
Real-Time Property Specific Reduction for Time
Petri Net

Ning Ge Marc Pantel

LAAS-CNRS University of Toulouse, IRIT-CNRS
7 Avenue du Colonel Roche, Toulouse 2 Rue Charles Camichel, Toulouse

Ning.Ge@laas.fr Marc.Pantel@enseeiht.fr

Abstract. This paper presents a real-time property specific reduction
approach for Time Petri Net (TPN). It divides TPN models into sub-nets
of smaller size, and constructs an abstraction of reducible ones, which
exhibits the same property specific behavior, but has less transitions and
states. This directly reduces the amount of computation needed to gen-
erate the whole state space. This method adapts well to the verification
of real-time properties in asynchronous systems. It should be possible to
apply similar methods to other families of properties.

Keywords: Real-time property specific reduction, Time Petri net

1 Introduction

The key issue that prevents a wide application of model checking in the industry
is the scalability with respect to the size of the target system. A realistic sys-
tem usually has thousands and even millions of states and transitions. Although
a huge part of impossible firing sequences of transitions are eliminated during
the building of system’s behavior, the interleaving of all others is still a very
large number that will easily lead to combinatorial state space explosion. Clas-
sic verification methodologies usually encounter scalability issues very quickly
along with the growth of system scale, because they follow an implicit purpose:
many different kind of properties will be assessed relying on the same state space
graph (reachability graph). Indeed, once the reachability graph has been gen-
erated, it can be reused to verify different kinds of properties, just by revising
the assessed logic formulas. This consideration requires to build the reachability
graph preserving precise and sufficient information for the assessment of prop-
erties. The existing state space reduction methods, partial order reduction [1,
2], compositional reasoning [3, 4], symmetry [5, 6], abstraction techniques [7], on-
the-fly model checking [8, 9], etc., usually follow the same philosophy to produce
a complete state space that preserves the mandatory semantics. These generic
reduction methods have effectively improved the efficiency of model checking
techniques. But their improvement is becoming more and more difficult. We
thus might put aside the universality of the semantics expressed in the state
space graph, and take into account property specific reduction methods.

This work proposes a real-time property specific state space reduction ap-
proach for Time Petri Net (TPN). It divides the TPN model into sub-nets of

smaller size, and constructs an abstraction of reducible sub-nets, which exhibit
the same property specific behavior, but has less transitions and states. The
real-time property specific behavior (called real-time behavior for short in the
following parts) of TPN sub-nets is an abstraction of the whole state-transition
traces that only preserves real-time behaviors from the viewpoint of observa-
tions. This method adapts well to the verification of real-time properties in
asynchronous systems. It could be possible to apply similar methods to other
families of properties.

This paper is organized as follows: Section 2 presents some related works;
Section 3 introduces real-time properties and Time Petri Net; Section 4 gives
an overview of property specific reduction methods; Section 5 defines two real-
time behavior regularities for this work; Section 6 details the proposed reduction
method; Section 7 provides experimental results; Section 8 discusses the behavior
coverage issue; Section 9 gives some concluding remarks.

2 Related Works

Several existing works [10–13] defined reducible sub-net patterns for Petri nets,
Time Petri nets or Colored Petri nets, based on the idea of fusing redundant
places and transitions. They provide in fact simple behavior equivalent patterns.
The state space reduced by these patterns is rather limited.

The idea of our approach is similar to the partial order reduction [14, 2] and
the state space abstraction techniques applied in the TINA toolset.

The partial order reduction is usually used in asynchronous concurrent sys-
tems, where most of the activities in different processes are performed indepen-
dently, without a global synchronization. Its main idea is to construct a reduced
state class graph by analyzing the dependencies between the transitions and ex-
ploiting the commutativity of concurrently executed transitions, which result in
the same state when executed in different orders. A set of non-reducible transi-
tions are preserved in the reduced state class graph. The reduced behavior is a
subset of the behavior of the full state class graph. Compared to the partial order
reduction, the proposed property specific reduction exploits the commutativity
of TPN sub-nets, which result in the same property specific behavior.

The TINA toolset provides various state space abstractions for TPN when gen-
erating state class graphs, following the techniques proposed in [15, 9]. Depending
on the abstraction options, the construction can preserve the traces required by
the verification of markings, states, LTL, or ctl⇤ properties. This work relies on
the state class graph preserving markings to verify the real-time properties in
TPN. Even with this highest abstraction, the state space still rapidly increases
along with system scale. Therefore, more abstract state class graphs dedicated
to one type of properties (in our case real-time properties) is needed.

