT in quadratic
time with constant additional space (see [4]). In [1] Beller et al propose a semi
external algorithm for the construction of the BWT based on induced sorting. An
algorithm is called semi external if it uses non negligible amounts of internal as well
as external memory. According to the authors the algorithm scales to arbitrary
input sizes and uses about one byte (i.e. 8 bits) per input symbol in internal mem-
ory. An algorithm constructing the BWT of a text by block-wise merging using a
finite amount of internal memory is presented in [7]. The algorithm partitions the
text into a set of fixed size blocks. The run-time is O(n2/b) for a block size of b
and a text length of n. It requires an amount of internal memory which is roughly
su�cient to compute the su�x array of a single of these block. In particular the
amount of internal memory used can be smaller than the space required for the
text. In this paper we modify this algorithm to run in time O(n log n log log n) in
the worst case and O(n log2 log n) on average for the case where we are able to
keep a fixed fraction of the text in memory. Assuming the practically common
case of a finite alphabet the algorithm in [7] uses blocks of size O(n/ log n) blocks
when provided with O(n) bits of space in internal memory so its total run-time for
this setting is O(n log n). In consequence our algorithm is faster on average and
slower by O(log log n) for a very unlikely worst case. Compared to the algorithm
presented in [1] our algorithm can work with less internal memory. For DNA for
instance the complete text can be held in memory using about 2 bits per symbol
which is significantly less than a full byte (8 bits) per character.

2 Definitions

For a string s = s
0

s
1

s
2

. . . s
m�1

of length |s| = m we define s[i] = s
i

for 0  i < m
and for s = s

0

s
1

. . . we define s[i] = s
i

for 0  i. For a finite word u and a finite or
infinite word v we write their concatenation as uv. For any finite words u, x and
finite or infinite words w, v such that w = uxv we call u a prefix, v a su�x and x a
factor of w. The empty word consisting of no symbols is denoted by ✏. For a string
s and indices 0  i  j < |s| we denote the factor s[i]s[i+ 1] . . . s[j] by s[i, j]. For
any i, j such that i > j the term s[i, j] denotes the empty word. A finite word w
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has period p i↵ w[i] = w[i + p] for i = 0, . . . , |w| � p � 1 and an infinite word w
has period p i↵ w[i] = w[i + p] for i = 0, 1, . . .. For a finite word u and k 2 N the
k’th power uk of u is defined by u0 = ✏ and ui+1 = uiu for i 2 N. A word w is
primitive if it is not a power of a word u such that |u| < |w|. A word u is a root of
w if w = uk for some k 2 N. A word w is a square if there is a word u such that
w = u2. Throughout this paper let ⌃ = {0, 1, . . . ,� � 1} denote a finite alphabet
for some � > 0 and let t = t

0

t
1

. . . t
n�1

2 ⌃n denote a finite string of length n > 0.
We define the semi infinite string t̃ by t̃[i] = t[i� bi/ncn] for i � 0. We define the
su�x t̃

i

of t̃ as t̃
i

= t̃[i]t̃[i+1] . . . and t̃
i

< t̃
j

for i, j 2 N, i 6= j i↵ either t̃
i

= t̃
j

and
i < j or for the smallest ` � 0 such that t̃[i+ `] 6= t̃[j+ `] we have t̃[i+ `] < t̃[j+ `].
The su�x array A of t is defined as the permutation of the numbers 0, 1, . . . , n� 1
such that t̃

A[i]

< t̃
A[i+1]

for i = 0, 1, . . . , n� 2 and the Burrows-Wheeler transform
(BWT) B = b

0

b
1

. . . b
n�1

of t is given by b
i

= t̃[A[i] + n� 1] for i = 0, 1, . . . , n� 1.

