
LODOP – Multi-Query Optimization
for Linked Data Profiling Queries

Benedikt Forchhammer1, Anja Jentzsch1, and Felix Naumann1

Hasso-Plattner-Institute firstname.lastname@hpi.uni-potsdam.de

Abstract. The Web of Data contains a large number of different, openly-
available datasets. In order to effectively integrate them into existing
applications, meta information on statistical and structural properties
is needed. Examples include information about cardinalities, value pat-
terns, or co-occurring properties. For Linked Datasets such information
is currently very limited or not available at all. Data profiling techniques
are needed to compute respective statistics and meta information. How-
ever, current state of the art approaches can either not be applied to
Linked Data, or exhibit considerable performance problems.

We present Lodop, a framework for computing, optimizing, and bench-
marking data profiling techniques based on MapReduce with Apache
Pig. We implemented 15 of the most important data profiling tasks, opti-
mized their simultaneous execution, and evaluate them with four typical
datasets from the Web of Data. Our optimizations focus on reducing the
amount of MapReduce jobs and minimizing the communication overhead
between multiple jobs. Our evaluation shows the significant potential in
optimizing the runtime costs for Linked Data profiling.

1 Introduction

Over the past years, an increasingly large number of datasets has been published
as part of the Web of Data. This trend, together with the inherent heterogeneity
of datasets and their schemata, makes it increasingly time-consuming to find
and understand datasets that are relevant for integration. In order for users to
be able to integrate Linked Data, they first need an easy way to discover and
understand relevant datasets on the Web of Data.

Data profiling is an umbrella term for methods that compute meta-data for
describing datasets [1]. Traditional data profiling tools for relational databases
have a wide range of features ranging from the computation of cardinalities,
such as the number of values or distinct values in a column, to the calculation
of inclusion dependencies between multiple columns or sets of columns; they
calculate histograms on numeric values, determine value patterns, and gather
information on used data types; some tools also determine the uniqueness of
column values, and find and validate keys and foreign keys.

Use cases for data profiling can be found in various areas concerned with
data processing and data management [1].



Query optimization is concerned with finding optimal execution plans for
database queries. Cardinalities and value histograms can help to estimate the
costs of such execution plans. Such metadata can also be used in the area of
Linked Data, e.g., for optimizing SPARQL queries.

Data cleansing can benefit from discovered value patterns. Violations of de-
tected patterns can reveal data errors, and respective statistics help measure
and monitor the quality of a dataset. For Linked Data, data profiling techniques
help validate datasets against vocabularies and schema properties, such as value
range restrictions.

Data integration is often hindered by the lack of information on new datasets.
Data profiling metrics reveal information on, e.g., size, schema, semantics, and
dependencies of unknown datasets. This is a highly relevant use case for Linked
Data, because for many openly available datasets only little information is avail-
able1.

Schema induction: Raw data, e.g., data gathered during scientific experiments,
often does not have a known schema at first; data profiling techniques need to
determine adequate schemata, which are required before data can be inserted
into a traditional DBMS. For the field of Linked Data, this applies when working
with datasets that have no dereferencable vocabulary. Data profiling can help
induce a schema from the data, which then can be used to find a matching
existing vocabulary or create a new one.

The process of running data profiling tasks for large Linked Datasets can take
hours to days, depending on the complexity of task and the size of the respective
datasets. Data set characteristics highly influence the profiling task runtime. As
an example, our Property Cooccurrence by Resource script (see Sec. 3) runs 16
hours for only 1 million triples of the Web Data Commons RDFa dataset in
contrast to 5 min on Freebase and 9 min on DBpedia.

We have compiled a list of 56 data profiling tasks implemented in Apache
Pig to be executed on Apache Hadoop. At this point Apache Pig only applies
some basic logical optimization rules, like removing unused statements [2]. We
present Lodop, a framework for executing, optimizing, and benchmarking such
a set of profiling tasks, highlight reasons for poor performance when executing
the scripts sequentially, and develop a number of optimization techniques. In
particular, we developed and evaluated three multi-script optimization rules for
combining logical operators in the execution plans of profiling scripts.

