
Using Symbolic Techniques and Algebraic Petri
Nets to Model Check Security Protocols for Ad

Hoc Networks

Mihai Lica Pura and Didier Buchs

Centre Universitaire d’Informatique
University of Geneva
Carouge, Switzerland

Abstract. Petri nets have proved their effectiveness in modeling and
formal verification of a large number of applications: control systems,
communication protocols, application workflows, hardware design, etc.
In the present days, one important focus of computer science is on se-
curity and secure communications. The use of Petri nets for verifying
security properties is not a mature field due to a lack of convenient mod-
eling and verification capabilities. So far, in the Petri Net field there is
only the CPN tool that is mature enough for modeling using the colored
Petri nets formalism. Nevertheless verification cannot be performed on
large systems as CPN tool verification is based on an exhaustive way of
computing the semantics of a model. In this paper we present the use of
AlPiNA, another candidate for this task. AlPiNA is a symbolic model
checker that uses the formalism of algebraic Petri nets. We have used
it successfully for modeling ad hoc networks and for verifying security
protocols designed for this type of networks. As a case study and bench-
mark we have chosen the ARAN secure routing protocol. We managed to
find all the attacks that were already reported for this protocol. To our
knowledge this work is also the first successful attempt to use Petri nets
for model checking the security properties of ad hoc networks protocols.

Keywords: model checking, ad hoc networks, algebraic Petri Nets.

1 Introduction

Place/Transition nets are a modeling language that proved its effectiveness in
modeling a large variety of systems based on concurrent processes. Over the
years, the initial Petri net formalism was enriched in order to simplify the spec-
ification of more and more complex systems. Two of the applications targeted
were the model checking of security protocols and of the ad hoc network proto-
cols (but not ad hoc network security protocols). To the best of our knowledge,
model checking the security protocols specially designed for ad hoc networks has
not been reported yet.

There is no need to argue for the importance of security in computer sci-
ence, or for the need to prove the security properties of the protocols used in the

information systems. Ad hoc networks are a novel approach to assuring commu-
nications. The communications networks that are now in use are based on an
infrastructure composed of devices like switches, hubs, gateways, routers, and
so on. Ad hoc networks aim to assure communications without the use of any
infrastructure. In such networks there are no other devices, except the ones that
actually form it, and want to communicate. And they will also act as the in-
frastructure devices from a classical network, by routing the messages of all the
other nodes. Such a behavior is assured by specially designed ad hoc routing
protocols. These routing protocols and their possible attack schemes are more
complex than the ones of the other kinds of networks, so for their specification
a more powerful language is needed.

One of the enrichments of P/T nets dedicated specifically to data based
functionality is High Level Petri Nets (HLPN). In HLPN the tokens have different
types and these types are part of a many-sorted algebra ([1]). The possibility to
use other types than the usual black tokens made it possible to use HLPN in
modeling and verification of security protocols.

Colored Petri Nets (CPN) were the first concrete realization of HLPN that
were used for model checking security properties, because they were the first
one who was expressive enough for this ([2]). But besides CPN, there are other
implementations of HLPN. The difference between the different implementations
of HLPN stands in the way the many-sorted algebra is defined. In CPN the many-
sorted algebra is defined using the CPN ML language, which was built upon the
standard ML.

For modeling ad hoc networks we focus on the model checker AlPiNA ([3, 4]).
AlPiNA implements HLPN by algebraic Petri nets (APN), in which the colored
tokens are defined using algebraic abstract data types (AADT) ([1]). Like all
the other model checkers, the focus of AlPiNA is to handle the state explosion
problem in order to perform verification on real size system models. When using
HLPN, the state space explosion has one more dimension (the data) than in
the case of P/T nets. HLPN are more expressive and as a consequence, the
state space of a HLPN model is in general much bigger. AlPiNA addresses this
problem by using symbolic techniques based on several layers of Data Decision
Diagrams, Set Decision Diagrams and Sigma Decision Diagrams [1]. In addition,
some optimizations specific to the APN formalism (algebraic clustering, partial
algebraic unfolding) [5] are supported. The tool can be downloaded from [5].