166 PNSE’14 – Petri Nets and Software Engineering

3 Preliminaries

3.1 Time Petri Net

Time Petri nets [16] extends Petri Nets with timing constraints on the firing of
transitions. Here we use the formal definition of TPN from [17] to explain its
syntax and semantics.

Definition 1 (Time Petri Net). A Time Petri Net (TPN) T is a tuple
hP, T, •(.), (.)•,M

0

, (↵,�)i, where:

– P = {p
1

, p
2

, ..., pm} is a finite set of places;
– T = {t

1

, t
2

, ..., tn} is a finite set of transitions;
– •(.) 2 (NP)T is the backward incidence mapping;
– (.)• 2 (NP)T is the forward incidence mapping;
– M

0

2 NP is the initial marking;
– ↵ 2 (Q�0

)T and � 2 (Q�0

[1)T are respectively the earliest and latest
firing time constraints for transitions.

Following the definition of enabledness in [18], a transition ti is enabled in a
marking M iff M � •(ti) and ↵(ti) vi �(ti) (vi is the elapsed time since
ti was last enabled). There exist a global synchronized clock in the whole TPN,
and ↵(ti) and �(ti) correspond to the local clock of ti. The local clock of each
transition is reset to zero once the transition becomes enabled. The predicate
" Enabled(tk,M, ti) in the following equation is satisfied if tk is enabled by the
firing of transition ti from marking M , and false otherwise.

" Enabled(t
k

,M, t
i

) = (M�•(t
i

)+(t
i

)• � •(t
k

))^((M�•(t
i

) < •(t
k

))_(t
k

= t
i

)) (1)

Time Petri Net is widely used to formally capture the temporal behavior of
concurrent real-time systems due to its easy-to-understand graphical notation
and the available analysis tools, such as TINA, INA, Roméo, etc.

3.2 Real-Time Property Verification

The safety and reliability of real-time systems strongly depend on the satisfaction
of its real-time requirements, in both qualitative and quantitative aspects.

Dwyer et al. initially proposed qualitative temporal property patterns for
finite-state verification in [19]. Konrad created in [20] mappings of quantitative
requirements into timed logics MTL, TCTL, and RTGIL, and defined a pattern tem-
plate to ease the reuse. From the viewpoint of property verification, the real-time
requirements expressed by Dwyer’s and Konrad’s patterns are not atomic. We
thus defined a minimal set of atomic patterns, which allows to specify the same
time requirements as Dwyer’s and Konrad’s patterns do, to ease the property
verification based on observers. We have defined 12 event-based and 4 state-based
observers and verified real-time requirements using the reachability assertions.
Some early results about the observer-based verification approach are presented
in [21, 22].

N. Ge et al.: Real-Time Property Specific Reduction for Time Petri Net 167

4 Approach Overview

Let’s first see an example benefiting from property specific reduction method.

Example 1 (Example of Property Specific Reduction). When generating the
reachability graph preserving markings for the TPN model in Fig. 1 by TINA,
it contains 177 states and 365 transitions. This system is identified as two
sub-nets A and B : A is the structure in dotted box, and B is the other parts. The
transition t

4

is the only portal transition between A and B. From the viewpoint
of A through t

4

, A does not know the inner structure and inner behavior of B,
only two informations are observable: how many times t

4

will be fired and the
time range for each firing occurrence of t

4

.

A

B

Figure 1. Example of Property Specific Reduction

We provide these informations based on the real-time property verification
method presented in the previous section. t

4

is fired infinitely. The time ranges
for each firing occurrence are shown in Table 1. For each firing occurrence n
(n 2 N) of t

4

, the time range [tmin
n , tmax

n] is [5 + 17(n � 1), 10 + 69(n � 1)].
The behavior regularity in this case is that, except the first occurrence, the time
difference between current occurrence and the previous one is always in [17, 69].

A sub-net B0 conforming to this regular pattern is constructed to replace
original sub-net B, as shown in Fig. 2. Sub-net A is kept as before. The reacha-
bility graph of the reduced TPN only contains 3 states and 3 transitions, but
exhibits the same real-time behavior as before from the viewpoint of A.

