
Entity-based Data Source Contextualization for
Searching the Web of Data

Andreas Wagner†, Peter Haase‡, Achim Rettinger†, and Holger Lamm‡
† Karlsruhe Institute of Technology and ‡ fluid Operations

{a.wagner,rettinger}@kit.edu, peter.haase@fluidops.com

Abstract. To allow search on the Web of data, systems have to combine
data from multiple sources. However, to effectively fulfill user informa-
tion needs, systems must be able to “look beyond” exactly matching data
sources and offer information from additional/contextual sources (data
source contextualization). For this, users should be involved in the source
selection process – choosing which sources contribute to their search re-
sults. Previous work, however, solely aims at source contextualization for
“Web tables”, while relying on schema information and simple relational
entities. Addressing these shortcomings, we exploit work from the field of
data mining and show how to enable Web data source contextualization.
Based on a real-world use case, we built a prototype contextualization
engine, which we integrated in a system for searching the Web of data.
We empirically validated the effectiveness of our approach – achieving
performance gains of up to 29% over the state-of-the-art.

1 Introduction

The amount of RDF on the Web, such as Linked Data, RDFa and Microformats,
is large and rapidly increasing. RDF data contains descriptions of entities, with
each description being a set of triples: {〈s, p, o〉}. A triple associates an entity
(subject) s with an object o via a predicate p. A set of triples forms a data graph.

Querying of Distributed Data Sources. RDF is oftentimes highly dis-
tributed, with each data source comprising one or more RDF graphs, cf. Fig. 1.

Example. Catalogs like Eurostat1 or Worldbank2 provide finance data, e.g.,
about the gross domestic product (GDP), which is spread across many sources.

However, in order to provide the user with her desired information, a system
has to combine such distributed data. Processing queries in such a manner re-
quires knowledge about what source features which information. This problem is
commonly known as source selection: a system chooses data sources relevant for
a given query (fragment). Previous works selected sources via indexes, e.g., [9,
13, 18], link-traversal, e.g., [10, 13], or by using source meta-data, e.g., [6].

Data Source Contextualization. Existing approaches for source selec-
tion aim solely at a mapping of queries/query fragments to sources with ex-
actly matching data [6, 9, 10, 13]. In particular, such works do not consider what
sources are actually about and how they relate to each other.

Example. Consider a user searching for GDP rates in the EU. A traditional
system may discover sources in Eurostat to comprise matching data. However,
other sources offer contextual information concerning, e.g., the national debt.

1 http://ec.europa.eu/eurostat/
2 http://worldbank.org

Src. 1. tec00001 (Eurostat).

es : data/ tec0001
rd f : type qb : Observation ;
es−prop : geo es−d ic :DE;
es−prop : un i t es−d ic :MIO EUR;
es−prop : i nd i c na es−d ic : B11 ;
sd : time ”2010−01−01”ˆˆ xs : date ;
sm : obsValue ” 2496200.0 ”ˆˆ xs :

double .

Src. 2. gov q ggdebt (Eurostat).

es : data/ gov q ggdebt
rd f : type qb : Observation ;
es−prop : geo es−d ic :DE;
es−prop : un i t es−d ic :MIO EUR;
es−prop : i nd i c na es−d ic : F2 ;
sd : time ”2010−01−01”ˆˆ xs : date ;
sm : obsValue ” 1786882.0 ”ˆˆ xs :

decimal .

Src. 3. NY.GDP.MKTP.CN (Worldbank).

wbi :NY.GDP.MKTP.CN
rd f : type qb : Observation ;
sd : re fArea wbi : c l a s s i f i c a t i o n / country /DE;
sd : r e fPe r i od ”2010−01−01”ˆˆ xs : date ;
sm : obsValue ” 2500090.5 ”ˆˆ xs : double ;
wbprop : i nd i c a t o r wbi : c l a s s i f i c a t i o n / i nd i c a t o r /NY.GDP.MKTP.CN .

Fig. 1. Src. 1/3 describes Germany’s GDP in 2010. They contextualize each other,
as they feature varying observation values and properties for Germany’s GDP. Src. 2
provides additional information, as it holds the German debt for 2010. Src. 1-3 each con-
tain one entity: es:data/tec0001, es:data/gov q ggdebt, and wbi:NY.GDP.MKTP.CN.
Every entity description equals the entire graph contained in its source.

Note, contextual sources are actually not relevant to the user’s query, but
relevant to her information need. Thus, integration of these “additional” sources
provides a user with broader results in terms of result dimensions (schema com-
plement) and result entities (entity complement). See our example in Fig. 1.

For enabling systems to identify and integrate sources for contextualization,
we argue that user involvement during source selection is a key factor. That is,
starting with an initial search result (obtained via, e.g., a SPARQL or keyword
query), a user should be able to choose and change sources, which are used
for result computation. In particular, users should be recommended contextual
sources at each step of the search process. After modifying the selected sources,
the results may be reevaluated and/or the query expanded.

Unfortunately, recent work on data source contextualization focuses on Web
tables [2], while using top-level schema such as Freebase. Further, the authors
restrict data to a simple relational form. We argue that such a solution is not a
good fit for the schemaless, heterogeneous Web of data.