We have successfully used AlPiNA for modeling ad hoc networks and for
model checking security protocols of ad hoc networks. From our studies, we have
seen some advantages that this tool has over the other tools used for these pur-
poses; in terms of modeling the protocol itself, as well as the possible attackers.
In this paper we will present the modeling of ad hoc networks and the verification
of ARAN (Authenticated Routing for Ad Hoc Networks [6]) security protocol
with APNs, and the advantages of AlPiNA for performing these tasks.

The rest of the paper is organized as follows. The second section presents the
use of Petri nets in literature for modeling ad hoc networks and verifying prop-
erties related to them. In the third section we describe the use of algebraic Petri

92 PNSE’14 – Petri Nets and Software Engineering

nets and AlPiNA for modeling ad hoc networks and the ARAN protocol. The
fourth section contains the presentation of our results regarding verification of
routing information correctness for ARAN. The last section contains conclusions
and our future work directions.

2 The Use of Petri nets in modeling ad hoc networks

Petri nets already proved their effectiveness in modeling ad hoc networks. So
far, researchers have used Fuzzy Petri nets, Stochastic Petri nets and Colored
Petri nets to model ad hoc networks. The purpose of these models was to obtain
qualitative or quantitative information about the behavior of applications and
protocols in the context of ad hoc networks. As far as we know, algebraic Petri
nets were never used so far to model ad hoc networks.

We will continue by presenting some of the latest published results concerning
the use of Petri nets in ad hoc networks research.

2.1 Modeling for Quantitative evaluation

The research presented in [7] uses Fuzzy Petri Nets for modeling and analyzing
the QoS dimension in order to evaluate how to manage congestion in wireless ad
hoc networks. The networks itself, the nodes, the communication protocol are
not actually modeled. In [8] Fuzzy Petri Nets are used to represent the multicast
routing in an ad hoc network and to calculate multicast trees. The authors only
model the topology of the network but not the actual routing protocol.

In [9] the authors present how to use Stochastic Petri Nets to model ad hoc
networks. An ad hoc network is modeled by a single node, for which a proper
amount of traffic is generated. By measuring how the node behaves under the
given traffic, using suitable metrics, some conclusions can be obtained regard-
ing a whole network with a given number of nodes like the modeled one. In
[10] Stochastic Petri Nets are used to model mobility of ad hoc networks, but
the actual ad hoc network is not modeled, neither the ad hoc routing, only an
application level protocol that takes into account the fact that the nodes are
moving between different geographic regions, and also the required performance
indices. Thus the authors are able to obtain quantitative data about the specified
performance indices.

The authors of [11] and [12] use Colored Petri Nets. They propose models for
the nodes of the network, for the routing protocol AODV (Ad Hoc On-Demand
Distance Vector Routing) [12] and DSR (Dynamic Source Routing) [11] and for
the behavior of the ad hoc network. The purpose of the modeling was to con-
duct a comparison between the two ad hoc routing protocols mentioned above,
from the point of view of their efficiency (number of generated overhead packets,
data packet delivery delay). In [13] Colored Petri Nets are used to model and
to compare another pair of routing protocols, AOMDV (Ad Hoc On-Demand
Multipath Distance Vector Routing) and DSR. In [14], Colored Petri Nets are
used to model and validate the specification of a multicast routing protocol for

M. Pura, D. Buchs: Using Symbolic Techniques and Algebraic Petri Nets 93

ad hoc networks called DYMO (Dynamic MANET On-Demand). The properties
that the authors specify and verify are all related to the correctness of the pro-
tocol: establishments of routes, and correct processing of the routing messages.
By this work, the authors also found several ambiguities in the definition of the
protocol, which were taken into consideration in two revisions.

2.2 Modeling for Qualitative evaluation

From the point of view of model checking security protocols, Colored Petri nets
are the only type of Petri nets used for this purpose up to now. But as far as
we know, no Petri nets were used to model check the security protocols of ad
hoc networks. So our paper is the first presentation using algebraic Petri nets
to model ad hoc networks and to do model checking of security properties for
specific ad hoc network protocols.

For example, [2] and [15] present the work of using CPN to model check con-
fidentiality and authentication for TMN authenticated key exchange protocol.
In [16] CPN are used to verify the same security properties for Andrew secure
RPC protocol. In all these papers, the use of CPN helps to find attacks over the
considered protocols, and even some attacks that were previously unknown. So
this indicates the high potential of using these techniques for model checking ad
hoc network specific security protocols.

