
One Day in Twitter: Topic Detection Via Joint

Complexity

Gérard Burnside Dimitris Milioris Philippe Jacquet

Bell Labs, Alcatel-Lucent, Centre de Villarceaux, 91620 Nozay, France
{gerard.burnside, dimitrios.milioris, philippe.jacquet}@alcatel-lucent.com

Abstract

In this paper we introduce a novel method
to perform topic detection in Twitter based
on the recent and novel technique of Joint
Complexity. Instead of relying on words as
most other existing methods which use bag-of-
words or n-gram techniques, Joint Complex-
ity relies on String Complexity which is de-
fined as the cardinality of a set of all distinct
factors, subsequences of characters, of a given
string. Each short sequence of text is decom-
posed in linear time into a memory efficient
structure called Suffix Tree and by overlap-
ping two trees, in linear or sublinear average
time, we obtain the Joint Complexity defined
as the cardinality of factors that are common
in both trees. The method has been exten-
sively tested for Markov sources of any order
for a finite alphabet and gave good approxi-
mation for text generation and language dis-
crimination. One key take-away from this ap-
proach is that it is language-agnostic since we
can detect similarities between two texts in
any loosely character-based language. There-
fore, there is no need to build any specific dic-
tionary or stemming method. The proposed
method can also be used to capture a change
of topic within a conversation, as well as the
style of a specific writer in a text. In this
paper we exploit a dataset collected by using
the Twitter streaming API for one full day,
and we extract a significant number of topics
for every timeslot.

Copyright c© by the paper’s authors. Copying permitted only
for private and academic purposes.

In: S. Papadopoulos, D. Corney, L. Aiello (eds.): Proceedings
of the SNOW 2014 Data Challenge, Seoul, Korea, 08-04-2014,
published at http://ceur-ws.org

1 Introduction

During recent years the online social media services
have seen a huge expansion, and as a result, the
value of information within these networks has in-
creased dramatically. Interactions and communication
between users help predict the evolution of informa-
tion in online social networks, and the ability to study
these networks can provide relevant information in real
time.
The study of social networks has several research chal-
lenges:

• searching in blogs, tweets and other social me-
dia is still an open problem since posts are indi-
vidually small in size but there is a tremendous
quantity of them delivered in real time, with little
and sometimes transient contextual information.
Real time search has to balance between quality,
authority, relevance and timeliness of the content,

• the information of the correlation between groups
of users can help predict media consumption, net-
work resources and traffic. This can be used in
order to improve the quality of service and expe-
rience,

• analyzing the relationship between members of a
group or a community within a social network can
reveal the important teams in order to use them
for companies marketing plans,

• spam and advertisement detection is another im-
portant challenge, since with the growth of so-
cial networks we also have a continuously grow-
ing amount of irrelevant information over the net-
work.

In order to address these challenges, we need to
extract the relevant information from online social
media in real time.

In this paper we use the theory of Joint Com-
plexity to detect bursty trends among short pieces

of information. Our method is simple, context-free,
with no grammar and no language assumptions, and
it does not use semantics.

The Suffix Tree contains the algorithmic signa-
ture of the text, and we use that to have a fast and
massive – without human intervention – trend sensing
in social communities.

In a prior work, we proposed a method based
on Joint Complexity along with pattern matching
on URLs extracted from tweets. That method was
compared with a version of a Document-Pivot method
described in [APM+13], which was modified in order
to perform classification of tweets, i.e. assigning
tweets to categories such as Sports, Politics, Eco-
nomics, etc. The results showed a good performance
of the method compared to Document-Pivot and
motivated us to use a more simplified version of
it based on Joint Complexity for the Snow Data
Challenge 2014.

The paper is organized as follows: Section 2 in-
troduces the Joint Complexity method, while
Section 3 briefly discusses the Snow Data Challenge
dataset. Section 4 describes the implementation of
the proposed method for topic detection in Twitter,
while Section 5 evaluates the performance with real
data obtained from the mentioned dataset. Finally,
Section 6 summarizes our main results and provides
directions for future work.