Contributions. This paper continues our work in [20]. More specifically,
we provide the following contributions: (1) Previous work on Web table con-
textualization suffers from inherent drawbacks. Most notably, it is restricted to
fixed-structured relational data and requires external schemata to provide ad-
ditional information. Omitting these shortcomings, we present an entity-based
solution for data source contextualization in the Web of data. Our approach is
based on well-known data mining strategies and does not require schema infor-
mation or data adhering to a particular form. (2) We implemented our system,
the data-portal, based on a real-world use case, thereby showing its practical
relevance and feasibility. A prototype version of this portal is publicly available
and is currently tested by a pilot customer.3 (3) We conducted two user studies
to empirically validate the effectiveness of the proposed approach: our system
outperforms the state-of-the-art with up to 29%.

3 http://data.fluidops.net/

Outline. In Sect. 2, we present our use case. We give preliminaries in Sect. 3,
outline the approach in Sect. 4, and present its implementation in Sect. 5. We
discuss the evaluation in Sect. 6, related work in Sect. 7, and conclude in Sect. 8.

2 Use Case Scenario

In this section, we introduce a real-world use case to illustrate challenges w.r.t.
data source selection during searching the Web of data. The scenario is provided
by a pilot user in the financial industry and available online.4

In their daily work, financial researchers heavily rely on a variety of open
and closed Web data sources, in order to provide prognoses of future trends. A
typical example is the analysis of government debt. During the financial crisis
in 2008-2009, most European countries made high debts. To lower doubts about
repaying these debts, most countries set up a plan to reduce their public bud-
get deficits. To analyze such plans, a financial researcher requires an overview of
public revenue and expenditure in relation to the gross domestic product (GDP).
To measure this, she needs information about the deficit target, the revenue/-
expenditure/deficit, and GDP estimates. This information is publicly available,
provided by catalogs like Eurostat and Worldbank. However, it is spread across a
huge space of sources. That is, there is no single source satisfying her information
needs – instead data from multiple sources has to be identified and combined.
To start her search process, a researcher may give “gross domestic product” as
keyword query. The result is GDP data from a large number of sources. At this
point, data source selection is “hidden” from the researcher, i.e., sources are
solely ranked via number and quality of keyword hits. However, knowing where
her information comes from is critical. In particular, she may want to restrict
and/or know the following meta-data:

– General information about the data source, e.g., the name of the author and
a short description of the data source contents.

– Information about entities contained in the data source, e.g., the single coun-
tries of the European Union.

– Description about the dimensions of the observations, e.g., the covered time
range or the data unit of the observations.

By means of faceted search, the researcher finally restricts her data source
to tec00001 (Eurostat, Fig. 1) featuring “Gross domestic product at market
prices”. However, searching the data source space in such a manner requires ex-
tensive knowledge. Further, the researcher was not only interested in plain GDP
data – she was also looking for additional information.

For this, a system should suggest data sources that might be of interest, based
on sources known to be relevant. These contextual sources may feature related,
additional information w.r.t. current search results/sources. For instance, data
sources containing information about the GDP of further countries or with a
different temporal range. This way, the researcher may discover new sources
more easily, as one source of interest links to another – allowing her to explore
the space of sources.
4 http://data.fluidops.net/resource/Demo_GDP_Germany

3 Preliminaries

Data Model. Data in this work is represented as RDF:

Definition 1 (RDF Triple, RDF Graph). Given a set of URIs U , blank
nodes B, and a set of literals L, t = 〈s, p, o〉 ∈ U ∪B×U × (U ∪L∪B) is a RDF
triple. A RDF graph G = (V, E) is defined by vertices V = U ∪ L ∪ B and a set
of triples as edges E = {〈s, p, o〉}.

A data source may contain one or more RDF graphs:

Definition 2 (RDF Data Source). A data source Di ∈ D is a set of n RDF
graphs, i.e., Di = {Gi1, . . . ,Gin}, with D as set of all sources.

Notice, the above definition abstracts from the data access, e.g., via HTTP
GET requests. In particular, Def. 2 also covers Linked Data sources, see Fig. 1.

Entity Model. Given a data source Di, an entity e is a subject that is
identified with a URI de in Gij . Entity e is described via a connected subgraph of

Gij containing de (called Ge). Subgraphs Ge, however, may be defined in different
ways [7]. For our work, we used the concise bound description, where all triples
with subject de are comprised in Ge. Further, if an object is a blank node, all
triples with that blank node as subject are also included and so on [7].

Example. We have 3 subjects in Fig. 1 and each of them stands for an entity.
Every entity description, Ge, is a one-hop graph. For instance, the description
for entity es:data/tec0001 comprises all triples in Src. 1.

Kernel Functions. We compare different entities by comparing their de-
scriptions, Ge. For this, we make use of kernel functions [19]:

Definition 3 (Kernel function). Let κ : X ×X 7→ R denote a kernel function
such that κ(x1, x2) = 〈ϕ(x1), ϕ(x2)〉, where ϕ : X 7→ H projects a data space X
to a feature space H and 〈·, ·〉 refers to the scalar product.

Note, ϕ is not restricted, i.e., a kernel is constructed without prior knowledge
about ϕ. We will give suitable kernels for entity descriptions, Ge, in Sect. 4.

Clustering. We use k-means [11] as a simple and scalable algorithm for
discovering clusters, Ci, of entities in data sources D. It works as follows [11]:

(1) Choose k initial cluster centers, mi. (2) Based on a dissimilarity function,
dis, an indicator function is given as: 1(e, Ci) is 1 if dis(e, Ci) < dis(e, Cj),∀j 6= i
and 0 otherwise. That is, 1(e, Ci) assigns each entity e to its “closest” cluster Ci.
(3) Update cluster centers mi and reassign, if necessary, entities to new clusters.
(4) Stop if convergence threshold is reached, e.g., no (or minimal) reassignments
occurred. Otherwise go back to (2). A key problem is defining a dissimilarity
function for entities in D. Using kernels we may define such a function – as we
will show later, cf. Sect. 4.1.