In the next sections, we will present the state of the art of modeling ad
hoc networks with the help of Petri nets. Modeling an ad hoc network implies
modeling the following elements: the nodes and the topology of the network.

2.3 Modeling the nodes

For modeling the nodes of an ad hoc network, a single approach was used by
all the researchers. The nodes were modeled by their behavior in the considered
protocol or application. The Petri net contains a single instance of a node’s
behavior. But this behavior is parameterized with the identity of a node. The
identities of the nodes, which are part of the considered network, are placed
inside a special place. When the state space is calculated, all these identities are
considered as executing the modeled behavior ([11]).

2.4 Modeling the topology

When modeling the topology of the ad hoc networks, two aspects should be
taken into consideration. The first one is how to model the actual topology of
the network at a given time. The second aspect is how to model the mobility
of the nodes which implies the modeling of the dynamicity of the topology.
Both of these aspects influence the modeling of the way messages travel through
the network. Based on the current topology, a message transmitted by a node
should only be received by the other nodes which are in the coverage area of the
transmitting node.

94 PNSE’14 – Petri Nets and Software Engineering

So far, researches have proposed three ways for modeling topology. We will
briefly present them in the following paragraphs.

In [11], [12] and [13] the network topology was modeled by an approximation
mechanism. Let us presume that the network has n nodes. When a node A
sends a broadcast message, it actually sends n-1 copies of the message to a place
that stores them in order to distribute them to the corresponding nodes. Based
on a probability that represents how many nodes are in the coverage area of
A, a certain number of these messages will be forwarded to other nodes, and
the remaining messages will be dropped. In the case of unicast messages, they
are sent only to the corresponding nodes. The authors of [12] call this model
a topology approximation mechanism and prove through simulation that it can
indeed mimic the mobility of a mobile ad hoc network (MANET).

In [14] the wireless mobile ad hoc network is modeled by two parts: a part
that handles the transmission of the packets, and another part that handles the
mobility of the nodes. The transmission of the packets is done based on the
current topology of the network, which is explicitly represented in the following
way: each node A has an adjacency list of nodes. Each node from this list is a
node that is in the coverage area of A, and thus can receive packets from it. Based
on the information from these lists, the transmission part of the model of the ad
hoc network sends the packets to the appropriate nodes. The mobility part of the
model is responsible with making modification to the topology. At the beginning
of the validation, there is an initial topology and also the possible topology
changes. Based on these changes, the mobility part modifies the topology as the
validation continues.

The authors of [17] and [18] use reconfigurable algebraic higher-order net
systems in order to model mobility for the ad hoc networks. The idea is to apply
graph transformation (rewriting of the model) to algebraic nets. That is, the net
gets reconfigured at run time in order to simulate the mobility of the nodes in
an ad hoc network. The modeling is abstracted from the network layer, and the
considered application is modeled in terms of work-flows.

3 Using Algebraic Petri Nets in Modeling Ad Hoc
Networks

3.1 Algebraic Petri nets definition

An APN is a HLPN where algebraic abstract data types are used. The structure
of the net is the structure of a Place/Transition net, but algebraic values are
used as tokens. Also, the transitions can have guards that are pairs of algebraic
terms that allow the firing of the respective transitions. In the following a sketch
of the model components are given, more details can be found in [1].

An algebraic Petri net specification is a 5-tuple
N � SPEC =< Spec, T, P,X,AX >, where:

– Spec =< ⌃, X 0, E > is an algebraic specification extended in < [⌃], X 0, E >,
where [⌃] is a multiset over the signature ⌃ =< S,F > ([19]) such that:

M. Pura, D. Buchs: Using Symbolic Techniques and Algebraic Petri Nets 95

• S is a finite set of sorts;
• F = (Fw,s)w2S⇤,s2S is a (S⇤ ⇥ S) sorted set of function names;

– T is the set of transition names;
– P is the set of place names and there is a function ⌧ : P ! S which associates

a sort to each place;
– X is a S-sorted set of variables;
– AX is a set of axioms and it will be defined below.