2 Related Work

While many tools and algorithms already exist for data profiling in general, most
of them can, unfortunately, not be used for graph datasets, because they assume
a relational data structure, a defined schema, or simply cannot deal with very
large datasets. Nonetheless, some Linked Data profiling tools already exist. Most
of them focus on solving specific use cases instead of data profiling in general.

1 http://lod-cloud.net/state/#data-set-level-metadata

http://lod-cloud.net/state/#data-set-level-metadata


One relevant use case is schema induction, because not having a fixed and
well-defined schema is a common problem with Linked Datasets. One example
for this field of research is the ExpLOD tool [3]. ExpLOD creates summaries for
RDF graphs based on class and predicate usage. It can also help understand the
amount of interlinking between datasets based on the owl:sameAs predicate. Li
describes a tool that can induce the actual schema of an RDF dataset [4]. It
gathers schema-relevant statistics like cardinalities for class and property usage,
and presents the induced schema in a UML-based visualization. Its implemen-
tation is based on the execution of SPARQL queries against a local database.
Like ExpLOD, the approach is not parallelized in any way. It is evaluated with
different datasets of up to 13M triples and reportedly faster than ExpLOD.
However, both solutions still take approximately 10h to process a 10M triples
dataset with 13 classes and 90 properties. These results illustrate performance
as a common problem with large RDF datasets, and indicate that there is a need
for parallelized, distributed execution.

An example for the query optimization use case is presented in [5]. The
authors present RDFStats, which uses Jena’s SPARQL processor for collecting
statistics on RDF datasets. These include histograms for subjects (URIs, blank
nodes) and histograms for properties and associated ranges. These statistics are
used to optimize query execution on the (discontinued) Semantic Web Integrator
and Query Engine. Others have worked more generally on generating statistics
that describe datasets on the Web of Data and thereby help understanding
them. LODStats computes statistical information for datasets from The Data
Hub2 [6]. It calculates 32 simple statistical criteria, e.g., cardinalities for different
schema elements and types of literal values (e.g., languages, value data types).
Approximation techniques are used when memory limits are reached. No detailed
information about the performance of LODStats is reported.

In [7] the authors use MapReduce to automatically create VoID descriptions
for large datasets. They manage to profile the Billion Triple Challenge 2010
dataset in about an hour on Amazon’s EC2 cloud, showing that parallelization
can be an effective approach to improve runtime when profiling large amounts
of data. Finally, the ProLOD++ tool allows to navigate an RDF dataset via
an automatically computed hierarchical clustering [8] and along its ontology [9].
Data profiling tasks are performed on each cluster independently, which serves
not only as a means to derive meaningful results, but also improves efficiency.

3 Linked Data Profiling Tasks

This section lists and explains a set of useful data profiling tasks to profile
Linked Data sets. We have implemented a total of 56 data profiling scripts,
which compute 15 different statistical properties across different subsets of the
input dataset. These subsets are determined via the following types of groupings:

Overall: no grouping.

2 http://datahub.io

http://datahub.io


Resource: grouping based on the triple subject; usually paired with some top-k
list of resources.

Property: grouping based on the property type.

Class: grouping based on the value of the rdfs:type predicate on a resource.

Class & Property: grouping based on both class and property type.

Datatype: grouping based on the (declared) data type of the object value; only
typed literals are considered.

Language: grouping based on the (declared) language of the object value; only
language literals are considered.

Context URL: grouping based on the N-Quads context attribute. Values being
aggregated based on the context URL are grouped three times: based on the full
URL, the pay-level-domain (PLD) part of the URL, and the top-level-domain
(TLD) part of the UR.

Vocabulary: grouping based on the vocabularies used for predicates or classes.

Object URI: grouping based on the value of the object. Only URI values are
considered.

The following data profiling tasks are computed. Unless stated differently, ex-
amples have been generated from a 1 million triples subset of DBpedia. More
information on datasets can be found in Section 6.