To summarize the main objective of this work from the above example, we
aim to find the regularity of the real-time behavior for the TPN sub-nets from
the viewpoint of observations. As we only observe TPN transitions, the real-time
behavior from the viewpoint of observed transitions concerns both the firing
occurrence times and the time range of each firing occurrence. A reducible sub-
net must be independent of its surrounding behavioral context. It means that

168 PNSE’14 – Petri Nets and Software Engineering

Occurrence Time [tmin

i

, tmax

i

] Time Diff [tmin

i

� tmin

i�1 , tmax

i

� tmax

i�1]
0 [0, 0] -
1 [5, 10] [5, 10]
2 [22, 79] [17, 69]
3 [39, 148] [17, 69]
...
n [5+17(n-1), 10+ 69(n-1)] [17, 69]

Table 1. Real-Time Behavior

t4

[5,10] p1

t1

[17,69] p2p0

t5

[0,0]p5

B'

A

Figure 2. Example Result of Behavioral Equivalence

whether it is "knocked out" from the system or not, it will exhibit exactly the
same behavior whenever it is measured, in terms of occurrence times of the portal
transition and its time range of each firing occurrence.

An overview of the approach is illustrated in Fig. 3. First, some reducible
sub-nets like A, B, and C are identified from the whole TPN model using the
Identification functions. These sub-nets contain either none incoming transition
and one unique outgoing transition such as A, denoted as one-way-out pattern; or
one incoming and one outgoing transitions such as B and C, denoted as generic
pattern. The regularity of real-time behaviors for each reducible sub-nets A, B
and C are searched using Reduction functions relying on observer-based property
verification method. If the regularity is founded, reduced sub-nets (A0, B0, and
C 0) are constructed to replace the original ones after their soundness is assessed
by the Refinement functions, which also rely on the observer-based property
verification method. As the one-way-out pattern and the generic pattern rely on
different identification functions but similar reduction and refinement functions,
for the page limit, we only develop our discussion based on the one-way-out
pattern.

5 Regularity of Real-Time Behavior

The regularity of real-time behavior depends on the characteristics of a system.
Fig. 4 illustrates two possible regularities of real-time behavior from the view-
point of observed transitions. The TPN in Fig.4 (a) has 3 sub-nets: A, B and C.
A (resp. B) has a unique portal transition TA (resp. TB) to C, and produces
tokens via TA (resp. TB) periodically or sporadically. From the viewpoint of C,

N. Ge et al.: Real-Time Property Specific Reduction for Time Petri Net 169

System

A

A'

B C

B' C'

Figure 3. Overview of Behavior Equivalence Approach

regardless the complex inner behaviors of the A and B, they can be seen as single
transitions that may fire regularly under a pattern to feed C by tokens. There
exists thus an opportunity to abstract and redefine this regularity to a reduced
TPN A0 (resp. B0) that may contains less states and transitions than the original
one.

B'

A

C

TA

C

[t1,t2]

[t3,t4]

….

[tm,tn]

B

[ti,tj]

[tp,tq]

….

[tx,ty]

A'

TB

(a) (b)

Figure 4. Reduction pattern

When the observation is performed on a TPN transition, the regularity of
its firing occurrence is either finite or infinite. The time range of each firing
occurrence can be measured using observers if the time ranges are bounded.

Fig. 4 (b) shows two kinds of possible regularity. Assume that we observe the
firing time of transitions TA and TB for each firing occurrence. The occurrence
of TA/TB can be either finite (A) or infinite (B). An infinity observer can be
added on a transition to check its infinity. Each occurrence Ti has a bounded
time range [tmin

i , tmax
i]. These ranges are derived by adding BCET (Best Case

Execution Time) and WCET (Worst Case Execution Time) observers on TA and
TB .

Finite Firing Occurrence If the occurrence is finite, the sub-net A can be
represented by a finite sequential section of transitions Tseq = {Ti} (i 2 N)
with adapted time range [Ti.min, Ti.max], where Ti.min = tmin

i � tmin
i�1

, and

170 PNSE’14 – Petri Nets and Software Engineering

Ti.max = tmax
i � tmax

i�1

and tmin
0

= tmax
0

= 0. It is possible that the regularity
of A contains several control modes that lead to several branches with finite
sequential transitions.