Given an algebraic Petri net specification N�SPEC =< Spec, T, P,X,AX >,
an axiom in AX is a 4-tuple < t,Cond, In,Out > such that:

– t 2 T is the transition name for which the axiom is defined;
– Cond ✓ T⌃,X ⇥ T⌃,X is a set of equalities attached to the transition name t

for this axiom; Cond is satisfied if and only if all the equalities from the set
are satisfied;

– In = (Inp)p2P is a P -sorted set of terms such that 8p 2 P, Inp 2 (T
[⌃],X)

[⌧(p)]

is the label of the arc from place p to transition t;
– Out = (Outp)p2P is a P -sorted set of terms such that 8p 2 P,Outp 2

(T
[⌃],X)

[⌧(p)] is the label of the arc from transition t to place p.

In AlPiNA, the input of a transition is a set that can only contain variables
and closed terms [4]. However, this limitation has no effect over the complexity of
the systems that can be modeled and verified. It is just simplifying the complexity
of the computations.

In order to provide a semantics to a specification N � SPEC, we can define
the set of reachable states StN � SPEC(M) from a given marking M . In this
paper we do not need the precise definition; please consult [1] for more details.

3.2 Case study: ARAN secure routing protocol

In order to present our methodology for modeling ad hoc networks, we have taken
as case study the ARAN secure routing protocol. We have chosen it because it
is simple, well known and it is the state of the art regarding secure routing in
ad hoc networks. The purpose of ARAN is to provide a route path for any node
in the network. It is an implicit routing protocol, which means that it will not
respond with the whole path, but only with the identity of the next node in the
path. ARAN uses digital signatures to assure authentication and integrity for
the exchanged routing information.

ARAN uses two message types: route discovery and route response. Each
message is signed by its source node. As it travels to its destination, the signed
message is also cosigned by each intermediate node, after eliminating the signa-
ture of the previous intermediary, if it exists. Each node validates the received
message by validating the signature(s) from the message. If the signature(s) are
not valid, the message is discarded. Otherwise, the intermediary node broad-
casts the message, if it is a route discovery message, or unicast it, if it is a
route response message. When a route discovery message reaches destination,
the node will respond with a route response message. When a route response

96 PNSE’14 – Petri Nets and Software Engineering

reaches destination, the node will modify its routing table accordingly. Also, each
intermediary node that receives a routes response for a route discovery that he
processed, will also update its routing table. Each route from the routing table
has a given lifetime. When no traffic has occurred on an existing route for that
route’s lifetime, the route is deactivated. When data is received for an inactive
route, the corresponding note will demand the source node of the data to make
a new route request for the targeted destination node. So topology changes will
determine route inactivation in some nodes’ routing tables, which will further de-
termine new route requests for the destination. For more information regarding
the protocol, please consult [6].

The modeling of ARAN for the purpose of its verification implies the model-
ing of the following elements: the nodes, the ad hoc network, the adversary and
the protocol operation. The general model for ARAN is given in Fig. 1. We will
now continue with the presentation of all the parts of the model.

Node behavior
model according to
ARAN specification

(Fig. 6)

Broadcast/
unicast of

messages model
(Fig. 3)

Attacker
model
(Fig. 5)

Network
topology model

Fig. 1. ARAN general model

3.3 Modeling the nodes

A node of the ad hoc network is modeled as a AADT Node. Each node has an
identity which is unique in the ad hoc network. Each node has also a routing
table and some other structures needed for the operation of the considered ad
hoc routing protocol. Because ARAN uses digital signatures, each node also has
a pair of public/private keys and a digital certificate. In addition, each node
knows the public key of the certification authority that issued his certificate.

Since all the nodes are identical, they all behave the same way. So in the actual
Petri net, all the nodes are placed inside the same place called Nodes collecting
identifiers of type Node. Here is the AADT Node in the case of ARAN:

Adt node
Sorts node;
Generators
node: Identity, RouteDiscoveryRequests, RouteDiscoveryRequests,

RoutingTable, Nonce, Certificate, PrivateKey,

M. Pura, D. Buchs: Using Symbolic Techniques and Algebraic Petri Nets 97

PublicKey -> Node;
Operations
get_identity: Node -> Identity;
...
Axioms
get_identity(node($i, $rdr, $rp, $rt, $n, $c, $priv, $pub))=$i;
Variables
i : Identity;
...