Problem. We address the problem of finding contextual data sources for
a given source. Contextual sources should: (a) Add new entities that refer to
the same real world object as given ones (entity complement). (b) Add entities
with same URI identifier, but have new properties in their description (schema
complement). Note, (a) and (b) are not disjoint, i.e., some entities may be new
and add additional properties.

Example. In Fig. 1 Src. 3 contextualizes Src. 1 in terms of both, entity as
well as schema complement. That is, Src. 3 adds entity wbi:NY.GDP.MKTP.CN,
while providing new properties and a different GDP value. In fact, even Src. 2
contextualizes Src. 1, as entities in both sources refer to the real world object
“Germany” – one source captures the GDP, while the other describes the debt.

4 Entity-based Data Source Contextualisation

Approach. The intuition behind our approach is simple: if data sources contain
similar entities, they are somehow related. In other words, we rely on (clusters
of) entities to capture the “latent” semantics of data sources.

More precisely, we start by extracting entities from given data sources. In a
second step, we apply clustering techniques, to mine for entity groups. Notice,
for the k-means clustering we employ a kernel function as similarity measure.
This way, we abstract from the actual entity representation, i.e., RDF graphs,
and use a high-dimensional space (feature space) to increase data comparabili-
ty/separability [19]. Last, we rely on entity clusters for relating data sources to
each other and compute a contextualization score based on these clusters. Note,
only the last step is done online – all other steps/computations are offline.

Discussion. We argue our approach to allow for some key advantages: (1) We
decouple representation of source content and source similarity, by relying on en-
tities for capturing the overall source semantics. (2) Our solution is highly flex-
ible as it allows to “plug-in” application-specific entity definitions/extraction
strategies, entity similarity measures, and contextualization heuristics. That is,
we solely require an entity to be described as a subgraph, Ge, contained in its
data source D. Further, similarity measures may be based on any valid kernel
function. Last, various heuristics proposed in [2] could be adapted for our ap-
proach. (3) Exploiting clusters of entities allows for a scalable and maintainable
approach, as we will outline in the following.

4.1 Related Entities

In order to compare data sources, we first compare their entities with each other.
That is, we extract entities, measure similarity between them and finally cluster
them (Fig. 2). All of these procedures are offline.

Entity Similarity. We start by extracting entities from each source Di ∈ D:
First, for scalability reasons, we go over all subjects in RDF graphs in Di and
collect an entity sample, with every entity e having the same probability of
being selected. Then, we crawl the concise bound description [7] for each entity
e in the sample. For cleaning Ge, we apply standard data cleansing strategies
to fix, e.g., missing or wrong data types. Having extracted entities, we define a
similarity measure relating pairs of entities. For this, we use two kinds of kernels:
(1) kernels for structural similarities κs and (2) those for literal similarities κl.

With regard to the former, we measure structural “overlaps” between entity
descriptions, G′e and G′′e , using graph intersections [16]:

Definition 4 (Graph Intersection G′∩G′′). Let the intersection between two
graphs, denoted as Ḡ = G′ ∩ G′′, be given by V̄ = V ′ ∩ V ′′ and Ē = E ′ ∩ E ′′.

indicator

unit

type
geo

valuetime

tec0001

Src. 1Src. 1

Src. 2Src. 2

Src. 3Src. 3

B11

“2496200.0“

“2010-01-01“

Observation
DE

MIO_EUR

indicator

unit

type
geo

value
time

gov_q_ggdebt

F2

“1786882.0“

“2010-01-01“

Observation
DE

MIO_EUR

indicator

area

type

valuerefPeriod

NY.GDP.MKTP.CN

NY.GDP.

MKTP.CN

“2500090.5“

“2010-01-01“

Observation

classification

/country/DE

En
ti

ty
 e

1
En

ti
ty

 e
2

En
ti

ty
 e

3

(a) Extracted Entities (b) Entity Similarity (c) Entity Clusters

tec0001

gov_q_ggdebt

NY.GDP.MKTP.CN

Structural Similarity:
Intersection Graphs

Literal Similarity

Cluster C1

Size = 2

Cluster C1

Size = 2

Cluster C2

Size = 1

Cluster C2

Size = 1

Observation

“2010-01-01“

MIO_EUR

DE

 Ge1 ∩ Ge2

Observation

“2010-01-01“

DE

 Ge1 ∩ Ge3

“1786882.0“

 e1 vs. e2

“2500090.5“

 e1 vs. e3

“2496200.0“

“2496200.0“

Fig. 2. (a) Extracted entities e1, e2 and e3 from Fig. 1. (b) Structural similarities as
intersection graphs Ge1 ∩ Ge2 and Ge1 ∩ Ge3. Literal similarities for entity e1 vs. e2
and e1 vs. e3. Note, exact matching literals are omitted, as they are covered already
by the intersection graphs. Comparison of e2 vs. e3 is omitted due to space reasons.
(c) Entities grouped in k = 2 clusters.