2 Joint Complexity

In the last decades, several attempts have been made
to mathematically capture the concept of complexity
of a sequence, i.e, the number of distinct factors con-
tained in a sequence. In other words, if X is a sequence
and I(X) its set of factors, then |I(X)| is the com-
plexity of the sequence. For example, if X = “apple”
then I(X) = {a, p, l, e, ap, pp, pl, le, app, ppl,
ple, appl, pple, apple, v} and |I(X)| = 15 (v de-
notes the empty string). The complexity of a string
is also called the I−complexity [BH11]. The notion
is connected with deep mathematical properties, in-
cluding the rather elusive concept of randomness in a
string [IYZ02, LV93, Nie99].

In general, the information contained in a string
may be revealed by comparing with a reference string,
since its entropy or I-complexity does not give much
insight. In a previous work [Jac07] we introduced the
concept of Joint Complexity, or J-complexity, of two
strings. The J-complexity is the number of common
distinct factors in two sequences. In other words the J-
complexity of sequence X and Y is equal to J(X,Y) =

|I(X) ∩ I(Y)|.
The J-complexity is an efficient way to estimate

similarity degree of two sequences. Two texts written
in similar languages have more sequences in common
than texts written in very different languages. Fur-
thermore, texts in the same language but on different
topics have smaller Joint Complexity than texts on the
same topic.

The analysis of a sequence in subcomponents is
done by Suffix Trees, which come with a simple, fast
and low complexity method to store and recall them
from memory, especially for short sequences. Suffix
Trees are frequently used in DNA sequence analysis.
The construction of the Suffix Tree for the words
apple and maple, as well as the comparison between
them is shown in Fig. 1.

Figure 1: Suffix Tree of words apple, maple.
JC(apple,maple) = 9.

In our previous work [Jac07] it is proved that the
J-complexity of two texts of size m built from two
different binary memoryless sources grows like

γ
mκ

√
α logm

, (1)

for some κ < 1 and γ, α > 0 which depend on the
parameters of the two sources. When the sources
are identical, then the J-complexity growth is O(m),
hence κ = 1. When the texts are identical (i.e,
X = Y), then the J-complexity is identical to the

I-complexity and it grows as m2

2 [JLS04]. Indeed the
presence of a common factor of length O(m) would
inflate the J-complexity by a term O(m2).

We should point out that experiments show that
the complexity estimated as above for memory-less
sources converges very slowly. Furthermore, memory-
less sources are not appropriate for modeling text gen-
eration. In a prior work, we extend the J-complexity

estimate to Markov sources of any order on a finite
alphabet. Markov models are more realistic and have
better approximation for text generation, i.e. for DNA
sequences, than memory-less sources [JMS13, MJ14].

Joint string complexity has a variety of applications,
such as detection of the similarity degree of two se-
quences, for example the use of “copy-paste” in texts
or documents or the identification of authors and era of
texts. We want to show here that it can also be used in
analysis of social networks (e.g. tweets which are lim-
ited to 140 characters) and classification. Therefore it
may be a pertinent tool for automated monitoring of
social networks. Real time search in blogs, tweets and
other social media has to balance between quality and
relevance of the content, which due to the very short
size of the texts and the huge amount of those, is still
an unsolved problem.

In a prior work [JMS13, MJ14] we derive a second
order asymptotics for J-complexity of the following
form

γ
mκ

√
α logm+ β

, (2)

for some β > 0. This new estimate converges more
quickly, and usually works for texts of order m ≈ 102;
In fact, for some Markov sources our analysis indicates
that J-complexity oscillates with m. This is outlined
by the introduction of a periodic function Q(log m) in
the leading term of our asymptotics. This additional
term even further improves the convergence for small
values of m.

In view of these facts, we can use the J-complexity
to discriminate between two identical/non-identical
Markov sources [Ziv88]. We introduce the discrimi-
nant function as follows

d(X,Y) = 1− 1

logm
log J(X,Y), (3)

for two sequences X and Y of length m. This dis-
criminant allows us to determine whether X and Y
are generated by the same Markov source or not by
verifying whether

d(X,Y) = O(1/ logm)→ 0 or

d(X,Y) = 1− κ+O(log logm/ logm) > 0,

respectively when the length of X and Y is equal to m.