3 BWT construction by block-wise merging

We give a short high level description of the algorithm by Ferragina et al. in [7]
as we will be modifying it. Unlike our algorithm it assumes the input string to
have a unique minimal terminator symbol. Given a block size b the input string
t is partitioned into c = dn/be blocks T

0

, T
1

, . . . , T
c�1

of roughly equal size. The
algorithm starts by su�x sorting the last block, computing its BWT B

c�1

and
the bit array gt

c�1

which denotes for each su�x in T
c�1

but the first whether it is
smaller or larger than the first. The BWT of T

i

. . . T
c�1

for i < c�1 is computed by
first computing the su�x array for the su�xes starting in T

i

by using the text of T
i

and T
i+1

in memory and handling the comparison of su�xes starting in T
i

but equal
until both have entered T

i+1

by using the bit vector gt
i+1

which explicitly stores
the result of this comparison. The BWTs of T

i

and T
i+1

T
i+2

. . . T
c�1

are merged by
computing the ranks of the su�xes starting in T

i+1

T
i+2

. . . T
c�1

in the sorted set of
su�xes of T

i

and computing a gap array G
i

which denotes how many su�xes from
T
i+1

T
i+2

. . . T
c�1

are to be placed before the su�xes in T
i

, between two adjacent
su�xes in T

i

and after all su�xes in T
i

. This process follows a backward search
of T

i+1

T
i+2

. . . T
c�1

in T
i

. Using the array G
i

it is simple to merge the two BWTs
together. For computing the rank of a su�x from T

i+1

. . . T
c�1

it is necessary to
know whether it is smaller or larger than the one at the start of T

i+1

T
i+2

. . . T
c�1

as
B

i

is not a conventional BWT. For further details about the algorithm the reader
is referred to [7].

4 Sorting single blocks

The algorithm by Ferragina et al processes each single block relying on knowledge
about the priorly fully processed following block, in case of the last block the
terminator. For our algorithm we need to be able to sort a single block without
knowing the complete sorted order of the next block. For this purpose we need to be
able to handle repetitions, one of the major challenges along the way, e�ciently. For
our block sorting only repetitions with a period not exceeding the maximum block
size are relevant. Consider a block of b su�xes t̃

i+j

for some i 2 N+, 0  j < b. We
say it generates a repetition with period p, 1  p  b i↵ t̃[b�p, b�1] = t̃[b, b+p�1]
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and propagates a repetition with period p, 1  p  b i↵ t̃
i

[0, b+2p�1] has period p.
If it propagates repetitions of any periods, then there is a unique minimal period
dividing all other propagated periods. This unique minimal period can then be
computed in time O(b) and space O(b log �) bits using minor modifications of
standard string algorithms. As there is a unique minimal period propagated by a
block if any and we are only interested in generated periods which are propagated
by the next block we can compute the relevant generation properties of a block
in the same time and space bounds. Given a target block size b0 we partition the
given text into a set of blocks of size either b = d n

d(n/b0)ee  b0 or b � 1 where the
first n mod b blocks have length b and the rest length b�1. For the propagation of
repetitions we extend the blocks of length b� 1 to size b by adding the (circularly)
next character to the right. Using this information about short period repetitions
in the input string, we are able to handle the sorting of a single block of su�xes
extending beyond the end of the block e�ciently by reducing long repetitions.

Lemma 4.1 A block of b circular su�xes of t̃ can be sorted in lexicographical order
using time O(b) and space O(b log b) bits using precomputed repetition propagation
data.

For forward searching using the su�x array it is useful to in addition have
the longest common prefix (LCP) array. For two strings u, v let LCP(u, v) =

argmaxmin{|u|,|v|}
l=0

u[0, `� 1] = v[0, `� 1]. For a block t̃[i, i+ b� 1] for i, b 2 N, b > 0
let A denote the permutation of i, i+ 1, . . . , i+ b� 1 such that t̃A[j]

< t̃A[j+1]

for
j = 0, 1, . . . , b� 2. Then the LCP array of the block is defined by LCP[0] = 0 and
LCP[i] = LCP(t̃A[i�1]

, t̃A[i]

) for i = 1, 2, . . . , b � 1. Using a repetition reduction
method similar to the su�x sorting case we obtain the following result.