Infinite Firing Occurrence If the occurrence is infinite, as we focus on finite-
state systems, the states in sub-net B must be finite. In other words, there must
exist a repeating pattern in B. Depending on system’s behavior, there are several
possible repeating patterns, such as single loop pattern, nested loop pattern, etc.
In this paper, we only discuss one of them: the pattern that is composed of an
eventual finite sequential section of transitions Tseq = {Ti} (i 2 N) and a loop
section of transitions Tloop = {Tj} (j 2 N). The other patterns are under study.
Therefore, for now, if the system does not behave the infinite regularity with an
eventual sequential section and a loop section, it is considered as non-reducible.

6 Real-Time Property Specific Reduction

The property specific state space reduction method follows three steps (func-
tions): identification, reduction and refinement, which rely on the real-time prop-
erty specification and observer-based verification approaches presented in [21,
22]. This section details the algorithms for the above functions for the one-way-
out pattern.

6.1 Identification Function for One-Way-Out Pattern

We first define a symbolic system to ease the discussion:

– t+ and t�: for a given transition t, represent respectively the outgoing and
incoming arcs of t.

– p+ and p�: for a given place p, represent respectively the outgoing and
incoming arcs of p.

– TR(N) and PR(N): for a given TPN N , represent respectively the sets of re-
ducible transitions and places.

We distinguish the reducible and non-reducible TPN structure. Non-reducible
elements include those structures directly associated with properties, including
observer structures, structures directly linked to observers and places/transitions
referred to by reachability assertions. The other parts are considered as reducible.

Before performing property specific reduction, some property-irrelevant
structures can be directly removed from the reducible net. They are the struc-
tures that have causality to the observers. The exact causality can be measured
using the reachability graph of the whole system. The paradox exists here: if
the whole reachability graph can be generated, we may not need any reduc-
tion method. Therefore, to ensure the safety of the removal, we rely on the
dependency analysis in TPN as a over-approximation. The detailed dependency
algorithm is trivial thus will not be presented here. Now assume the set of TR(N)

and PR(N) are available after the removal.

N. Ge et al.: Real-Time Property Specific Reduction for Time Petri Net 171

Identification function F(N) = <A, Tout> identifies, for a given TPN N , the
enclosed sub-net A that could be possibly reduced (necessary condition), and
the unique portal outgoing transition Tout:

– A is a connected graph, A ⇢ N , Tout 2 A
– 8p 2 A, (p 2 PR(N)) ^ (p+ ⇢ A) ^ (p� ⇢ A)
– 8t 2 A, (t 2 TR(N)) ^ (t� ⇢ A)
– (Tout 2 A) ^ (T+

out \A 6= ;)

6.2 Reduction Function

Reduction function G(A, t) = <NS , NL> extracts, for a given sub-net A and
the outgoing portal transition t, the behavioral equivalent sequential section NS

for the finite cases, or an eventual sequential section NS and the loop section NL

for the infinite cases. It first checks the infinity of t in sub-net A using an infinity
observer. In both cases, the bounding time range [tmin

i , tmax
i] is measured using

predefined BCET and WCET observers for the ith firing occurrence of t.

Building Sequential Section In the finite case, there is only a sequential
section NS . The set of sequential transitions Tseq = {Ti} (i 2 N) in NS is built
using [tmin

i , tmax
i]. Each transition Ti in Tseq is associated with a time range

[Ti.min, Ti.max]. The algorithm for building NS from A using the transition t is
described in Algo. 1. Initially, tmin

o and tmax
0

are set as 0. NS starts from an initial
place with one token. Whether ti has occurred is checked using tHasOcc(i)
function relying on an occurrence observer. For each occurrence (i) of fired t,
a pair of BCET and WCET observers are added to t in the sub-net A to compute
the tmin

i and tmax
i . Then the time range [Ti.min, Ti.max] is associated to the

transition Ti. Ti is added in NS , and an associated new place without token is
also added in NS .

