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Abstract. Biological system modelling is used to guide experimental
work, therefore reducing the time and cost of in vivo implementation of
newly designed systems. We introduce an improved modelling method,
based on fuzzy logic and Petri nets. By using fuzzy logic to linguistically
describe a biological process, we avoid the necessity to use kinetic rates,
which are often unknown. We introduce a new set of transition func-
tions to enable the use of our method with existing Continuous Petri
nets. With this we achieve the extension of usability and applicability
of current Continuous Petri nets definition even for biological systems
for which exact kinetic data are unknown. We demonstrate the contri-
bution of our approach by using it to model the translation in a simple
transcription-translation system. We compare the results obtained to the
results of exiting ODE approaches.
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1 Introduction

Advances in synthetic biology are consistently opening new possibilities for the
design and construction of complex biological systems. Because in vivo design
is costly and time-consuming, various modelling methods can be used to check
whether the desired behaviour of the system is achievable in silico first [1–3]. Fur-
thermore, modelling enables us to test in what way small or substantial changes
to the design of our system affects its behaviour and potentially change the design
before implementing it in vivo. Which modelling method to use depends on the
size of the system, the desired accuracy of simulation results and whether accu-
rate kinetic rates, which determine system’s dynamics, are known [4]. We usually
describe a biological system as a set of chemical species, which are connected by
interactions (chemical reactions). Once we define the desired behaviour of our
system by choosing the right chemical species and interactions among them, the
first step is to build a model. While existing deterministic and stochastic quan-
titative approaches [5–9] can produce a detailed prediction of system behaviour
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and therefore reduce the time and cost of such design, they heavily rely on kinetic
rates. In synthetic biology biological systems are usually newly designed and the
exact details of interactions (kinetic rates) are often unknown [10]. Consequently,
existing quantitative approaches can only be used to build a model of a limited
set of biological systems [11]. We can use parameter estimation techniques to
extract kinetic rates from experimental data. However, due to the complexity
of interactions, we often need to establish strict limitations on parameter values
in order to get biologically relevant and realistic parameters [12]. The diagram
on Figure 1 presents the role of modelling in designing a new biological system.
With existing methods the first step of the design process presented on the dia-
gram is only possible when we are building a model with well characterized parts
(left side), while our approach can be used for modelling biological systems in
the same way even if accurate kinetic data is unknown (right side). Existing
methods are often used within the framework of Petri nets, a formalism that
has been extended to suit the needs for continuous deterministic and stochastic
approaches [13].
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Fig. 1. Sequence of steps which can significantly reduce the time and cost of in vivo
implementation. Because accurate kinetic data is needed for the first step, existing
approaches are often not usable (left side). Proposed modelling method uses the same
paradigm for model building (right side), but can be used even when accurate kinetic
rates are unknown.

Similarly to quantitative Petri nets, fuzzy logic Petri nets have been established
as a very promising modelling approach for qualitative analysis of biological
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systems. Fuzzy logic uses linguistic terms and rules for system behaviour de-
scription, allowing intuitive design and model construction. It has been applied
to several research areas such as: extracting activator/repressor relationship from
micro-array data [14,15], searching for basic motifs in unknown gene regulatory
networks (positive/negative feedback loops, degradation, ...) [16] and qualita-
tive description of gene regulation [17]. Additionally, in [18] authors show that
fuzzy logic can serve as an alternative but more intuitive approach for modelling
biological systems. In their work they apply fuzzy logic and Petri nets to quan-
titative modelling of biological systems and successfully demonstrate that Hill,
Michaelis-Menten and mass-action functions can be approximated by fuzzy logic
systems if kinetic data is available. In this paper we propose an improved mod-
elling method that builds on established fuzzy logic and Petri nets approaches
but further extend its uses to allow us to obtain quantitative results even when
kinetic data is unknown. We inherit existing continuous Petri net definition and
extend it to include necessary transition functions for our fuzzy approach. In
addition, we can use the proposed method only for parts of the system where
kinetic data is unknown, while preserving the accuracy of ODEs in other parts.
Because the proposed method is based on linguistic description of the processes,
we can use rough estimations and general knowledge about the process to obtain
quantitative results. Rough estimations can be obtained by observing existing
systems with similar chemical species [19, 20]. Even though we use these esti-
mations and consequently obtain less accurate simulation results, they are still
comparable to results of existing methods, are biologically relevant and can be
used to guide experimental work.
This paper is organized as follows: in Section 2 we present the basics of fuzzy logic
modelling and how fuzzy logic is used in the Petri net framework. In Section 3
we demonstrate the proposed method by constructing a model of translation in a
simple transcription-translation system, in Section 4 simulation results obtained
with ODE and proposed method are compared and in Section 5 we summarize
what the main contribution of the method is and give some directions for future
research.