In [JMS13, MJ14] we show some experimental evi-
dence of usage of our discriminant function on real and
simulated texts by different Markov orders. We com-
pare the J-complexity of a simulated English text with
same length texts generated in French, Polish, Greek
and Finnish by a third order Markov model to our the-
oretical results. Even for texts of lengths smaller than
a thousand characters, one can easily discriminate be-
tween these languages. Therefore, Joint Complexity is

an efficient method to capture the similarity degree of
short texts.

3 Snow Data Challenge Dataset

According to the Social Sensor dataset for the Snow
Data Challenge, we collected tweets for 24 hours;
between Tuesday Feb. 25, 18:00 and Wednesday
Feb. 26, 18:00 (GMT). The result of crawling
was over 1, 041, 062 tweets between the Unix times-
tamps 1393351200000 and 1393437600000 and was
constructed through the use of the Twitter Stream-
ing API by following 556, 295 users and also looking
for four specific keywords: Syria; terror; Ukraine; bit-
coin. The dataset used for the experiments consists of
96 timeslots, where each timeslot contains tweets for
every 15 minutes, starting at 18:00 on Tuesday 25th
2014. The challenge then consisted in providing a min-
imum of one and a maximum of ten different topics per
timeslot, along with a headline, a set of keywords and
a URL of a relevant image for each detected topic. The
test dataset activity and the statistics of the dataset
crawl are described more extensively in [PCA].

4 Topic Detection Method

Until the present, the main methods used for text
classification are based on keywords detection and
Machine Learning techniques. Using keywords in
tweets has several drawbacks because of wrong
spelling or distorted usage of the words – it also
requires lists of stop-words for every language to be
built – or because of implicit references to previous
texts or messages. Machine Learning techniques are
generally heavy and complex and therefore may not
be good candidates for real time text processing,
especially in the case of Twitter where we have
natural language and thousands of tweets per second
to process. Furthermore, Machine Learning processes
have to be manually initiated by tuning parameters,
and it is one of the main drawbacks for the kind
of application, where we want minimum if any
human intervention. Some other methods are using
information extracted by visiting the specific URLs
on the text, which makes them a heavy procedure,
since one may have limited or no access to the infor-
mation, e.g. because of access rights, or data size/rate.

In our method we use an analysis of the messages
(tweets) based on Suffix Trees [THP04] and we use the
Joint Complexity as a metric to quantify the similarity
between these messages.

According to the dataset described in Section 3 and
in [PCA] we have N = 96 timeslots with n = 1 . . . N .
For every tweet ti, where i = 1 . . .M , with M being
the total number of tweets, in the n-th timeslot, i.e tni ,

we build a Suffix Tree, ST (tni), as described in Section
2. Building a Suffix Tree is an operation that costs
O(m logm) and takes O(m) space in memory, where
m is the length of the tweet.

Then we compute the Joint Complexity metric,
JC(tni , t

n
j) of the tweet tni with every other tweet tnj

of the n-th timeslot, where j = 1 . . .M , and j 6= i
(by convention we choose JC(tni , t

n
i) = 0). The Joint

Complexity between two tweets is the number of the
common factors defined in language theory and can
be computed efficiently in O(m) operations (sublinear
on average) by Suffix Tree superposition. For the N
timeslots we store the results of the computation in
the matrices T1, T2, . . . , TN of M ×M dimensions.

Figure 2: Representation of the first row of the n-th
timeslot via weighted graph.

We represent timeslots by fully-connected weighted
graphs. Each tweet is a node in the graph and the two-
dimensional array Tn holds the weight of each edge, as
shown in Fig. 2. Then, we calculate the score for each
node in our graph by summing all the edges that are
connected to the node. The node that gives the highest
score is the most representative and central tweet of
the timeslot.