Data: A, t
Result: N

S

tmin

o

:= 0, tmax

0 := 0 ;
N

S

.add(new Place(1)) ;
i := o ;
while tHasOcc(i++) do

tmin

i

:= getOccBCET(A,t,i) ;
tmax

i

:= getOccWCET(A,t,i) ;
T
i

.min = tmin

i

� tmin

i�1 ;
T
i

.max = tmax

i

� tmax

i�1 ;
N

S

.add(T
i

, new Place(0)) ;
end

Algorithm 1: Building Sequential Section

172 PNSE’14 – Petri Nets and Software Engineering

Building Loop Section In the infinite case, the key issue is to identify the
firing occurrence of t that divides the sequential section NS and the loop section
NL. The Algo. 2 is proposed to build the NS and NL sections by searching for the
loop starting transition (loopStartIndex) and the length of loop (loopLength).

Data: A, t, occThreshold, loopThreshold
Result: N

S

, N
L

tmin

0 := 0, tmax

0 := 0 ;
N

S

.add(new Place(1)) ;
occ := 0 ;
while occ++ occThreshold do

tmin

occ

:= getOccBCET(A,t,occ); tmax

occ

:= getOccWCET(A,t,occ) ;
for loopStartIndex = 0; loopStartIndex < occ; loopStartIndex ++ do

for loopLength = 1; loopLength occ - loopStartIndex; loopLength ++
do

match : = 0 ;
for index = loopStartIndex; index occ - loopLength; index++ do

if isSame(<tmin

index

, tmax

index

>,
<tmin

index+loopLength

, tmax

index+looplength

>) then

match++ ;
end

else break;
end

if match � loopThreshold then

for k = 1; k < loopStartIndex; k++ do

T
k

.min = tmin

k

� tmin

k�1 ; Tk

.max = tmax

k

� tmax

k�1 ;
N

S

.add(T
k

, new Place(0)) ;
end

for k = loopStartIndex; k < loopStartIndex + loopLength; k++
do

T
k

.min = tmin

k

� tmin

k�1 ; Tk

.max = tmax

k

� tmax

k�1 ;
N

L

.add(T
k

, new Place(0)) ;
N

L

.connect(lastPlace, T
loopStartIndex

) ;
end

return ;
end

end

end

end

Algorithm 2: Building Loop Section

As the firing occurrence of t is infinite, an occurrence bound value is pre-
defined as occThreshold to stop the algorithm. As the Identification function
F(N) uses necessary conditions, the identified sub-net A is considered as non-
reducible if the loop section cannot be found using occThreshold. Another bound
value loopThreshold judges whether the loopStartIndex and the loopLength are

N. Ge et al.: Real-Time Property Specific Reduction for Time Petri Net 173

found. If the loop pattern holds for loopThreshold times, it is considered that
this division of NS and NL is statistically correct. It is obvious that no matter
how big the loopThreshold is, the assurance cannot reach 100%, because the
loop execution is infinite. In order to make sure that the reduced net refines
exactly the same behavior as before, a pre-check (refinement function) must be
performed before accepting the reduced structure.

6.3 Refinement Function

The refinement function verifies the behavioral equivalence between the reduced
sub-net and the original one. Fig. 5 shows the principle of this function: com-
paring the time range of each firing occurrence between the nets B and B0. It is
realized by adding time interval observers between the transition TB in B and
the transitions Ti in B0. Although the firing occurrence is infinite, under the
repeating pattern, the number of Ti is finite. If the refinement fails, it means
the system does not fit the behavior regularity, and thus the reduction method
cannot be applied.

B'
[ti,tj]

[tp,tq]

….
[tx,ty]

T1

T2

Ti

B
TB

observer

check

occ1
occ2

occi

Figure 5. Refinement Function

It is possible that the observed time range do not fully refine the original
behavior because of possible "time holes" in this range. For example, a transition
can fire during [10,15] or [20,30], but never during]15,20[. If [10,30] is directly
used as the time range, the original real-time behavior of the system is extended.
Therefore a detailed observation must be introduced to detect the time holes.

For a given observed range [min, max] of transition T , at its ith occurrence,
the assertion checkk "exist Ti between k and k+1" will be checked for all min
k < max. If checkk. If the check does not pass, the time range will be broken into
two sections: [min, k] and [k+1,max]. To be more general, if checkk

1

, checkk
2

, ...
checkkn do not pass, the final refined equivalent time ranges of this occurrence
will become [min, k

1

], [k
1

+ 1, k
2

], ..., [kn + 1, max]. Accordingly, the sequential
transition of the equivalent sub-net will be refined to a sub-structure which

174 PNSE’14 – Petri Nets and Software Engineering

contains branches representing all possible firing time range after removing those
impossible ranges. An example in Fig. 6 (a) shows that the transition T in the
reduced sub-net A exhibits a firing time range [t

3

, t
4

]. But there exists time
holes on this time range, and thus the real time behavior is [t

3

, t0
3

] [[t0
4

, t
4

],
where t0

3

< t0
4

. The transition T should be replaced by the sub-range structure
(grey part in Fig. 6 (b)).