2 Petri Nets as a Framework for Fuzzy Logic

2.1 Fuzzy Logic as a Modelling Approach

Fuzzy logic uses linguistic terms and rules to describe current system state and
how the state of the system changes over time [21,22]. Numerical (crisp) values,
which are used for presenting chemical species’ concentrations, are converted to
fuzzy values. Fuzzy values are given by linguistic terms, presented as membership
degree to fuzzy sets, such as Low, Medium and High. Conversion from crisp to
fuzzy value is performed with fuzzification rules, which include the definitions
and number of fuzzy sets and the shapes and positions of their membership
functions. While a membership function can have arbitrary shape and position,
the most commonly used functions are simple triangular [23]. In order to simulate
system change and obtain fuzzy value of output variables, IF-THEN rules are

Proc. BioPPN 2014, a satellite event of PETRI NETS 2014



6 J. Bordon, M. Moškon and M. Mraz

Fig. 2. Fuzzy logic modelling. Input variables are first converted to fuzzy variables by
fuzzification. Once we have input fuzzy values, IF-THEN rules are applied to obtain
output fuzzy values. Output variable is then defuzzified to obtain the crisp value. This
sequence of steps can easily be translated to a Petri net.

applied to input fuzzy variables. Example of such rule is IF x is High THEN y
is Low, where x is the input variable and y is the output variable. Since biological
processes often have more than one input, we will need to use rules that combine
the effect of input variables with operators AND and OR. An example of such
rule is IF x1 is High AND x2 is Low THEN y is Low, where x1 and x2 are
input variables and y is the output variable. Final step of fuzzy logic reasoning
is obtaining crisp value of output variable, which is termed defuzzification and
is performed by applying center-of-gravity (COG) method. Figure 2 shows these
three steps as a sequence of actions: fuzzification, applying IF-THEN rules and
defuzzification. Fuzzy logic can be used to intuitively model biological processes.
IF-THEN rules are used to describe underlying dynamics where input variables
are presented by current concentrations of chemical species and output variables
define changes of concentrations. If we augment this description with rough
estimation of reaction speed and therefore introduce the component of time, we
can obtain quantitative results. In addition, the sequence of three steps can be
efficiently used within the Petri net framework [24,25].

2.2 Fuzzy Logic and Petri Nets

By using Petri net formalism it is possible to intuitively build the Petri net
graph of the model. Once the Petri net is constructed using different modelling
methods is easy. We only need to change the underlying transition function and
firing rules. Continuous Petri nets use real numbers in places (marking values),
meaning that transitions also no longer consume and produce whole tokens, but
instead change the marking of an input or output place by a real value. New
marking values in places are calculated by adding the contribution from input
transitions and subtracting the value that is consumed due to output transitions.
This allows a continuous flow throughout the Petri net, which can be used to
present a system of ODEs [13]. Similar approach is used with the proposed fuzzy
logic modelling method. Input and output of fuzzy part is identical to that of
existing continuous Petri net [26]. However, when using fuzzy logic, we first
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need to fuzzify the input variable (additional transition function) and calculate
the membership to each defined fuzzy set. By applying the defined IF-THEN
rules (one transition for each rule), we obtain the fuzzy value of output variable
and then defuzzify (center-of-gravity transition function) it to obtain the crisp
value. We use this crisp value to change the marking of a place the same way
we do in continuous Petri nets, by adding or subtracting a real value. We will
use existing continuous Petri net definition from [26]. We will add a new set
of functions that are needed for fuzzy logic. This set of functions will include
fuzzification functions, functions for applying IF-THEN rules and defuzzification
function. Existing definition PNContinuous = 〈P, T, f, v,m0〉 is extended by a
set of functions vfuzzy = (ffuzzification, fdefuzzification, fIF−THEN ). Functions
in ffuzzification define how we obtain fuzzy value from an input crisp value. An
example of such function is a triangular membership function for a fuzzy set A:

µA(x) =


x−a
b−a a ≤ x ≤ b,
c−x
c−b b ≤ x ≤ c,
0 otherwise,

(1)

where x is the crisp value of the input variable and parameters a, b, c the x-
coordinates of triangle vertices that define the shape of membership function.
Function fdefuzzification gives us the opposite rule and defines how we obtain
crisp value from fuzzy value by applying the center-of-gravity method (COG).

y =

∑n
i=1 yi · µ[i]∑n

i=1 µ[i]
, (2)

where y is the crisp value, yi x-coordinate at which membership function of fuzzy
set i has the highest possible degree of membership (parameter b from Eqn. 1)
and µ[i] current degree of membership for fuzzy set i. Output fuzzy value is
obtained by applying IF-THEN rules to the input variables. With basic (one
input and one output) IF-THEN rules fIF−THEN is simple. If we have an input
variable x, an output variable y and a rule IF x is Low THEN y is High, x
membership degree to its fuzzy set Low is assigned to y membership degree to its
fuzzy set High. This process is then repeated for all rules to obtain fuzzy value
of y. However, biological processes usually have more than one input chemical
species, therefore we need to use rules with more than one input variable. When
applying IF-THEN rules with more than one input variables we usually define
the rules using operator AND, which acts as a function Min(µ1[i], µ2[i], ..., µn[i]),
where µj [i] is a membership degree of variable j to its fuzzy set i. If we have two
input variables x1, x2, an output variable y and a rule IF x1 is Low AND x2
is High THEN y is High, y degree of membership to its fuzzy set High would
be assigned as a lower of the two values: x1 degree of membership to its fuzzy
set Low and x2 membership degree to its fuzzy set High, which we can also note
as µy[High] = Min(µx1 [Low], µx2 [High]). Once we define the set of these three
types of functions (fuzzification, defuzzification, IF-THEN rules), we have all the
tools needed to construct a fuzzy Petri net model of a biological process.
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3 Simple Transcription-Translation System: Modelling
Translation With Fuzzy Logic and Petri Nets (case
study)

We present model construction using proposed method on a simple transcription-
translation system introduced in [18] to verify a qualitative modelling technique
by qualitatively comparing its results with the results of an ODE approach.
This system consists of 5 chemical species: DNA, mRNA, Transcription resource
(TsR), Translation resource (TlR) and protein (GFP). The dynamics of the
system are governed by transcription (TsR consumption, mRNA production),
translation (GFP production) and the decay of mRNA and TlR as shown on
Figure 3.

Fig. 3. Petri net of a simple transcription-translation system. We use fuzzy approach
on the marked part of the Petri net (translation). Our simulations will observe how
concentration of GFP changes over time, if we insert DNA at different time points. The
limiting factors for system stability are limited amount of transcription and translation
resources: TsR consumption and TlR degradation.

We will adopt the ODE model of this system from [18]. It is defined as the
following set of differential equations:

d[mRNA]

dt
=
kts · [TsR] · [DNA]

mts + [DNA]
− δmRNA · [mRNA], (3)

d[TsR]

dt
= −kTsR · [TsR] · [DNA]

mts + [DNA]
, (4)

d[GFP ]

dt
=
ktl · [T lR] · [mRNA]

mtl + [mRNA]
− kmat · [GFP ], (5)

d[T lR]

dt
= − δTlR · [T lR]

mTlR + [T lR]
. (6)
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Fig. 4. Membership functions for input variable fuzzy sets: mRNA (left) is described
by 6 fuzzy sets - None, VeryLow, Low, Medium, High and VeryHigh - and TlR (right)
by 4 fuzzy sets - None, Low, Medium and High.