Lemma 4.2 The LCP array for a block of b circular su�xes on t̃ can be computed
in time O(b) and space O(b log b) bits using precomputed repetition propagation
data.

5 Merging Pairs of Adjacent Blocks

In our modified algorithm we replace the completely skewed binary merge tree used
in [7] by a balanced binary merge tree. Consequently we will need to be able to
merge blocks with a block size in ⌦(n). For merging two adjacent blocks we need
the following components:
1. The BWT of the left and right block. These can be compressed and in external

memory as they will be scanned sequentially.
2. An internal memory index of the left block suitable for backward search in

O(1) time per step. An FM type index using space b
l

H
k

+ o(n log �) bits can
be used where b

l

is the length of the left block and H
k

denotes the k’th order
entropy of the left block (see [12]).

3. The gt bit vectors for the left and right block. Scanned sequentially and thus
can be read streaming from external memory.

4. The number of circular su�xes in the left block smaller than the rightmost
su�x of the right block. Used as the start point for the backward search.
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5. The gap array G.

The first three are equivalent to those used in [7]. The rank of the rightmost
su�x in the right block relative to the su�xes of the left block can be obtained by
employing forward search on one or more text blocks. If the left block is a single
block which was produced by explicit su�x sorting using the method of Section
4, then the rank can be obtained using classical forward search in the su�x array
while using the adjoined LCP array. This takes time O(n + log b) in the worst
case (on average this can be expected to be O(log n + log b), see [15]). If the left
block was already obtained by merging c blocks together, then the desired rank
can be obtained as the sum of the ranks of the su�x relative to all single blocks
composing the left block in time O(c(n+ log b)). Assuming the blocks are merged
together in a balanced binary merge tree the total time used for forward searches
is O(n

b

log n

b

n) in the worst case and O(n
b

log n

b

log n) on average. If we choose
b 2 O( n

logn

) then this becomes O(n log n log log n). The memory required for the

index of the left block in internal memory will be b
l

log � + o(b
l

log �) for a left
block size of b

l

assuming that the entropy compression is ine↵ective. This leaves
us with the space required for the gap array. In the original algorithm this is a
conventional array in internal memory taking space O(b log n) bits for a left block
size of b. As we want to be able to merge blocks with size in ⌦(n) this space
requirement is too high. Using Elias � code (cf. [6]) we can store the gap array for
merging a left and right block of length b

l

and b
r

respectively in O(b
l

+ b
r

) bits
of space. � code however is not suitable for e�cient updating as we would need it
for computing the gap array. We solve this by producing partial sparse gap arrays
and merging these together as needed. These sparse gap arrays are encoded using
two � coded number sequences where one encodes the indices of non-zero values
in di↵erential coding and the other encodes the non-zero values. The array G is
produced by backward searching the su�xes of the right block in a suitable index
of the left block. After each step exactly one element of G is incremented. The
sum over the elements of G increases by exactly one for each step. For computing
a complete gap array one option is to start by producing sparse arrays consisting
of a single element of value 1. Whenever we have produced two partial arrays of
sum s we immediately merge them together to a partial array of sum 2s in time
O(s). This method guarantees that the set of sparse gap arrays present at any one
time is bounded in space by O(b

l

+b
r

) bits. The total merging of partial gap arrays
to obtain the final gap array then takes time O(b

r

log b
r

). If we accumulate b

r

log

2
b

r

indices for incrementing before writing a partial gap array then we can reduce the
merging time to O(b

r

log log b
r

) without increasing the space used by the algorithm.

The gt array for the merged block can be composed by concatenating the gt
array for the left block and an array storing the respective information for the
right block computed while performing the backward search for filling the gap
array. For this purpose we need to know the rank of the leftmost su�x in the
left block. This can either be computed using forward search on the su�x arrays
of the basic blocks or extracted from a sampled inverse su�x array which can be
computed along the way. The sampled inverse su�x arrays of two blocks can just
like the BWTs of the two blocks be merged using the gap array. This is also an
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operation based on stream accesses, so it can be done in external memory in time
O(b).