C

[t1,t2]

[t3,t4]

….

A

C

[t1,t2]

[0,0]

….

A'

[0,0]

[t3,t3'] [t4',t4]

[tm,tn]

[tm,tn]

(a) (b)

T

Figure 6. Deal with Holes on Time Range

7 Experimental Results

To experiment the property specific reduction method, we use an avionic case
study investigated by M. Lauer et al. [23], which is a part of a flight manage-
ment system (FMS). The FMS consists of two units, a control display unit and a
computer unit. The control display unit provides human/machine interface for
data entry and information display. The computer unit provides both comput-
ing platform Integrated Modular Avionics (IMA) and various interfaces to other
avionics. The communication between modules is implemented by Avionic Full
DupleX(AFDX). FMS uses redundant implementation of its functions.

The latency requirement is assessed in the case study. It depends on the
functional chain in Fig. 7. At any time, the pilot can request some information
on a given waypoint. The KU

1

(Keyboard and Cursor Control Unit) controls
the physical device used by the pilot to enter his requests. When KU

1

receives a
request (req

1

), it broadcasts wpid
1

and wpid
2

to the Flight Managers FM
1

and
FM

2

respectively. The FMs manage the flight plan, i.e., the trajectory between
successive waypoints. When a request occurs, both query the NDB (Navigation
Database) by sending query

1

(resp. query
2

) to retrieve the static information

N. Ge et al.: Real-Time Property Specific Reduction for Time Petri Net 175

on the waypoint such as the latitude and the longitude. The NDB separately
answers each FM by sending a message answer

1

(resp. answer
2

) containing the
expected data. Upon reception of this message, each FM computes two comple-
mentary dynamic data: the distance to the waypoint, and the ETA (Estimated
Time of Arrival). These data (wpInfo

1

and wpInfo
2

resp.) are periodically
sent to respective MFDs (Multi Functional Display) which periodically elabo-
rate the pages to be displayed on the screens. The KU

1

, FMs, NDB , MFDs are
asynchronous functional modules.

FM1

FM2 NDB

KU1

FM2

MFD1FM1NDB

MFD2

req1

disp2

disp1

wpInfo2

wpInfo1

answer2

answer1

query2

query1
wpId1

wpId2

Figure 7. Functional Chain: Sporadic Response to Request

The latency requirement guarantees that the system responds quick enough
to a request. It corresponds to the time elapsed between pilot’s request (req

1

) and
the first occurrence of the display signal depending on req

1

(disp
1

). Therefore,
the real-time property here is the worst case time (WCT) and best case time (BCT)
between req

1

and the first occurrence of disp
1

depending on req
1

.
We model the functional chain in TPN. The WCT and BCT observers are added

respectively to the TPN. A binary search algorithm is used to search for the
bound values. The computation results (verified under MacOS 10.6.8 with a
processor 2.4 GHz Intel Core 2 Duo) are shown in Table 2. The WCT (resp. BCT)
is 450.4 (reps. 75.2) ms. By applying the reduction approach, the state space
is significantly reduced. Take the WCT for example, compared to the verification
time 278.313 s before reduction, the verification time is reduced to 2.484 s.

Table 2. Real-Time Property Verification Results

Property

Property

Value (ms)

State/Transition Number Execution Time (s)

Before Reduc. After Reduc. Before Reduc. After Reduc.

Latency

System N/A 9378/23250 N/A N/A N/A
WCT 450.4 67105/145024 9/10 278.313 2.484
BCT 75.2 11162/28922 8/9 43.781 3.719

To test the scalability, the functional chain is enlarged by increasing the
number of NDB . Each functional chain traverses P NDB , i.e. 2P +3 functions.

L
1

=

req
1���! KU

1

wpId
1�����! FM

1

query
1�����! NDB

1

query
2�����! ...

queryP�1�������! NDBP�1

queryP�����! NDBP

answerP�������! NDBP�1

answerP�1���������! ...
answer

2������! NDB

1

answer
1������! FM

1

wpInfo
1������! MFD

1

disp
1����!