Tn =


0 JCtn1 ,tn2 JCtn1 ,tn3 · · · JCtn1 ,tnM

JCtn2 ,tn1 0 JCtn2 ,tn3 · · · JCtn2 ,tnM
JCtn3 ,tn1 JCtn3 ,tn2 0 · · · JCtn3 ,tnM

...
...

. . .
...

JCtnM ,tn1
JCtnM ,tn2

JCtnM ,tn3
· · · 0


Most of the timeslots have M = 5, 000 tweets,

so matrices T1, T2, . . . , TN have approximately 25, 000
entries for every timeslot. Since they are symmet-
ric, only half of these entries could be used, i.e the
upper triangular or the lower triangular of matrices
T1, T2, . . . , TN , as shown below, which save space and
make the structure more efficient.

Algorithm 1 Method to retrieve row i of an upper
triangular matrix

// data is the internal TIntArrayList object

int[] row = new int[data.length+1];

// read the k-th column up to i:
for k = 0 to i− 1 do

row[k]← data[k].get(i− k − 1);

end for

row[i]← 0; // by convention, not computed
if i < data.length− 1 then

// read the i-th row until the end:
for j = 0 to data.length− i do

row[i+ j + 1]← data[i].get(j);

end for
else do nothing; // the last tweet does not have a
row!
end if
return row;

Tup triangn =


JCtn1 ,t

n
2

JCtn1 ,t
n
3
· · · JCtn1 ,t

n
M

JCtn2 ,t
n
3
· · · JCtn2 ,t

n
M

. . .
...

JCtnM−1,t
n
M


The actual implementation of the upper triangular

data structure is based on an efficient TIntArrayList
data structure provided by the Trove4j library (it uses
arrays of int instead of Java objects) encapsulated in a
class which provides methods to access individual ele-
ments thanks to their row and column index or a whole
row by providing its index. Algorithm 1 illustrates the
getRow() method of this class.

The whole Cross Joint Complexity computation was
run in a multithreaded way on a 24 processor machine:
k = 23 threads are started and each thread works on
a disjoint set of rows. Note that because each row of
the triangular matrix does not have the same num-
ber of elements, the number of rows assigned to each
thread should not be divided evenly, otherwise the first
threads would have much more work to do than the
last ones (remember that the input is an upper tri-
angular matrix); instead, because the total number of
non-zero elements of the n∗n matrix is n(n−1)/2, each
thread should work on approximately n(n− 1)/(2 ∗ k)
elements so the implementation kept assigning rows to
a thread until that number of elements was reached.

This implementation allowed the program to run
in on average 95 seconds in order to compute a 15-
minutes timeslot.

These computations were only run once, as soon as

the data was properly divided into 15-minutes times-
lots, and the results were saved in files which were
subsequently used to perform the rest of implementa-
tion.

When we finally get the scores of the Joint Com-
plexity metric, we try to find the R most repre-
sentative and central tweets of every timeslot. At
first we get the sum of the Joint Complexity, Sni =∑
j=1...M,j 6=i JCtni ,tnj , of the i-th tweet with every other

tweet j in the n-th timeslot, and finally we get the vec-
tor Sn = [Sn1 , S

n
2 , . . . , S

n
M] for all timeslots.

We sort the elements of each vector Sn in descend-
ing order and we get the R most representative and
central tweets in the following way: The best-ranked
tweet is chosen unconditionally, the second one is
picked only if its JC score with the first one is be-
low a chosen threshold Thrlow, otherwise it is added
to the list of related tweets of the first tweet; similarly,
the third one is picked only if its JC score with the first
two is below Thrlow, etc. This ensures that the top-
ics are dissimilar enough and it classifies best ranked
tweets into topics at the same time.