We aim at connected structures in G′e ∩ G′′e . Thus, we define a path [16]:

Definition 5 (Path). Let a path in a graph G be defined as a sequence of ver-
tices and triples v1, 〈v1, p1, v2〉, v2, . . . , vn, with 〈vi, pi, vi+1〉 ∈ E, having no cy-
cles. The path length is given by the number of contained triples. The set of all
paths, up to length l, in G is denoted as pathl(G).

The corresponding path kernel is [16]:

Definition 6 (Path Kernel κs). A path kernel is κsl,λ(G1,G2) =
∑l
i=1 λ

i | {p |
p ∈ pathsi(G1 ∩ G2)} |, with λ > 0 as discount factor for path length.

Note, [16] introduced further kernels, however, we found path kernels to be
simple and perform well in our experiments, cf. Sect. 6.

Example. Extracted entities from sources in Fig. 1 are given in Fig. 2-a. In
Fig. 2-b, we compare the structure of tec0001 (short: e1) and gov q ggdebt

(short: e2). For this, we compute an intersection: Ge1 ∩ Ge2. This yields a set of
4 paths, each with length 0. The unnormalized kernel value is λ0 · 4.

For literal similarities, one can use different kernels κl on, e.g., strings or num-
bers [19]. For space reasons, we restrict presentation to the string subsequence
kernel, κls [15]. A numerical kernel, κln, is outlined in our extended report [21].

Definition 7 (String Subsequence Kernel κls). Let Σ denote a vocabulary
for strings, with each string s as finite sequence of characters in Σ. Let s[i :
j] denote a substring si, . . . , sj of s. Further, let u be a subsequence of s, if
indices i = (i1, . . . , i|u|) exist with 1 ≤ i1 ≤ i|u| ≤ |s| such that u = s[i].

The length l(i) of subsequence u is i|u| − i1 + 1. Then, a kernel function κl is

defined as sum over all common, weighted subsequences for strings s, t: κlλ(s, t) =∑
u

∑
i:u=s[i]

∑
j:u=t[j] λ

l(i)λl(j), with λ as decay factor.

Example. For instance, strings “MI” and “MIO EUR” share a common sub-
sequence “MI” with i = (1, 2). Thus, the unnormalized kernel is λ2 + λ2.

As literal kernels, κl, are only defined for two literals, we sample over every
possible literal pair (with the same data type) for two given entities and aggregate
the needed kernels for each pair. Finally, we aggregate structure kernel, κs and
literal kernels, κl, resulting in one single kernel [19]:

κ(e′, e′′) = κs(Ge′ ,Ge′′)
⊕

o1,o2 ∈ sample(Ge′ ,Ge′′)

κl(o1, o2)

We use a weighted summation as aggregation ⊕ (we obtained weights experimen-
tally). The dissimilarity between e′ and e′′ is given as Euclidean distance [22]:

dis2(e′, e′′) := ‖ϕ(e′)− ϕ(e′′)‖2 = κ(e′, e′)− 2κ(e′, e′′) + κ(e′′, e′′)

Entity Clustering. Using this dissimilarity measure, we may learn clusters
of entities. Notice, our algorithm does not separate the input data (graphs Ge),
but instead its representation in the feature space. Based on [22], cluster center
mi in the feature space is: mi = 1

|Ci|
∑
1(ϕ(e), Ci)ϕ(e). Distance between a

projected entity ϕ(e) and mi is given by [22]:

dis2(ϕ(e),mi) = ‖ϕ(e)−mi‖2 = κ(e, e) + f(e, Ci) + g(Ci), with

f(e, Ci) := − 2

|Ci|
∑
j

1(ϕ(ej), Ci)κ(e, ej)

g(Ci) :=
1

|Ci|2
∑
j

∑
l

1(ϕ(ej), Ci)1(ϕ(el), Ci)κ(ej , el)

Now, k-means can be applied as introduced in Sect. 3.
Example. In Fig. 2-c, we found two entity clusters. Here, structural similarity

was higher for entities e1 vs. e2 than for e1 vs. e3. However, numerical similar-
ity between e1 vs. e3 was stronger: “2496200.0” was closer to “2500090.5” as
“1786882”. As we weighted literal similarity to be more important than structural
similarity, this leads to e1 and e3 forming one cluster. In fact, such a clustering
is intuitive, as e1 and e3 is about GDP, while e2 is concerned with debt.

4.2 Related Data Sources

Given a data source D′, we score its contextualization w.r.t. another source D′′,
using entities contained in D′ and D′′. Note, in contrast to previous work [2],
we do not rely on any kind of “external” information, such as top-level schema.
Instead, we solely exploit semantics as captured by entities.

Contextualisation Score. Similar to [2], we compute two scores, ec(D′′ |
D′) and sc(D′′ | D′), for a data source D′′, given another source D′. The former
is an indicator for the entity complement of D′′ w.r.t. D′. That is, how many
new, similar entities does D′′ contribute to given entities in D′. The latter score
judges how many new “dimensions” are added by D′′, to those present in D′

(schema complement). Both scores are aggregated to a contextualization score
for data source D′′ given D′.

Let us first define an entity complement score ec : D × D 7→ [0, 1]. We may
measure ec simply by counting the overlapping clusters between both sources:

ec(D′′ | D′) :=
∑

Cj∈ cluster(D′)

1(Cj , D
′′)|Cj |

|Cj |

with cluster as function mapping data sources to clusters their entities are
assigned to. Further, let 1(C,D) by an indicator function, returning 1 if cluster
C is associated with data source D via one or more entities.