(2)

176 PNSE’14 – Petri Nets and Software Engineering

Before apply this reduction method, the state space begins to explode even
the NDB number is 2 under the test environment. By increasing P from 1 to 11,
we give out the state/transition number, reduction time, model checking (MC)
time and solving time after applying the reduction method in Table 3. The
reduction result is prominent. The solving time is almost linear with respect
to the system’s scale. This case study shows that after reduction, the explosive
systems can be analyzed, if the systems conform to the behavioral regularities.

Table 3. Scalability Test for Latency Property

NDB/Fun.

State/Tran (after Red.) Reduction

Time (s)

MC Time (s) Solving Time (s)

WCT BCT WCT BCT WCT BCT
1/7 9/10 8/9 38.049 2.484 1.860 40.533 39,909
2/8 9/10 8/9 57.876 2.656 1.883 60.532 59,759
3/9 9/10 6/5 79.813 2.812 2.079 82.625 81,892
4/10 9/10 6/5 102.500 2.906 2.079 105.406 104,579
5/11 9/10 6/5 124.987 3.015 2.102 128.002 127,089
6/12 9/10 6/5 149.359 2.891 2.196 152.250 151,555
7/13 9/10 6/5 169.607 2.953 2.227 172.560 171,834
8/14 9/10 6/5 193.329 3.031 2.250 196.360 195,579
9/15 9/10 6/5 216.239 3.000 2.211 219.239 218,45
10/16 9/10 6/5 239.953 3.047 2.195 243.000 242,148
11/17 9/10 6/5 263.049 3.188 2.195 266.237 265,244

8 Computation Complexity & Applicability

This method turns the combination problem of O(N · M) into a divide-and-
conquer problem of O(tiden + n ·N +M ·N 0), where

– N is the state unfolding complexity of the target sub-net,
– M is the complexity of the other parts of the TPN,
– N 0 is the state unfolding complexity of the reduced sub-net, 1 N 0 N .

It is expected that 1 N 0 ⌧ N if the system conforms to the behavioral
regularity.

– tiden is the time for identification, it is O(N2

S), where NS is the number of
places and transitions in the TPN system.

– n is unfolding times of A by the reduction, refinement and cavity detection
• Finite case reduction: 2N4

B · Aobs, NB is the defined bound value of
occurrence times, Aobs is the unfolding time of A with observer.

• Infinite case reduction: 2N4

B · Aobs, NB is the defined bound value of
occurrence times.

• Refinement: (nS + nL) · Aobs, nS is the length of sequential section, nL

is the length of loop section.

• Cavity Detection:
nS+nL
P

i=1

(maxi �mini) ·Aobs

N. Ge et al.: Real-Time Property Specific Reduction for Time Petri Net 177

This method relies on the observers, it may thus take time to search for the
bound values of time ranges. In some cases, if the system does not conform to the
behavioral regularity, it can only be known after performing the reduction and
refinement methods. As our purpose is to reduce the state space of model check-
ing, the trade-off between computation time and the state space is acceptable,
except that the computation time is out of the predefined thread-hold value.
This is then an engineering problem.

9 Conclusion

This paper proposes a real-time property specific reduction approach for TPN
based model checking. We illustrate the reduction method for the one-way-out
pattern. More generic pattern with one incoming portal transition and one out-
going transition uses different identification function, but similar reduction and
refinement functions. This method makes the verification more scalable for sys-
tems conforming to some behavioral regularities. It makes a trade-off between
the state space and the solving time, and allows to verify large scale systems
that will easily encounter combinatorial explosion problem, especially for the
asynchronous real-time systems. The case study shows that after reduction, the
explosive systems can be analyzed, if the systems conform to the behavioral
regularities. The reduction and refinement functions rely on the real-time prop-
erty specification and observer-based verification approaches. For now, we have
defined two behavioral regularities for the finite and infinite firing occurrence,
and provided reduction methods for the pattern with an eventual sequential sec-
tion and a loop section. Other real-time behavioral regularities are under study.
Similar approaches can be studied to reduce the state space for verifying other
families of properties.

Acknowledgment

This work was funded by the FUI P and OpenETCS projects. We also wish to thank
Michaël Lauer and Frédéric Boniol for the sharing of the avionic case study.