Number of triples for each of the following groupings: overall, resource, prop-
erty, object URI, context URL. This highlights, e.g., that the largest resources in
our DBpedia subset is http://dbpedia.org/resource/2010-11_SC_Freiburg_
season with 867 triples, and the most used property type is rdfs:type with
86,856 triples. (7 scripts)

Average number of triples per resource within each of the following group-
ings: overall, context URL, class. This reveals that resources in our DBpedia
subset are made up of 5.9 triples on average, and that some classes, such as
http://dbpedia.org/ontology/YearInSpaceflight, have resources with an
average number of 502 triples. (5 scripts)

Average number of triples per object URI highlights how often certain
URI objects are used across the dataset. For our DBpedia subset, each URI
object is (re-)used as the object value for an average of 2.6 triples. For our
1 million triples subset of Freebase, this number is lower (1.9), i.e., fewer URI
object values are reused. (1 script)

Average number of triples per URL computes the average number of triples
per value of the graph context URL. For our DBpedia subset, each graph con-
text contains an average of 47.8 triples. This means that, in this case, multiple
resources share the same graph context, because the average number of triples
per resource is only 5.9 as mentioned above. (1 script)

Number of property types within each of the following groupings: overall,
context URL, resource, class, data type. This tasks tells us how many property
types are used in different contexts; our DBpedia subset has a total of 7,844



different property types, of which 4,970 are used on resources of the class owl:

Thing. It also reveals that 2,929 property types point to triples having typed
object values with the xsd:int datatype. (7 scripts)

Average number of property values per property type (i.e., triples per
predicate) within each of the following groupings: overall, context-URL, resource,
class, property, class, property. For example, resources having the class http://
umbel.org/umbel/rc/Event have an average number of 115 values for the http:
//dbpedia.org/property/time predicate in our DBpedia subset. (8 scripts)

Number of resources in each of the following groupings: property, class,
datatype, language, vocabulary. On our subset of DBpedia, these profiling tasks
tell us that there are a total of 169,035 resources, that the owl:sameAs property
type is used on 43,840 resources, and the http://xmlns.com/foaf/0.1/Person

class on 4,140 resources. (6 scripts)

Number of context URLs in each of the following groupings: property, class,
vocabulary. For DBpedia the context URL usually matches to the corresponding
Wikipedia page. This task can reveal how many Wikipedia pages lead to certain
classes; for example, the foaf:Person class occurs in 4,140 different context
URLs in our subset of data. (3 scripts)

Number of context PLDs in each of the following groupings: property, class,
vocabulary. Alternative script versions additionally group by the TLD of the
context URL. Similar to the previous task, this task can tell us how many
different pay-level domains are responsible for certain properties, classes, or
vocabularies. For our WDC RDFa subset (1m triples) this reveals, e.g., that
the http://www.facebook.com/2008/ predicate is used by 452 domains, which
makes it the most-used property type in this subset. (6 scripts)

Property co-occurrence computes a list of pairs of property types that are
used together: a) on the same resource (by resource), b) within the same con-
text URL (by url), or c) pointing to the same resource (by object URI). This
reveals patterns, such as http://dbpedia.org/ontology/artist and http:

//dbpedia.org/property/title being used together on resources describing
artistic work. (3 scripts)

Inverse properties computes a list of properties that are inverse to each other.
For example, the relationship between a musician and his band can be de-
clared on both resources with two inverse property types http://dbpedia.org/
ontology/associatedBand and http://dbpedia.org/ontology/bandMember.
(1 script)

URI-literal ratio computes the ratio between the number of URI values and
literals within the following groupings: overall, class, context URL. Our DBpedia
subset contains almost as many URI object values as it contains literal values
(ratio 1.1); however, the RDFa subset contains far more literals than URI values
(ratio 0.2). (5 scripts)

Property value ranges of literal values per property type (numeric and tem-
poral values only). For example, the http://dbpedia.org/ontology/bedCount
property has numeric values between 76 and 785 in our DBpedia subset. (2 scripts)



Average value length of literals per property type can reveal schema prop-
erties. For example, the http://dbpedia.org/ontology/title property has
values with an average length of 34 characters, whereas values for the http:

//dbpedia.org/property/longTitle property have an average of 288 charac-
ters. (1 script)

Number of inlinks computes the number of URI values pointing to other
resources within the same dataset/file. For DBpedia, there are 207,712 values
pointing to resources within the same dataset; for our WDC RDFa subset, there
are far fewer inlinks (35,329). (1 script)

Each of these profiling tasks have been implemented as an Apache Pig script
and are availabe at https://github.com/bforchhammer/lodop. The runtime
of these scripts even on 1 million triples might take up to hours, e.g., for the
property co-occurrence determination. Also, scripts often have the same pre-
processing steps, e.g., filtering or grouping the dataset. Thus there is a large
incentive and potential to optimize the execution of multiple scripts.