Considering the schema complement score sc : D×D 7→ [0, 1], we aim to add
new dimensions (properties) to those already present. Thus, sc is given as:

sc(D′′ | D′) :=
∑

Cj∈ cluster(D′′)

|props(Cj) \
⋃
Ci∈ cluster(D′) props(Ci)|
|props(Cj)|

with props as function that projects a cluster C to a set of properties, where
each property is contained in a description of an entity in C.

Finally, a contextualization score cs is obtained by a monotonic aggregation
of ec and sc. In our case, we apply a simple, weighted summation:

cs(D′′ | D′) := 1/2 · ec(D′′ | D′) + 1/2 · sc(D′′ | D′)

Example. Assuming Src. 1 is given, cs(D2 | D1) = cs(D3 | D1) = 1/2, because
ec(D3 | D1) = 1 and sc(D3 | D1) = 0 (the other way around for D2 | D1). These
scores are meaningful, because D2 adds additional properties (debt), while D3

complements D1 with entities (GDP). See also Fig. 2-c.
Runtime Behavior and Scalability. Regarding online performance, i.e.,

computation of contextualization score cs, given the offline learned clusters, we
aimed at simple and lightweight heuristics. For ec only an assignment of data
sources to clusters (function cluster()) and cluster size |C| is needed. Further,
measure sc only requires an additional mapping of clusters to “contained” prop-
erties (function props()). All necessary statistics are easily kept in memory.

With regard to the offline clustering behavior, we expect our approach to per-
form well, as existing work on kernel k-means clustering showed such approaches
to scale to large data sets [1, 5, 22].

5 Searching the Web of Data via Source Contextualization

Based on our real-world use case (Sect. 2), we show how a source contextualiza-
tion engine may be integrated in a real-world query processing system for the Web
of data. Notice, an extended system description is included in our report [21].

Overview. Towards an active involvement of users in the source selection
process, we implemented a data portal, which offers a data source space explo-
ration as well as a distributed query processing service.

Using the former, users may explore the space of sources, i.e., search and
discover data sources of interest. Here, the contextualization engine fosters dis-
covery of relevant sources during exploration. The query processing service, on
the other hand, allows queries to be federated over multiple sources.

Data Source Exploration
Query Processing

Federation Layer

Meta-Data Updates
by Providers

Data Loader

Data Source
Search

Data Source
Visualization

SPARQL
Query

Result
Visualization

Query &
Visualize
Results

Processing
SPARQL Queries

against the
Federation

Worldbank

Eurostat

Worldbank
Provider

Data Source
Contextualization Engine

Data Source
Meta-Data

Data Source

gov_q_ggdebt

Eurostat
Provider

Data
Access

Select/Remove Source
 for Query Federation

Inspect Source
Contributing to
Current Result

FluidOps Data Portal

Entity
Clusters

Offline Entity Extraction
and Clustering

Data Source
tec00001

Data Source

NY.GDP.MKTP.CN

Loading and Populating
of SPARQL-Endpoints

Data Sources

Fig. 3. Our data portal offers two services: source space exploration and query pro-
cessing. The source contextualization engine is integrated as a key component of the
source space exploration. For this, data source meta-data is loaded and entities are
extracted/clustered. For query processing, each data source is mapped to a SPARQL
endpoint, from which data is accessed via a data-loader.

Interaction between both services is tight and user-driven. In particular,
sources discovered during source exploration may be used for answering queries.
On the other hand, sources employed for result computation may be inspected
and other relevant sources may be found via contextualization.

The data portal is based on the Information Workbench [8] and a running
prototype is available.5 Following our use-case (Sect. 2), we populated the system
with statistical data sources from Eurostat and Worldbank. This population
involved an extraction of meta-data, which is used to load the sources locally as
well as give users insights into the source. Every data source is stored in a triple
store – accessible via a SPARQL endpoint. See Fig. 3 for an overview.

Source Exploration and Selection. A typical search process starts with
looking for “the right” sources. That is, a user begins with exploration of the
data source space. For instance, she may issue a keyword query “gross domestic
product”, yielding sources with matching words in their meta-data. If this query
does not lead to sources suitable for her information need, a faceted search inter-
face or a tag-cloud may be used. For instance, she refines her sources via entity
“Germany” in a faceted search, Fig.4-a. Once the user discovered a source of in-
terest, its structure as well as entity information is shown. For example, a source
description for GDP (current US$) is given in Fig.4-b/c. Note, entities used here
have been extracted by our approach and are visualized by means of a map. Using

5 http://data.fluidops.net/

(a) (b) (c)

(d)

Fig. 4. (a) Faceted search exploration through sources. (b)+(c) Source information for
GDP (current US$) based on its entities and schema. (d) Contextualization sources
for GDP (current US$).

these rich source descriptions, a user can get to know the data and data sources
before issuing queries. Further, for every source a ranked list of contextualization
sources is given. For GDP (current US$), e.g., source GDP at Market Prices

is recommended, Fig.4-d. This way, the user is guided from one source of interest
to another. At any point, she may select a particular source for querying. Even-
tually, she not only knows her relevant sources, but has also gained first insights
into data schema and entities.

Processing Queries over Selected Sources. Say, a user has chosen GDP

(current US$) as well as its contextualization source GDP at Market Prices

(Fig. 4-d). Due to her previous exploration, she knows that the former provides
the German GDP from 2000 - 2010, while the second source features GDP from
years 2011 and 2012. Thus, she may issue a SPARQL query over both sources
to visualize the GDP over the years 2000 - 2012, cf. Fig. 5.