Then by removing punctuation, special characters,
etc., of each selected tweet, we construct the headlines
of each topic and we run through the list of related
tweets to keep only tweets that are different enough
from the selected one (we do not want duplicates), we
do so by keeping only the tweets whose JC score with
the selected tweet and all previous related tweets is
above a chosen threshold Thrmax. We first chose em-
pirical values 400 and 600 for Thrlow and Thrmax re-
spectively, then a few hours before submission time we
noticed that many topics had only one related tweet
(all the others were retweets), so we decided to lower
that threshold to 240 but did not have time to recom-
pute the results on the whole dataset so only a handful
of timeslots benefited from this better Thrlow = 240
value. The final plan is to come up with a formula to
have the system determine those thresholds automat-
ically depending on the number of characters of each
tweet.

While running through the list of related tweets we
compute the bag of words used to construct the list
of keywords and we also check the original json data
to find a URL pointing to a valid image related to the
topic.

We chose to print the first top 8 topics for each
timeslot.

4.1 Keywords

In the bag of words constructed from the list of related
tweets, we remove articles (stop-words), punctuation,
special characters, etc., and we get a list of words, and
then we order them by decreasing frequency of occur-

rence. Finally we report the k most frequent words,
in a list of keywords K = [K1

1...k,K
2
1...k, . . . ,K

N
1...k], for

the N total number of timeslots.

4.2 Media URLs

The body of a tweet (in the .json file format), con-
tains a URL information for links to media files such
as pictures or videos, when available this information
is stored in the following subsection of the json object:
entities→ media→ media url.

While reporting the most representative and central
tweets, we scan the original json format in order to re-
trieve such a URL, from the most representative tweet
or any of its related tweets, pointing to valid photos
or pictures in a .jpg, .png or .gif format. Then, we
report these pictures along with the headlines and the
set of keywords, as shown in Algorithm 2 .
Almost half of the headlines (47%) produced by our
method had an image retrieved from the original tweet.
When no such URL is provided within the collected
json objects we planned to visit the URLs of websites
and retrieve images from the website but did not have
sufficient time to implement this in a way that enforced
that the retrieved image was indeed relevant for the
topic. It is important to point out that the goal of the
challenge was to detect newsworthy items before they
hit mainstream news websites, so it was decided that
parsing images from such websites was not interesting
in that context.

5 Evaluation

Twitter is one of the most popular social networks and
micro-blogging service in the world, with more than
540 million users connected by 24 billion links [GL12].
It allows the information spread between people,
groups and advertisers, and since the relation between
its users is unidirectional, the information propagation
within the network is similar to the way that the in-
formation propagates in real life.

Apart from the specific implementation for the
Snow Data Challenge, the main benefits of our
method are that we can both classify the messages
and identify the growing trends in real time, without
having to manually identify lists of keywords for every
language. We can track the information and timeline
within a social network and find groups of users that
agree or have the same interests, i.e, perform trend
sensing.

The official evaluation results of our method in
the Data Challenge are included in [PCA], there-
fore here we will only discuss a quick comparison
of our method with simply counting the number
of retweets within a chosen timeslot, namely Feb.

Algorithm 2 Topic detection based on Joint Com-
plexity

// N = # timeslots, M = # tweets in the n-th
timeslot

for n = 1 to N do
for t = 1 to M do

t← tjson.getText();

tST ← suffixTreeConstruction(t);

JCScores← JCMetric();

end for

// Find the most representative & central tweets
Sn ← sum(JCScores);

// Get headlines for the central tweets
Rn ← descendingOrder(Sn);

// Get set of keywords
Kn ← keywords(Rn);

// Get URLs of pictures from the .json file
Pn ← mediaURL(Rn);

// Print the results in appropriate format
Print(Rn);

Print(Kn);

Print(Pn);

end for

25th from 8:15 pm until 8:30 pm, comprised of just
under 16, 000 tweets, which is about 50% higher than
the average number of tweets for the whole 24h period.

The ranking produced by our method for the
timeslot 25-02-14 20:15 is listed below:

(JC1) BarackObama: LIVE: President Obama is

announcing a new plan to boost job growth

for middle-class Americans.

(JC2) WhiteHouse: "I’m here to announce that

we’re building Iron Man | Not really. Maybe.

It’s classified." President Obama ActOnJobs

(JC3) Madonna: Fight for the right to be free!