4 Multi-query optimization for Apache Pig

A prevalent goal for relational database optimization is to reduce the amount of
required full table scans, which for file-based database systems effectively means
reducing the amount of disk operations. Sellis introduces Multi-Query Optimiza-
tion for relational databases as the process of optimizing a set of queries which
may share common data [10]. The goal is to execute these queries together and
reduce the overall effort by executing similar parts only once. The optimization
process consists of two parts: identifying shared parts in multiple queries and
finding a globally optimal execution plan that avoids superfluous computation.

Apache Pig3 is a platform for performing large-scale data transformations
on top of Apache Hadoop clusters. It provides a high-level language (called Pig
Latin) for specifying data transformations, e.g., selections, projections, joins,
aggregations and sorting on datasets. Pig Latin scripts are compiled into a series
of MapReduce tasks and executed on a cluster.

The main goals for our multi-query optimization rules for Pig are the fol-
lowing two: First, we attempt to minimize the dataflow between operators. In
our evaluation (Sec. 6) we identified the dataflow between MapReduce jobs as a
reasonable indicator for the performance of Pig scripts, as it is closely related to
the amount of required HDFS operations. Second, we try to avoid performing
identical or similar operations multiple times. The idea behind this is to free up
cluster resources for other tasks. All optimization rules presented in this section,
are based on optimizing the logical plans of Pig scripts.

Three optimization rules have been implemented: Rule 1 merges identical
operators in logical plans of different scripts, Rule 2 combines FILTER operators,
and Rule 3 combines aggregations, i.e., FOREACH operators. Rule 1 is a prereq-
uisite for the other two rules, which work on pairs of siblings operators, i.e.,

3 http://pig.apache.org/

https://github.com/bforchhammer/lodop
http://pig.apache.org/


operators that have the same parent operator in a respective logical plan. For
all optimization rules, it was important to make sure that their usage does not
affect the intended output of scripts.

Rule 1 – Merge identical operators: In order to better utilize cluster re-
sources, it makes sense to submit jobs to Apache Hadoop in parallel. Lodop
supports this by merging logical plans of different scripts into a single large
plan. In our experiments, executing scripts in parallel as part of one large plan
cuts execution time down to 25-30% of the time required to execute scripts se-
quentially. Once all plans have been merged together, it’s possible to also merge
identical operators.For 52 of our Pig scripts, this reduces the number of operators
from 365 to 267.

Rule 2 – Combine filters: FILTER operators reduce the amount of data that
needs to be processed in later steps of the execution pipeline. This optimization
rule aims to avoid iterating over large sets multiple times. From our selection of
profiling scripts, 25 scripts perform filtering operations on the full initial dataset.

First, we identify all suitable sibling filters, i.e., all FILTER operators that have
the same parent operator. Second, a combined filter is created and we attach it to
the same parent operator. This combined filter contains all boolean expressions
of existing filters concatenated via OR. The expression of the combined filter
is cleaned up by transforming it into disjunctive normal form. Finally, we re-
arrange all previous filters and move them after the combined filter.

Rule 3 – Combine aggregations: FOREACH operators can be used for pro-
jections and aggregations. Some instances perform identical aggregations, but
project different properties. This can happen, e.g., if the aggregation itself is
only a preprocessing step to another aggregation. These operators are not ex-
actly identical, so the rule for merging identical operators will not be able to
merge them. However, these cases can be optimized by separating the aggre-
gation from the projection, i.e., performing the aggregation only once with all
projected columns, and then projecting the exact columns afterwards. For our
set of scripts, this rule can be applied in seven different cases and combines vary-
ing numbers of FOREACH operators from the minimum of two to a maximum of
eleven siblings operators.

While our goal is to optimize the performance of profiling tasks, the opti-
mization rules can be applied on any Pig script.