6 Evaluation

We now discuss evaluation results to analyze the effectiveness of our approach.
We conducted two experiments: (1) Effectiveness w.r.t. a gold standard, thereby
measuring the accuracy of the contextualization score. (2) Effectiveness w.r.t.
data source search result augmentation. In other words, we ask: How useful are
top-ranked contextualization sources in terms of additional information?

Participants. Experiment (1) and (2) were performed by two different
groups, each comprising 14 users. Most participants had an IT background
and/or were CS students. Three users came from the finance sector. The users
vary in age, 22 to 37 years and gender. All experiments were unsupervised.

Data Sources and Clustering. Following our use case in Sect. 2, we em-
ployed Linked Data sources from Eurostat6 and Worldbank7. Both provide a

6 http://eurostat.linked-statistics.org/
7 http://worldbank.270a.info

1 SELECT ? year ?gdp
2 WHERE { UNION
3 { {
4 ? obs1 a qb : Observation ; ? obs2 a qb : Observation ;
5 wb−property : i nd i c a t o r qb : datase t es−data : tec00001 ;
6 wbi−c i :NY.GDP.MKTP.CN; es−property : geo es−d ic : geo#DE;
7 sdmx−dimension : re fArea sdmx−dimension : t imePeriod ? year ;
8 wbi−cc :DE; sdmx−measure : obsValue ?gdp .
9 sdmx−dimension : r e fPe r i od ? year ; FILTER(? year > ”2010−01−01”ˆˆ xs : date)

10 sdmx−measure : obsValue ?gdp . }
11 } }

Fig. 5. Query and result visualization for Germany’s GDP from 2000-2012. Data
sources were selected during source exploration, see Fig. 4.

large set of data sources comprising statistical information: Eurostat holds 5K
sources (8000M triples), while Worldbank has 76K sources (167M triples). Note,
for Eurostat we simply used instances of void:Dataset as sources and for World-
bank we considered available dumps as sources. Further, sources varied strongly
in their size and # entities. While small sources contained ≤ 10 entities, large
sources featured ≥ 1K entities. For extracting/sampling of entities, we restricted
attention to instances of qb:Observation. We employed the k-means algorithm
with k = 30K (chosen based on experiments with different values for k) and
initiated the cluster centers via random entities.

Queries. Based on evaluation queries in [2], domain experts constructed 15
queries. A query listing is depicted in Table 1. This query load was designed to
be “broad” w.r.t. the following dimensions: (1) We cover a wide range of topics,
which may be answered by Eurostat and Worldbank. (2) “Best” results for each
query are achieved by using multiple sources from both datasets. (3) # Sources
and # entities relevant for a particular query vary.

Systems. We implemented entity-based source contextualization (EC) as de-
scribed in Sect. 4. In particular, we made use of three kernels for capturing entity
similarity: a path kernel, a substring kernel, and a numerical kernel [16, 19]. As
baselines we used two approaches: a schema-based contextualization SC [2] and
a keyword-based contextualization KC. SC maps entities in data sources to top-
level schemata and finds complementary sources based on schema as well as
label similarities of mapped entities. More precisely, the baseline is split in two
approaches: SCec and SCsc. SCec aims at entity complements, i.e., data sources
with similar schema, but different entities. SCsc targets data sources having com-
plementary schema, but holding the same entities. Last, the KC approach treats

Keywords #Entities #Sources Keywords #Entities #Sources
Q1 country debt 3,155 1,981 Q9 international trade 2,444 1,085
Q2 country gdp 4,265 1,969 Q10 national trade 2,971 1,199
Q3 country population 4,076 3,868 Q11 price indices 10,490 4930
Q4 energy consumption 5,194 651 Q12 prison population 5,135 629
Q5 fish species 2,323 157 Q13 research expenditure 5,287 201
Q6 fish areas 6,664 316 Q14 school leavers 2,722 637
Q7 forest area 3,141 707 Q15 unemployment rate 2,914 266
Q8 gas emissions 5,470 722

∑
66,251 19,318

Table 1. Queries with their number of relevant entities and sources.

every data source as a bag-of-words and judges the relevance of a source w.r.t.
a query by the number and quality of its matching keywords.

6.1 Effectiveness of Contextualisation Score

Gold Standard. We calculated a simple gold standard that ranks pairs of
sources based on their contextualization. That is, for each query in Table 1,
we randomly selected one “given” source and 5 “additional” sources – all of
which contained the query keywords. Then, 14 users were presented that given
source and had to rank how well each of the 5 additional sources contextualizes
it (scale on 0 - 5, where higher is better). To judge the sources’ contents, users
were given a schema description and a short source extract. We aggregated the
user rankings, thereby obtaining a gold standard ranking.

Metric. We applied the footrule distance [12] as rank-distance indicator,
which measures the accuracy of the evaluation systems vs. gold standard. Footrule
distance is: 1

k

∑
i=1,...,k |ranka(i) − rank(i)|, with ranka(i) and rank(i) as ap-

proximated and gold standard rank for the “additional” source Di.
Results. Fig. 6-a/d give an overview over results of EC and SC. Note, we

excluded the KC baseline, because it was too simplistic. That is, reducing sources
to bags-of-words, one may only intersect these bags for two given sources. This
yielded, however, no meaningful contextualization scores/ranking.