References

1. Valmari, A.: A stubborn attack on state explosion. In: Computer-Aided Verifica-
tion, Springer (1991) 156–165

2. Godefroid, P., van Leeuwen, J., Hartmanis, J., Goos, G., Wolper, P.: Partial-
order methods for the verification of concurrent systems: an approach to the state-
explosion problem. Volume 1032. Springer Heidelberg (1996)

3. Misra, J., Chandy, K.M.: Proofs of networks of processes. Software Engineering,
IEEE Transactions on (4) (1981) 417–426

4. Grumberg, O., Long, D.E.: Model checking and modular verification. ACM Trans-
actions on Programming Languages and Systems (TOPLAS) 16(3) (1994) 843–871

178 PNSE’14 – Petri Nets and Software Engineering

5. Clarke, E.M., Enders, R., Filkorn, T., Jha, S.: Exploiting symmetry in temporal
logic model checking. Formal Methods in System Design 9(1-2) (1996) 77–104

6. Emerson, E.A., Sistla, A.P.: Symmetry and model checking. Formal methods in
system design 9(1-2) (1996) 105–131

7. Clarke, E.M., Grumberg, O., Long, D.E.: Model checking and abstraction. ACM
Transactions on Programming Languages and Systems (TOPLAS) 16(5) (1994)
1512–1542

8. Holzmann, G.: On-the-fly model checking. ACM Computing Surveys (CSUR)
28(4es) (1996) 120

9. Berthomieu, B., Ribet, P.O., Vernadat, F.: The tool tina - construction of abstract
state spaces for Petri nets and time Petri nets. International Journal of Production
Research 42(14) (2004) 2741–2756

10. Sloan, R.H., Buy, U.: Reduction rules for time Petri nets. Acta Informatica 33(7)
(1996) 687–706

11. Berthelot, G.: Transformations et analyse de réseaux de Petri: application au pro-
tocoles. Rapports de recherche / Université de Paris-Sud, Laboratoire de recherche
en informatique. LRI (1983)

12. Berthelot, G., et al.: Checking properties of nets using transformations. In: Ad-
vances in Petri Nets 1985. Springer (1986) 19–40

13. Haddad, S.: A reduction theory for coloured nets. In Rozenberg, G., ed.: Advances
in Petri Nets 1989. Volume 424 of Lecture Notes in Computer Science. Springer
Berlin Heidelberg (1990) 209–235

14. Clarke, E.M., Grumberg, O., Peled, D.A.: Model checking. MIT press (1999)
15. Berthomieu, B., Vernadat, F.: State class constructions for branching analysis of

time Petri nets. In: Tools and Algorithms for the Construction and Analysis of
Systems. Springer (2003) 442–457

16. Merlin, P., Farber, D.: Recoverability of communication protocols–implications of
a theoretical study. Communications, IEEE Transactions on 24(9) (1976) 1036 –
1043

17. Cassez, F., Roux, O.H.: Structural translation from time Petri nets to timed
automata. JSS 79(10) (October 2006) 1456–1468

18. Berthomieu, B., Diaz, M.: Modeling and verification of time dependent systems
using time Petri nets. IEEE Trans. Softw. Eng. 17(3) (March 1991) 259–273

19. Dwyer, M.B., Avrunin, G.S., Corbett, J.C.: Patterns in property specifications for
finite-state verification. In: Proceedings of the 21st International Conference on
Software Engineering. ICSE ’99, ACM (1999) 411–420

20. Konrad, S., Cheng, B.H.: Real-time specification patterns. In: Proceedings of the
27th international conference on Software engineering, ACM (2005) 372–381

21. Ge, N., Pantel, M.: Time properties verification framework for UML-MARTE
safety critical real-time systems. In: Modelling Foundations and Applications.
Springer (2012) 352–367

22. Ge, N., Pantel, M., Crégut, X.: Formal specification and verification of task time
constraints for real-time systems. In: Leveraging Applications of Formal Methods,
Verification and Validation. Applications and Case Studies. Springer (2012) 143–
157

23. Lauer, M.: Une méthode globale pour la vérification d’exigences temps réel -
Application à l’Avionique Modulaire Intégrée. PhD thesis, INPT (juin 2012)

N. Ge et al.: Real-Time Property Specific Reduction for Time Petri Net 179