5 The LODOP System

Lodop comprises four major components. Figure 1 shows how they interact
with the Hadoop cluster. The Compiler is responsible for compiling Pig Latin
scripts into Logical Plans and eventually into MapReduce jobs; the Optimiser
takes care of optimizing logical plans; the ScriptRunner schedules and monitors
the execution of jobs on the Hadoop cluster; finally, the Reporting component
turns raw statistics into human-readable formats.

Lodop is built to be easily configurable via command line arguments, allow-
ing the execution of different combinations of datasets, scripts, and optimization



Fig. 1. LODOP component overview

rules. The benchmarking system parses the arguments supplied by the user, and
passes them on to the compiler. The main responsibility of the compiler is to
make sure that Apache Pig plays well with the optimization component. It takes
over Pig’s standard script compilation workflow, and adds in missing features,
such as the support for multiple scripts and custom optimization rules.

The compiler first loads the declared list of scripts and compiles them into
respective logical plans. This compilation step is largely taken care of by Apache
Pig’s compiler, which parses Pig Latin and builds a respective directed acyclic
graph of logical operations. Once these logical plans have been created, our stan-
dardized loading and storage functions are injected into each plan. The loading
function assumes that all scripts work with the same input file type and schema
(N-Quads files). This is an essential prerequisite for merging different scripts
together in the optimization component. Similarly, outputs are also handled au-
tomatically, by always storing the result of the last statement in each script.
The respective storing function writes results directly to Hadoop’s distributed
file system (HDFS).

Rule-based optimization is now done in two steps: First, all existing logical
plans are merged into one large logical plan. At this point, each script’s logical
data flow is still separate from other scripts, but this allows the ScriptRunner
component to submit jobs for different scripts at the same time, and thus execute
them in parallel. Second, optimization rules are applied to the merged logical
plan. The rules function similar to other optimization rules that are already part
of Pig: First the logical plan is searched for applicable patterns in order to gain
a list of possible optimization targets. Each match is then checked to determine



whether the rule can be applied to the specific group of operators. Finally, if all
checks are positive, the rule is applied and the logical plan adjusted accordingly.

Lodop currently does not perform cost-based optimization to determine
whether a rule should be applied or not; we simply apply rules repeatedly un-
til they cannot be applied any more. To ease debugging and help understand
logical plans, the system additionally visualizes plans after different steps in the
compilation and optimization process.

After the optimization step, logical plans are compiled into MapReduce plans
and then handed to the ScriptRunner component. The ScriptRunner submits
MapReduce jobs to the Hadoop cluster, monitors their execution, and gathers
performance statistics. Scheduling and monitoring are handled by Apache Pig
itself. Statistics on the performance of MapReduce jobs are provided by Hadoop
and only need to be retrieved from the cluster.

6 Evaluation

In this section we evaluate the effect of applying the optimization rules of Sec. 4
and investigate under which circumstances the performance is improved. We
evaluate on four selected Linked Data sets that provide a wide range of charac-
teristics, ranging from cross-domain to domain-specific as well as ranging from
well-defined to loosely defined semantics.

6.1 Datasets and experimental setup

DBpedia4 is one of the largest Linked Data sets and contains structured infor-
mation extracted from Wikipedia. As such it covers a wide range of different
topics with a large number of property types and a very large number of classes
compared to other datasets. Almost 50% of property values are URIs.

Freebase5 is a community-maintained database of “well-known people, places,
and things”. It contains data harvested from sources such as Wikipedia, Chef-
Moz, MusicBrainz, and others. It has a fairly small average number of triples
per resource (4.4), but the highest number of URI values.

The Web Data Commons6 project extracts RDF triples directly from infor-
mation embedded on websites via RDFa, Microdata, or Microformats. We focus
on only the RDFa subset (roughly 500 million triples) which is mostly unstruc-
tured and has a small schema compared to other datasets. Most property values
are literal values (83%) and there are very few in-links (3%). Any faulty defi-
nitions on crawled websites can lead to inconsistencies and errors in the triple
graph, e.g., resources that do not conform to well-known schema definitions.

The species dataset of the European Environment Agency (EUNIS)7 is part
of a database on species, habitat types, and sites of interest for biodiversity.