We noticed EC to lead to a good and stable performance over all queries
(Fig. 6-a) as well as data source sizes (Fig. 6-d). Overall, EC could outperform
SCsc by 5.7% and SCec by 29%. Further, as shown in Fig. 6-d, while we observed
a decrease in rank distance for all systems in source and entity sample size, EC
yielded the best results. We explain these results with our fine-grained source
semantics captured by entity clusters. Note, most of our employed contextual-
ization heuristics are very similar to those from SC. However, we observed SC

performance to strongly vary with the quality of its schema mappings. Given an
accurate classification of entities contained in a particular source, SC was able
to effectively relate that source with others. However, if entities were mapped to
“wrong” concepts, it greatly affected computed scores. In contrast, our approach
relied on clusters learned from instance data, thereby achieving a “more reliable”
mapping from sources to their semantics (clusters).

On the other hand, we observed EC to result in equal or, for 2 outlier queries
with many “small” sources, worse performance than SCsc (cf. Fig. 6-d). In par-
ticular, given query Q2, SCsc could achieve a better ranking distance by 20%.
We explain such problematic queries with our simplistic entity sampling. Given

1.98
2.10

2.8

1.4

1.6

1.8

2

2.2

2.4

2.6

2.8

3

EC SCsc SCec

R
an

k
D

is
ta

n
ce

1.5

2

2.5

3

3.5

[1;4[[4;8[[8;30]

R
a

n
k

D
is

ta
n

ce

Entitiy Sample per Source

EC

SCsc

SCec

3.24

3.17 3.15

3.06

2.95

3

3.05

3.1

3.15

3.2

3.25

3.3

EC SCsc SCec KC

R
e

le
va

n
ce

 S
co

re

2.87

3.54
3.94

0

0.5

1

1.5

2

2.5

3

3.5

4

4.5

EC SCsc SCec

C

o
n

te
xt

.
So

u
rc

es

(b) (c) (a)

2.8

2.9

3

3.1

3.2

3.3

3.4

[1;4[[4;8[[8;30]

R
e

le
va

n
ce

 S
co

re

Entitiy Sample per Source

EC

SCsc

SCec

KC

(e) (d)

Fig. 6. (a) Exp-1: Rank distance as average over all queries. (b) Exp-2: Relevance score
per source, as average over all queries. (c) Exp-2: # Sources for contextualization per
source, as average over all queries. (d) Exp-1: Rank distance average over all queries
vs. average # sampled entities per source. (e) Exp-2: Relevance score as average over
all queries vs. average # sampled entities per source.

small sources, only few entities were included in a sample, which unfortunately
pointed to “misleading” clusters. Note, we currently only use a uniform random
sample for selecting entities from sources. We expect better results with more
refined techniques for discovering important entities for a particular source.

Last, we observed SCec to lead to much less accurate rankings as SCsc and
EC. This is due to exact matching of entity labels: SCec did not capture common
substrings (as EC did), but solely relied on a boolean similarity matching.

6.2 Effectiveness of Augmented Data Source Results

Metric. Following [2], we employ a reordering of data source search results as
metric: (1) We obtain top 100 data sources via the KC baseline for every query.
Here, the order is determined solely by number and quality of keyword hits in
the sources’ bags-of-words. (2) Via SC and EC we reorder the first 10 results:

For each data source Di in the top-10 results, we search the top-100 sources
for a Dj that contextualizes Di best. If we find a Dj with contextualization score
higher than a threshold, we move Dj after Di in the top-10 results.

This reordering procedure yields three different top-10 source rankings: one
via KC and two (reordered ones) from SC/EC. For every top-10 ranking, users
provided a relevance feedback for each source w.r.t. a given query, using a scale
0 - 5 (higher means “more relevant”). For this, users had a schema description
and short source extract for every source. Last, we aggregated these relevancy
judgments for each top-10 ranking and query.

Results. User relevance scores are depicted in Fig. 6-b/e. Overall, EC yielded
an improved ranking, i.e., it ranked more relevant sources w.r.t. a given query.
More precisely, EC outperforms SCsc with 2.5%, SCec with 2.8% and KC with

6.2%, cf. Fig. 6-b. Furthermore, our EC approach led to stable results over varying
source sizes (Fig. 6-e). However, for 2 queries having large sources in their top-100
results, we observed misleading a clustering of sampled entities. Such associated
clusters, in turn, led to a bad contextualization, see Fig. 6-e.

Notice that all result reorderings, either by EC or by SC, yielded an improve-
ment (up to 6.2%) over the plain KC baseline, cf. Fig. 6-b/e. These findings
confirm results reported in [2] and clearly show the potential of data source
contextualization techniques. In other words, such observations demonstrate the
usefulness of contextualization – participants wanted to have additional/contex-
tualized sources, as provided by EC or SC.

In Fig. 6-c we show the # sources returned for contextualization of the “orig-
inal” top-10 sources (obtained via KC). EC returned 19% less contextualization
sources than SCsc and 28% less than SCec. Unfortunately, as contextualization is
a “fuzzy” criteria, we could not determine the total number of relevant sources
to be discovered in the top-100. Thus, no recall factor can be computed. How-
ever, combined with relevance scores in Fig. 6-b, # sources gives a precision-like
indicator. That is, we can compute the average relevance gain per contextualiza-
tion source: 1.13 EC, 0.89 SCsc, and 0.77 SCsc, see Fig. 6-b/c. Again, we explain
the good “precision” of EC with the fine-grained clustering, providing better and
more accurate data source semantics.