All the elements used by the generator for the AADT Node, are other AADTs
that define (in this order): the identity of the node, a list with the route discovery
requests that were already broadcasted, a list with the route discovery responses
that were already forwarded, a lists with the routes, the current value for the
nonce used in the messages, the certificate of the node, the private key of the
node, and the public key of the certification authority that issues certificates for
the nodes.

3.4 Modeling the topology

An ad hoc network can be defined as a graph. We have assumed the connections
are bidirectional, so the graph is an undirected one. The nodes of the graph are
the nodes of the ad hoc network, and the arcs represent the fact that two nodes
can communicate directly through their wireless devices. So the topology of an
ad hoc network can be represented as a graph. We modeled it as the AADT
Topology, which is in fact a list of pairs of node identities, and represents the arc
list that defines the graph.

The actual topology is a variable of the type Topology. Its value can be given
in two different ways. Depending on the type of properties that will be verified,
the first or the second approach will be preferred. The first way is to give the
value explicitly. In this case, the model will represent the exact ad hoc network
that has that topology. For example, the topology of the ad hoc network given
in Fig. 2, will be defined by the next term:

cons(pairIdentityIdentity(i(i0), i^2(i0)),
cons(pairIdentityIdentity(i^2(i0), i(i0)),
cons(pairIdentityIdentity(i^2(i0), i^3(i0)),
cons(pairIdentityIdentity(i^3(i0), i^2(i0)),
cons(pairIdentityIdentity(i^3(i0), i^4(i0)),
cons(pairIdentityIdentity(i^4(i0), i^3(i0)),
cons(pairIdentityIdentity(i^3(i0), i^5(i0)),
cons(pairIdentityIdentity(i^5(i0), i^3(i0)), empty))))))))

The second way is to not assign any value to the variable. This way it will be
a free variable. Then, with the use of domain unfolding, AlPiNA will generate for
that variable all the possible values within a given range. We will next explain
how this works and the impact of such a choice.

98 PNSE’14 – Petri Nets and Software Engineering

i(i0)

i^2(i0)

i^3(i0)

i^5(i0)

i^4(i0)

Fig. 2. An example of an ad hoc network topology

3.5 Using unfolding to model topology

Unfolding is used for the verification process in order to let the user define the
part of the domain of a data type that will be taken into consideration when the
state space is computed. For example, in our model, the Identity AADT is used
for the identification of nodes. So when a certain operation must be done for
all the nodes in the network, that operation is parameterized with a variable of
type Identity for which no value is specified. Then the type Identity is unfolded
to the number of nodes in the network. As a result, prior to building the state
space, AlPiNA will unfold the Petri net by considering for that Identity variable
all the possible values, up to the number of nodes in the network. Let us show
how we can use this technique to model the topology of the ad hoc networks.

Topology AADT is actually a list of pairs of identities. Each pair of identities
represents a direct connection in the ad hoc network and it is defined by the
AADT PairIdentityIdentity. So the definition of the type Topology is based on
the type PairIdentityIdentity, which is based on the type Identity. As a result, in
order to unfold Topology, one needs to unfold also the other two types. Unfolding
of a data type is specified by the name of the type, and the limit that will be
considered for the domain. Here is an example of unfolding specification for
Topology and for its dependencies.

Identity : TOTAL;
PairIdentityIdentity : TOTAL;
Topology : 3;

The type Identity is unfolded to the number of nodes in the network; the type
PairIdentityIdentity is totally unfolded. That means that all the possible pairs
that can be created with the identities of the nodes in the network will be
taken into consideration. Topology is then unfolded to the desired depth. For
example, if the bound is set to 3, AlPiNA will take into consideration all the lists

M. Pura, D. Buchs: Using Symbolic Techniques and Algebraic Petri Nets 99

with three pairs that can be constructed with the pairs obtained by unfolding
PairIdentityIdentity type. This way, we have actually defined all the topologies
that a network can have with the given number of nodes, and in which there are
three nodes which can communicate directly.