4 http://dbpedia.org
5 http://www.freebase.com
6 http://webdatacommons.org
7 http://eunis.eea.europa.eu

http://dbpedia.org
http://www.freebase.com
http://webdatacommons.org
http://eunis.eea.europa.eu


The species subset is well-structured with only one class and 16 property types.
Compared to other datasets it has a very large average number of triples per
resource (15.2).

All evaluations were performed on an Apache Hadoop cluster with one head
node and ten slaves. Each node has a 2-core processor (Core 2 Duo) with 2GB
of memory and runs CentOS 5.5. We use Apache Hadoop 1.1.2 and Apache Pig
0.11.1 with Java 1.7. In order to explain our observations, we particularly look at
the properties identified as relevant to performance, i.e., the number of operators
and MapReduce jobs, as well as the amount of I/O activity on HDFS.

6.2 Base performance analysis

This section analyzes the overall runtime of scripts, when executed without any
custom optimizations. We thus establish a baseline against which our custom
optimization rules can be compared, and give insights into the reasons for current
performance.

Figure 2 shows an overview of execution times for all scripts executed on 1
million triples of DBpedia, Freebase, WDC RDFa, and EUNIS. The figure shows
that execution times vary depending on the dataset and the script. Overall, one
can see that many scripts finish in under 5 minutes. Some scripts have to perform
more complex computations and hence take longer to complete. This includes
the scripts for computing property co-occurrence and the URI-Literal ratio by
Class script. These UDF-based scripts dominate the overall execution time, are
not amenable to our rules, and are thus excluded from further evaluation.

Fig. 2. Runtime overview for all datasets (1M triples)

6.3 Effectiveness of merging identical operators

As described in Section 5, Lodop supports two ways for executing multiple
scripts: First, they can simply be loaded, compiled, and executed sequentially.



In this case, the monitoring and scheduling overhead of Apache Pig takes some
additional time between jobs and also between scripts, during which the cluster
is idle. In order to better utilize cluster resources, it makes sense to submit jobs
to Apache Hadoop in parallel instead. Lodop supports this by merging logical
plans of different scripts together into one large plan. By executing multiple
jobs simultaneously, Apache Pig can start a MapReduce job, as soon as all its
dependent jobs have finished. Figure 3 shows that this has a large impact on the
overall runtime of the profiling process, cutting execution time down to 25-30%
of the execution time required to execute scripts sequentially.

Fig. 3. Execution time for 52 scripts, sequential execution versus merged plan execution

Once all plans have been merged, it is possible to apply the first optimiza-
tion rule, merge identical operators. For 52 scripts, this reduces the number of
operators from 365 to 267. Table 1 shows that we are able to merge, amongst
others, 14 COGROUPs, 12 FOREACHs and 1 JOIN into respective identical operators.
In terms of MapReduce jobs, merging identical operators reduces the number of
jobs from 176 jobs to 140.

Pig Operator Defined in scripts Identical operators merged

COGROUP 66 52

ORDER BY 44 44

STORE 52 52

JOIN 6 5

DISTINCT 15 11

FOREACH 98 86

FILTER 28 13

LOAD 52 1

UNION 4 3

Table 1. Number of operators before and after identical operators merged. (52 scripts)

Unfortunately, this operator merging has little to no effect on the overall
performance, as can be seen in Figure 3. The following observations give reasons
for this: First, we end up with a tree of MapReduce jobs after merging identi-
cal operators; while this was an intended effect of this optimization rule, it also
means that there is only one root node, which all other jobs depend upon. Be-
cause Apache Pig tries to execute as many operators as possible on early Hadoop
jobs, we end up with one very large job at the beginning of the workflow. The



reason for this is the process used by Apache Pig to translate logical plans into
MapReduce plans: it generates one MapReduce job for each COGROUP operation,
then moves most other operators into the reduce function of the previous job; all
operators before the first COGROUP are pushed into the map function of the first
job. Executing this large initial job can take up a significant amount of time. For
example, for 1 million triples of the DBpedia subset, executing the merged root
node takes almost 10 minutes (570s), which is about 30% of the total execution
time for the merged plan. Compared to the simultaneous execution of unmerged
scripts, this hinders parallelism.

Note that the large initial job is also the reason for the missing execution
time value on the EUNIS species dataset in Figure 3: the respective cluster node
ran out of memory during the computation of the respective first job.