Last, it is important to note that, while Exp. 1 (Sect. 6.1) and Exp. 2 (Sect. 6.2)
differ greatly in terms of their setting, our observations were still similar: EC out-
performed both baselines due to its fine-grained entity clusters.

7 Related Work
Closest to our approach is work on contextual Web tables [2]. However, [2] focuses
on flat entities in tables, i.e., entities adhere to a simple and fixed relational
structure. In contrast, we consider entities to be subgraphs contained in data
sources. Further, we do not require any kind of “external” information. Most
notably, we do not use top-level schemata.

Another line of work is concerned with query processing over distributed RDF
data, e.g., [6, 9, 10, 13, 18]. During source selection, these approaches frequently
exploit indexes, link-traversal, or source meta-data, for mapping queries/query
fragments to sources. Our approach is complementary, as it enables systems
to involve users during source selection. We outlined such an extension of the
traditional search process as well as its benefits throughout the paper.

Last, data integration for Web (data) search has received much attention [4].
In fact, some works aim at recommendations for sources to be integrated, e.g., [3,
14, 17]. Here, the goal is to give recommendations to identify (integrate) identical
entities and schema elements across different data sources.

In contrast, we target a “fuzzy” form of integration, i.e., we do not give exact
mappings of entities or schema elements, but merely measure whether or not
sources contain entities that might be “somehow” related. In other words, our
contextualization score indicates whether sources might refer to similar entities
and may provide contextual information. Furthermore, our approach does not
require data sources to adhere to a known schema – instead, we exploit data
mining strategies on instance data (entities).

8 Conclusion
We presented a novel approach for Web data source contextualization. For this,
we adapted well-known techniques from the field of data mining. More precisely,
we provide a framework for source contextualization, to be instantiated in an
application-specific manner. By means of a real-world use-case and prototype,
we show how source contextualization allows for user involvement during source
selection. We empirically validated our approach via two user studies.

References

1. R. Chitta, R. Jin, T. C. Havens, and A. K. Jain. Approximate kernel k-means:
solution to large scale kernel clustering. In SIGKDD, 2011.

2. A. Das Sarma, L. Fang, N. Gupta, A. Halevy, H. Lee, F. Wu, R. Xin, and C. Yu.
Finding related tables. In SIGMOD, 2012.

3. H. R. de Oliveira, A. T. Tavares, and B. F. Lóscio. Feedback-based Data Set
Recommendation for Building Linked Data Applications. In I-SEMANTICS, 2012.

4. A. Doan, A. Y. Halevy, and Z. G. Ives. Principles of Data Integration. Morgan
Kaufmann, 2012.

5. S. Fausser and F. Schwenker. Clustering large datasets with kernel methods. In
ICPR, 2012.

6. O. Görlitz and S. Staab. SPLENDID: SPARQL Endpoint Federation Exploiting
VOID Descriptions. In COLD Workshop, 2011.

7. G. A. Grimnes, P. Edwards, and A. Preece. Instance based clustering of semantic
web resources. In ESWC, 2008.

8. P. Haase, M. Schmidt, and A. Schwarte. The Information Workbench as a Self-
Service Platform for Linked Data Applications. In COLD Workshop, 2011.

9. A. Harth, K. Hose, M. Karnstedt, A. Polleres, K. Sattler, and J. Umbrich. Data
summaries for on-demand queries over linked data. In WWW, 2010.

10. O. Hartig, C. Bizer, and J. Freytag. Executing SPARQL Queries over the Web of
Linked Data. In ISWC, 2009.

11. A. K. Jain, M. N. Murty, and P. J. Flynn. Data clustering: a review. ACM
Computing Surveys, 1999.

12. M. Kendall and J. D. Gibbons. Rank Correlation Methods. 1990.
13. G. Ladwig and T. Tran. Linked Data Query Processing Strategies. In ISWC, 2010.
14. L. A. P. P. Leme, G. R. Lopes, B. P. Nunes, M. A. Casanova, and S. Dietze.

Identifying Candidate Datasets for Data Interlinking. In ICWE, 2013.
15. H. Lodhi, C. Saunders, J. Shawe-Taylor, N. Cristianini, and C. Watkins. Text

classification using string kernels. J. Mach. Learn. Res., 2002.
16. Lösch et al. Graph kernels for RDF data. In ESWC, 2012.
17. A. Nikolov and M. d’Aquin. Identifying Relevant Sources for Data Linking using

a Semantic Web Index. In LDOW Workshop, 2011.
18. A. Nikolov, A. Schwarte, and C. Hütter. FedSearch: Efficiently Combining Struc-

tured Queries and Full-Text Search in a SPARQL Federation. In ISWC. 2013.
19. J. Shawe-Taylor and N. Cristianini. Kernel Methods for Pattern Analysis. 2004.
20. A. Wagner, P. Haase, A. Rettinger, and H. Lamm. Discovering related data sources

in data-portals. In First International Workshop on Semantic Statistics, 2013.
21. A. Wagner, P. Haase, A. Rettinger, and H. Lamm. Entity-based Data Source

Contextualization for Searching the Web of Data. Techreport, 2013. http://www.
aifb.kit.edu/web/Techreport3043.

22. R. Zhang and A. Rudnicky. A large scale clustering scheme for kernel K-Means.
In Pattern Recognition, 2002.