Fight Fascism and discrimination everywhere!

Free Venezuela the Ukraine...

(JC4) Karinabarbosa: civicua: Free Venezuela !

Ukraine is with you! euromaidan Photo by

Liubov Yeremicheva

(JC5) TheEllenShow: I’m very excited Pharrell’s

performing his big hit "Happy" at the Oscars.

Spolier alert: I’ll be hiding in his hat.

(JC6) BBCSport: Olympiakos take the lead vs

Manchester United, a hideous deflection off

Alejandro Dominguez beats De Gea.

(JC7) WhatTheBit: It’s going to be pretty damn

near impossible to top this as photo of the week.

(JC8) Al Qaeda branch in Syria issues ultimatum

to splinter group: The head of an al

Qaeda-inspired militia fighting...

A small program was written to compare the num-
ber of retweets observed on the first occurence of a
retweet and substract that to the number of retweets
observed on the last occurence of the same retweet.
All tweets were then sorted in descending order of the
number of retweets obtained, and the result is shown
below:

(RT1) RT @OllieHolt22: Ashley Young berating

someone for going down too easily - that’s funny

(RT2) RT @WhiteHouse: "I’m here to announce that

we’re building Iron ManNot really. Maybe. It’s

classified." @President Obama #ActOnJobs

(RT3) RT @BarackObama: LIVE: President Obama is

announcing a new plan to boost job growth for

middle-class Americans. http://t.co/d6x1Bous1S

(RT4) RT @TheEllenShow: I’m very excited @Pharrell’s

performing his big hit "Happy" at the #Oscars.

Spolier alert: I’ll be hiding in his hat.

(RT5) RT @Madonna: Fight for the right to be

free! Fight Fascism and discrimination everywhere!

Free Venezuela the Ukraine...

(RT6) RT @civicua: Free #Venezuela ! #Ukraine is

with you! #euromaidan Photo by Liubov Yeremicheva

(RT7) RT @russellcrowe: Holy Father @Pontifex , it

would be my deepest pleasure to bring the

@DarrenAronofsky film to you to screen. [...]

(RT8) RT @DjKingAssassin: $myry recovering

on #bitcoin market update on #mtgox

The following differences can be observed between
the two rankings:

• The best ranked retweet does not appear in the
list produced by our method! In fact a plausible
explanation for RT1 and RT8 not being picked
up by our method is a weak centrality due to a
shorter size of text, as briefly explained in Sec-
tion 6. For RT7 however the size of the text is not

a factor and the weak centrality is most probably
explained by the unlikely co-occurrence of terms
within the sentence. Although this is highly sub-
jective it is worth noting that those tweets do not
appear to be very newsworthy.

• Five out of eight items produced by our method
(JC1 to JC5) are listed in the retweet ranking,
this is rather expected as there is a mechanical
link between our method and the number of oc-
currences of the same text.

• The eighth item produced by our method (JC8)
seems to be very newsworthy but appears only
past the 100th position in the retweet count
method. Again, although this is subjective it ap-
pears to be an interesting result.

Finally, although the dataset that was used for this
challenge did not allow to show this properly, the au-
thors strongly believe that one key advantage of using
Joint Complexity is that it can deal with languages
other than English [JMS13, MJ14] without requiring
any additional human intervention.

6 Conclusion and Future Work

In this short paper we presented an implementation
of a topic detection method applied to a dataset
of tweets emitted during a 24 hour period. The
implementation relies heavily on the concept of Joint
String Complexity which has the benefit of being
language agnostic and not requiring humans to deal
with list of keywords. The results obtained seemed
satisfactory and a final evaluation in the context of
the SNOW Data Challenge 2014, can be found in
[PCA].

As the timeframe available to participate in the
challenge was quite short, a - probably inexhaustive
- number of items have been identified as possible
future work, and these are listed below:

• As mentioned in Section 4, although the current
empirical values chosen as thresholds to determine
whether two texts are similar and whether two
texts are near-duplicates seemed to be quite satis-
factory on the dataset that our method was tested
against, it would be more useful to compute val-
ues that would adjust to the size of the texts.