Second, the amount of data being transferred between jobs can actually in-
crease. When scripts are executed simultaneously in the merged plan, multiple
jobs load and process the same input file. Most scripts in this case manage to
reduce the input size significantly during their respective first job already. In
contrast, when all identical operators are merged, only the root node loads the
full input file. However, in this case 16 of the 36 children of the root job still
need to work with the full number of input tuples as well. Most of them will
have some columns projected out, so in terms of transferred bytes it is not the
full dataset, but compared to executing scripts in parallel more data needs to be
materialized on HDFS.

Merging identical operators is a prerequisite step to applying the remaining
two optimization rules. However, it may be more beneficial to only combine
identical operations based on a cost-based approach, which decides whether it
is worth merging identical operators based on the possibility of applying other
rules and based on an estimated performance gain.

6.4 Effectiveness of combining filters

In order to evaluate the effect of combining FILTER operators, we look at an
example of two scripts: Property value ranges (temporal) and Property value
ranges (numeric). Both scripts load the full input dataset and filter out only
triples with typed object values. The former script further restricts the set by
temporal data types, the latter by numeric data types. The two can be optimized
by filtering the input dataset only once and applying the additional restriction
on the data type afterwards.

Most of the datasets evaluated have only a small set of triples with typed ob-
ject values (< 15%). Therefore, filtering the input dataset only once significantly
reduces the selectivity for the additional selections. Statistics on the amount of
HDFS I/O for this example show that the un-optimized plan reads almost twice
as much data from HDFS than the optimized version (see Table 2). Yet Figure 4
shows that the effect on the overall execution time is small.

Even though the merging of filter operators does not improve on the amount
of HDFS I/O compared to merging identical operators, the graph still shows
a consistent improvement of about 10-20s, compared to only merging identical



Dataset Merged Plan Identical operators merged Filter operators
combined

DBpedia 10M 480MB / 1MB 241MB / 1MB 241MB / 1MB

Freebase 10M 194MB / 0MB 97MB / 0MB 97MB / 0MB

WDC-RDFa 10M 293MB / 0MB 146MB / 0MB 146MB / 0MB

Table 2. HDFS I/O statistics for both Property value ranges scripts.

Fig. 4. Execution time for Property value ranges scripts.

operators. This can be explained by improved CPU time, i.e., less time spent
on actual computation on the respective cluster node. In fact, the total amount
of seconds spent on computations (additive, not considering simultaneous exe-
cution) is reduced noticeably: For 10M triples of the DBpedia subset, the CPU
time is reduced from 390s for the merged plan to about 240s for the plan with
merged identical operators and finally to about 220s for the plan with combined
filter statements. While this presents an improvement compared to the plan with
identical operators merged, it does not show a significant improvement on the
runtimes of the merged plan, which executes scripts in parallel.

6.5 Effectiveness of combining aggregations

In order to evaluate the effect of combing FOREACH operators we regard three
closely related example scripts: Average number of property values by class, by
property, and by class and property. All three group the input dataset by subject
and predicate and then count the number of triples in each group. The only
difference in this aggregation step is the projected columns for each of the scripts.

The goal of combing aggregations is to reduce the amount of data required to
be read from HDFS, by having only one combined FOREACH operator iterating
over the full input dataset. Table 3 shows that this is achieved for the given
example. Compared to the merged plan, the amount of data being read from as
well as being written to HDFS is reduced considerably for all 10M datasets. As
explained earlier, execution plans for which we only merged identical operators
exhibit higher amounts of I/O activity. Figure 5 shows that this optimization
rule improves overall runtime for all datasets by 1-2 minutes.

It should be noted that the amount of HDFS activity is improved far less for
other combinations of scripts. So, while this example demonstrates the potential
benefit of combining aggregations, it also motivates the need for an advanced,
cost-based optimizer that applies optimizations only in certain cases.



Dataset Merged Plan Identical operators Aggregations combined
merged

DBpedia 10M 19.9GB / 14.6GB 22.4GB / 14.0GB 15.6GB / 11.8GB

Freebase 10M 11.7GB / 7.8GB 14.2GB / 7.0GB 8.8GB / 5.2GB

WDC-RDFa 10M 12.4GB / 7.5GB 15.4GB / 6.8GB 8.8GB / 4.6GB

Table 3. HDFS I/O statistics for Average number of property values by class / property
/ class and property scripts.