Fig. 5. Membership functions for output variable (concentration change) fuzzy sets -
None, VeryLow, Low, Medium, High, VeryHigh.

The ODE model from [18] assumes that concentration of TlR and mRNA do not
change as the result of translation. mRNA concentration increases as a result
of transcription and only decreases as a result of degradation. Additionally, TlR
concentration also only decreases as a result of degradation. To verify the pro-
posed method, we will assume that ktl and/or mtl from Eqn. (5) are unknown
when constructing the fuzzy logic model. We evaluate the fuzzy logic approach
by constructing a fuzzy Petri net model of translation, replace the translation
part of Eqn. (5) with our fuzzy description as shown on Figure 3 and compare the
simulation results to the initial ODE model. First step in constructing a fuzzy
logic model is to define membership functions for fuzzification and defuzzification
of our input variables (concentration of mRNA and TlR) and output variable
(concentration change of GFP). Membership functions we use for both input
and output variable fuzzy sets are shown on Figures 4 and 5.

According to [27] we assume that mRNA concentration is the strongest factor of
maximum translation speed (maximum change in concentration). TlR therefore
reaches highest possible contribution before reaching its maximum concentra-
tion, while on the other hand even small amounts of mRNA should result in
GFP concentration change.
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When defining membership functions for output variables, we need to take into
account the rough estimation of translation speed. Our rough estimation is based
on data from different biological systems, using different chemical species. Con-
sidering translation rate, maximum concentration of mRNA and type of chemical
species from [18, 19, 27, 28], our rough estimation is that the maximum change
in concentration of a protein as a result of translation is 25nM/min. How input
variables affect output variable is defined by the IF-THEN rules shown in Table
1.

Table 1. The set of rules that defines how input variables affect output variable. If
either of the input variables is None change in concentration will also be None. In all
other cases, increasing both input variable concentration will increase the change in
concentration of GFP, reaching highest change when both inputs are at their highest
values.

TlR \ mRNA None VeryLow Low Med High VeryHigh

None None None None None None None

Low None VeryLow Low Low Low Med

Med None VeryLow Low Med Med High

High None VeryLow Low Med High VeryHigh

IF-THEN rules are defined so they reflect the descriptive knowledge we have
about translation. The more there is of either mRNA or TlR, the higher the
change in concentration of GFP should be; if one of the inputs is low, change in
concentration changes accordingly; if any of the inputs is missing, there should
not be any concentration change, etc. Once we obtain the fuzzy value of our
concentration change by applying IF-THEN rules, we need to defuzzify it in order
to get a crisp value, which we can then use in calculating the new concentration
of the GFP. Fuzzy output is translated into a crisp value according to the Eqn.
(2). This crisp value is then used just as it would have been if it was a result
of a step in numerical solving of system of ODEs. We constructed the Petri net
for our fuzzy description of translation as a series of three steps - fuzzification,
applying IF-THEN rules and defuzzification (Figure 6). We can use this PN to
replace the translation transition from Figure 3, if parameter values for Eqn. (5)
are unknown.
Using this constructed Petri net, we will observe how concentration of GFP
changes over time and when it reaches its maximum value if we add the DNA
at different time points and compare the simulation results to the ODE model.

4 Results

Both ODE and Fuzzy logic models were built in MATLAB Simulink. Petri nets
serve as a powerful framework for both approaches, however computing under-
lying numerical solutions can be done by an external engine like MATLAB. We
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mRNA concentration
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Fig. 6. Translation model using fuzzy logic and Petri nets. Inputs and output of this
model are the same as with ODE: mRNA concentration, TlR concentration and change
in concentration of the protein (GFP). This Petri net can be inserted into 3 to get the
full model of the system. For reactions other than translation ODEs are used (Eqns.
(3),(4),(6) and degradation part of Eqn. (5).