6 BWT Computation by Balanced Tree Block Merging

Using the building blocks described above we can now describe the complete algo-
rithm for computing the BWT of t by merging basic blocks according to a balanced
binary tree.
1. Choose a target block size b0 2 O( n

logn

) and deduce a block size b = d n

d n

b

0 e
e

such that the number of blocks c satisfies c = dn

b

e = d n

b

0 e and n can be split
into blocks of size b and b�1 only. Split t such that the blocks of size b appear
before those of size b0. This step takes constant space and time.

2. Compute which blocks in t propagate repetitions of period at most b and for
each block which is followed by a block propagating a repetition whether it is
generating this repetition. This takes timeO(n) in total and spaceO(b log �) =
O(n log �

logn

) ✓ O(n) bits. The result data can be stored in external memory.
3. Compute a balanced merge tree for the blocks. Start with a root representing

all blocks. If a node containing a single block is considered produce a leaf and
stop. Otherwise for an inner node representing k > 1 blocks produce a left
subtree from the dk

2

e leftmost blocks and a right subtree from bk

2

c rightmost
blocks in t. The tree has O(log n) nodes. Each node stores at most two (start
and end) block indices taking O(log log n) bits and two node pointers also
taking space O(log log n) bits. So the total tree takes space O(log n log log n)
bits. It can be computed in time O(log n).

4. Sort the blocks and store the resulting BWT, gt and sampled inverse su�x
arrays in external memory. Using the su�x and LCP arrays of the basic
blocks also compute the start ranks necessary for the backward searches when
merging the blocks together. This takes time O(n log n log log n) in the worst
case and O(n) on average and space O(b log b) = O( n

logn

log n

logn

) = O(n) bits
of internal memory.

5. Process the merge tree. Mark all leafs as finished and all inner nodes as unfin-
ished. While there are unfinished nodes choose any unfinished node with only
finished children, merge the respective blocks and mark the node as finished.
There are O(log n) leafs and the tree is balanced, so it has O(log log n) levels.
Each single level can be processed in time O(n log log n). So the total run time
for the tree merging phase is O(n log2 log n). The maximum internal memory
space usage appears when performing the merge operation at the root of the
tree. Here we need space b

l

H
k

+ o(b
l

log �) bits where b
l

denotes the sum of
the length of the blocks in the left subtree which is O(n) and H

k

denotes the
k’th order entropy of the text comprising those text blocks.

Summing over all steps the run-time of the algorithm is O(n log n log log n) in the
worst case and O(n log2 log n) on average. In practice this means we can compute
the BWT of a text as long as we are able to hold the text (more precisely the text
for the left subtree of the merge tree) in internal memory. If we can hold a fixed
fraction of the text in main memory, then we can still compute the BWT of the
text in the same run-time by resorting to the original iterative merging scheme
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from [7]. We decompose the text into blocks of size b0 such that b0  n log �

c logn

where
1

c

is the fixed fraction of the text we can hold in internal memory and compute a
partial BWT for each of these blocks where the su�xes sorted are considered as
coming from the whole text, i.e. su�x comparisons are still over t̃ and not limited
to a single of the blocks. Then we merge these blocks along a totally skewed
merge tree such that the left block always has size about b0. The size of the set
of partial sparse gap arrays required at any time remains bounded by O(n) bits.
As the number of blocks is fixed, the total asymptotical run-time of the algorithm
remains O(n log n log log n) in the worst case and O(n log2 log n) on average.

7 Conclusion

We have presented a new semi external algorithm for computing the Burrows-
Wheeler transform. On average our new algorithm is faster then the algorithm of
Ferragina et al published in [7]. In comparison with the algorithm by Beller et
in [1] our algorithm can be applied for the case when less than 8 bits per symbol
of internal memory are available. Due to space constraints proofs, parallelisation
of our algorithm and the discussion of an implementation study are postponed
to another paper. Sample code implementing parts of the ideas in this paper is
available from the author on request.
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