Fig. 5. Execution time for Average number of property values by class / property /
class and property scripts.

6.6 Combined results

The number of MapReduce jobs and the amount of dataflow in the operator
pipeline are good indicators for the performance of Apache Pig scripts. Our
evaluation shows that improving only on these factors does not necessarily im-
prove overall performance. Merging identical operators reduces both the total
number of operators and the number of MapReduce jobs. It comes at the cost
of less parallelism. Combining filter operators was shown to reduce the execu-
tion time of map/reduce functions (i.e., CPU time). Combining aggregations can
reduce the amount of HDFS I/O, and improves overall execution time for cer-
tain combinations of scripts and datasets. Figure 6 shows execution times when
optimizations are applied for all scripts. Overall in our experiments, executing
scripts in parallel and applying all optimization rules cuts execution time down
to 25-30% of the time required to execute scripts sequentially.

Fig. 6. Execution time for all optimizations (52 scripts)



7 Conclusion

Existing work on data profiling can either not be applied to the area of Linked
Data or exhibits considerable performance problems. To overcome this gap we
introduced a list of 56 data profiling tasks, implemented them as Apache Pig
scripts, and analyzed the performance of executing them on an Apache Hadoop
cluster. Thereby, we introduced three common techniques for improving perfor-
mance, namely algorithmic optimization, parallelization and multi-script opti-
mization. We experimentally demonstrated that they achieve their respective
goals of optimizing the amount of MapReduce jobs or the amount of data ma-
terialized between jobs.

In addition to the optimization techniques described in this paper, other
optimization rules could be implemented. For instance, simple projections could
be ignored in the logical optimization plans to allow further merging of operators,
and aggregations based on similar groupings could be optimised to reduce the
amount of redundant computation. Further, an advanced optimization strategy
should apply optimization rules only if the estimated overall performance gain
is high enough and not as often as possible, as we do it now.

References

1. Naumann, F.: Data profiling revisited. SIGMOD Record 42(4) (2013)
2. Gates, A., Dai, J., Nair, T.: Apache Pig’s Optimizer. IEEE Data Eng. Bull. 36(1)

(2013) 34–45
3. Khatchadourian, S., Consens, M.P.: ExpLOD: Summary-based exploration of in-

terlinking and RDF usage in the linked open data cloud. In: Proceedings of the
Extended Semantic Web Conference (ESWC), Heraklion, Greece (2010) 272–287

4. Li, H.: Data Profiling for Semantic Web Data. In: Proceedings of the International
Conference on Web Information Systems and Mining (WISM). (2012)

5. Langegger, A., Wöß, W.: RDFStats – An extensible RDF statistics generator and
library. In: Proceedings of the International Workshop on Database and Expert
Systems Applications (DEXA), Los Alamitos, CA, USA (2009) 79–83

6. Auer, S., Demter, J., Martin, M., Lehmann, J.: LODStats – an extensible frame-
work for high-performance dataset analytics. In: Proceedings for the International
Conference on Knowledge Engineering and Knowledge Management (EKAW).
(2012)

7. Böhm, C., Lorey, J., Naumann, F.: Creating VoiD descriptions for web-scale data.
Journal of Web Semantics 9(3) (2011) 339–345

8. Böhm, C., Naumann, F., Abedjan, Z., Fenz, D., Grütze, T., Hefenbrock, D., Pohl,
M., Sonnabend, D.: Profiling Linked Open Data with ProLOD. In: Proceedings
of the International Workshop on New Trends in Information Integration (NTII).
(2010)

9. Abedjan, Z., Grütze, T., Jentzsch, A., Naumann, F.: Mining and profiling RDF
data with ProLOD++. In: Proceedings of the International Conference on Data
Engineering (ICDE). (2014) Demo.

10. Sellis, T.K.: Multiple-query optimization. ACM Transactions on Database Systems
(TODS) 13(1) (1988) 23–52


	LODOP – Multi-Query Optimization for Linked Data Profiling Queries