• The current implementation systematically picks
the top 8 topics from each timeslot whereas a bet-
ter approach might be to identify a threshold un-
der which topics may be considered not significant
enough, and thus allowing some not very active
timeslots to contain less than 8 topics while other
very active timeslots may contain more than 8.

• Dividing the timeslots every quarter of an hour is
arbitrary as some topics may be cut in half if they
started after the middle of the previous timeslot
and may therefore not acquire enough significance
on the current timeslot. Before aggregating the
tweets into 15-minutes timeslots, our implementa-
tion first divided the data into 5-minutes timeslots
and we considered building 20 minutes timeslots
(each time including the 5 minutes preceding the
official 15-minutes slot) to remedy the above is-
sue, but this is now left as future work to check if
it provides significant improvements.

• The current implementation which sorts the top-
ics by finding the most central tweets is a bit
unfair to shorter tweets because longer tweets
have mechanically a better chance of obtaining a
higher centrality score (Joint Complexity counts
the number of common factors), therefore a fu-
ture work should be to somehow mitigate this.
One idea may be to modify the Joint Complexity
metric in order for it to behave like a distance and
to perform clustering based on this distance.

Acknowledgment

This work is supported by the SocialSensor and RE-
VEAL FP7 project under contract number 287975
and 610928 respectively. Dimitris Milioris would like
to thank INRIA, École Polytechnique ParisTech and
LINCS.

References

[APM+13] L. Aiello, G. Petkos, C. Martin, D. Corney,
S. Papadopoulos, R. Skraba, A. Goker,
I. Kompatsiaris, and A. Jaimes. Sens-
ing trending topics in twitter. 15(6):1268–
1282, October 2013.

[BH11] V. Becher and P. A. Heiber. A better com-
plexity of finite sequences. 8th Int. Conf.
on Computability and Complexity in Anal-
ysis and 6th Int. Conf. on Computabil-
ity, Complexity, and Randomness, page 7,
2011.

[GL12] M. Gabielkov and A. Legout. The com-
plete picture of the twitter social graph. In
ACM CoNEXT Student Workshop, 2012.

[IYZ02] L. Ilie, S. Yu, and K. Zhang. Repetition
complexity of words. pages 320–329, 2002.

[Jac07] P. Jacquet. Common words between two
random strings. In IEEE International
Symposium on Information Theory, Nice,
France, 2007.

[JLS04] S. Janson, S. Lonardi, and W. Sz-
pankowski. On average sequence complex-
ity. pages 213–227, 2004.

[JMS13] P. Jacquet, D. Milioris, and W. Sz-
pankowski. Classification of markov
sources through joint string complexity:
Theory and experiments. 2013.

[LV93] M. Li and P. Vitanyi. Introduction to Kol-
mogorov Complexity and Its Applications.
Springer–Verlag, Berlin, August, 1993.

[MJ14] D. Milioris and P. Jacquet. Joint sequence
complexity analysis: Application to social
networks information flow. Bell Laborato-
ries Technical Journal, 18(4), 2014. Issue
on Data Analytics.

[Nie99] Harald Niederreiter. Some computable
complexity measures for binary sequences.

In C. Ding, T. Helleseth, and H. Nieder-
reiter, editors, Sequences and their Appli-
cations, Discrete Mathematics and The-
oretical Computer Science, pages 67–78.
Springer London, 1999.

[PCA] S. Papadopoulos, D. Corney, and L. Aiello.
Snow 2014 data challenge: Assessing the
performance of news topic detection meth-
ods in social media. In Proceedings of the
SNOW 2014 Data Challenge.

[THP04] S. Tata, R. Hankins, and J. Patel. Practi-
cal suffix tree construction. In Proceedings
of the 30th VLDB Conference, 2004.

[Ziv88] J. Ziv. On classification with empirically
observed statistics and universal data com-
pression. IEEE Transactions on Informa-
tion Theory, 34:278–286, 1988.