used MATLAB Simulink built-in ode4 (Runge-Kutta) solver and set the simula-
tion time to 1000 minutes with a 0.1 minute fixed time step. Initial concentrations
of both TsR and TlR were set to 1 nM, all others were set to 0 nM. During the
simulation we inserted 3.4 nM of DNA at 6 different time points (six different
simulations with same initial concentrations): 0 minutes, 37 minutes, 73 min-
utes, 112 minutes, 153 minutes and 187 minutes (these concentrations and time
points were chosen according to [18] in order to make comparison of simulation
results relevant). To avoid discontinuity of ODE solving, the input and output of
the fuzzy component is evaluated for every step of the simulation. This slightly
increases computation time of the simulation. Figure 7 shows simulation results
of two different models.

Simulation results from both models show that the plateau of protein concen-
tration is reached at the same time (at about 200 minutes) which is the result
of translation resource degrading to 0, stopping translation entirely. Since we
did not include protein degradation, its concentration stays unchanged for the
remaining time of simulation. We see that even though we described transla-
tion with fuzzy approach we still get comparable quantitative results. The error
introduced due to using rough estimation of translation speed instead of ex-
act translation rate is noticeable. However, we did not use any exact parameter
values for translation with the proposed method and still managed to obtain
quantitatively and biologically relevant results, which are comparable to those
obtained with (strict) ODE approach. In addition, because we only changed how
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Fig. 7. We observed how GFP concentration changes if we add 3.4 nM of DNA at
different points when using strict ODE model (left) and when using the proposed
fuzzy approach for modelling translation (right).

we model translation, trajectories for other processes stay unchanged. Simula-
tion results indicate that fuzzy logic is a viable modelling approach even when
kinetic data is unknown. By exploiting information we have about the system
for similar models and biological systems, we can successfully build a quantita-
tive model even when accurate parameters are unknown. By using our approach
with Petri nets, we can easily change the underlying description of a process for
which kinetic data is unknown while preserving accuracy of ODEs for the parts
of system where it is possible.

5 Summary

We presented the Fuzzy logic approach for modelling biological processes, which
avoids using exact kinetic data. Proposed method uses a rough estimation of
process dynamic to obtain quantitative simulation results. This estimation is ex-
tracted from existing base of knowledge about modelling biological processes by
inspecting similar systems and chemical species. With introducing this method
to Petri nets we managed to further extend their usability and applicability to
continuous approaches, even when kinetic data is unknown. We showed its uses
on a simple transcription-translation system by substituting the ODE transla-
tion description with the proposed fuzzy approach, achieving quantitatively and
biologically relevant results, without using exact kinetic data. Adding additional
functions for fuzzification, application of IF-THEN rules and defuzzification in-
creases the complexity of the Petri net model. However, these functions are very
simple and can be evaluated the same way that ODEs are. In addition, these
three stages of fuzzy logic are repeated for every process for which we use the
proposed approach and while we need to manually define fuzzy sets, member-
ship functions and IF-THEN rules, once those are defined we could generate the
Fuzzy Petri net automatically. The number of transitions and edges for fuzzifica-
tion and defuzzification stages are defined by the number of fuzzy sets, while the
functions for these transitions are defined by the shape of membership functions.
Number of edge and transition functions in IF-THEN rule stage are defined by
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IF-THEN rules (e.g. IF x1 is High AND x2 is Low THEN y is Low would gener-
ate a transition with two input edges - from places x1High and x2Low - and one
output edge - to place yLow; the function in the transition would be Min(Input
1, Input 2)). Moreover, we could use hierarchical Petri net structure, where top
level would resemble the Petri net shown on Figure 3, while the fuzzification,
IF-THEN rules and defuzzification stages (Figure 6) would be presented as a
lower level Fuzzy Petri net that describes all three stages as one transition (in
our case translation). Our future research also includes using this approach on
a more complex system and observe how inaccuracy of our rough estimation
changes the overall trajectory of concentrations. We would also like to consider
using experimental data for fine tuning our estimations, which would bring the
accuracy of simulation results even closer to those of existing methods.
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