The number of topologies that will be taken into consideration in a non de-
terministic way through the above unfolding mechanism depends on the number
n of nodes in the network, and on the number m of direct connections between
them. This value represents the number of combinations of pairs that can be
formed with n identities, taken m at a time. As the values for n and m increase,
this value is rapidly increasing too. Unfortunately, the topology of the network
cannot be abstracted, nor parameterized because of the way message exchange
is done in wireless networks. In the case of a broadcast, the nodes which should
receive the message can be determined only from the topology. Likewise, in the
case of unicast or multicast, the topology is the only information regarding the
fact that a node should receive the message or not. In conclusion, the topologies
have to be taken into consideration explicitly.

Let us consider an example. If the ad hoc network has three nodes: A, B,
and C, it means that for Identity all these three values will be considered. Next,
because PairIdentityIdentity is totally unfolded, the following values will be con-
sidered for it: AB, AC, BA, BC, CA, and CB. As a result, Topology can have
the following values:

(1) {},
(2) {AB}, {AC}, {BA}, {BC}, {CA}, {CB},
(3) {AB, AC}, {AB, BA}, {AB, BC}, {AB, CA}, {AB, CB},
...,
(4) {AB, BA, BC}, {AB, BA, CA}, {AB, BA, CB},
...

With (1) we consider the topology in which none of the nodes have direct wireless
connections. With (2) we consider the possible topologies in which only two nodes
can communicate directly, the third one being outside the communication range
with each of the other two. With (3) we consider the possible topologies in which
there are two groups of two nodes which can reach each other. And with (4) we
consider all the topologies in which there are three groups of two nodes which
can communicate with each other.

If the same value is considered for the topology for a whole protocol run, it
means that after considering all these values, the protocol will be verified for
all the possible topologies for three nodes. When different values are consider
successively in the same protocol run, it means that the protocol is verified over
a dynamic topology. So because of the fact that the order in which each of these
values is considered is non deterministic, the verification will be made for all the
topologies and for all the possible node movements in each of the topologies.

Because it is a list, Topology is an infinite data type. So unfolding its entire
domain is impossible. But AlPiNA allows the partial unfolding up to a given
bound on the number of elements, as we explained above. It is important to
state that this second way of defining the topology of the network is particular

100 PNSE’14 – Petri Nets and Software Engineering

to AlPiNA and it works thanks to a special characteristic of the verification
algorithm called partial net unfolding. Partial net unfolding means that it is not
mandatory to unfold all the types, and the user can choose only the type that
it needed to be unfolded ([1]).

When the topology is defined as a closed term, AlPiNA will compute the state
space for the given algebraic Petri net N , starting from the initial marking. If
M

0

is the initial marking, then the state space computed for a given topology
can be written as:

StN (M
0

).
When the topology is defined by unfolding, the algebraic Petri net is param-

eterized by a free variable of type Topology. If $tp is the name of this variable,
then the parameterized algebraic Petri net can be written as:

N($tp).
By unfolding, AlPiNA will instantiate the variable $tp with each of the possi-

ble values of the topology, as explained above, thus computing a set of algebraic
Petri nets, one for each value:

N = [x2T⌃,TopologyN(x).
When computing the state space, AlPiNA will actually compute the set of

state spaces such that each state space corresponds to a value for the topology.
We can write this as follows:

StN (M
0

) = [x2T⌃,TopologyStN(x)(M0

).
As it will be presented in section 4, the security properties that we have

model checked with AlPiNA were expressed through an invariant property. In
order to check such a property, AlPiNA starts by computing the state space of
the algebraic Petri net provided as input. Then, it checks if the specified property
is true for each of the states. If it is, then the property holds for the model. If not,
the property does not hold for the model, and a counter-example is provided.

If the topology is defined as a closed term, checking a property for the model
implies checking the property for the state space computed for the corresponding
APN.

StN (M
0

) |= invariantproperty
If the topology is defined by unfolding, checking a property for all models

implies checking it for the set of state spaces generated by instantiating the
topology variable with all the possible values.

StN (M
0

) |= invariantproperty ,
[x2T⌃,Topology (StN (x)(M

0

) |= invariantproperty)
So we will check the invariant on all instances; finding a contradiction will

mean there is one topology that contradicts the invariant. If the invariant is sat-
isfied on the whole model it means that it is obviously satisfied in each instance.

3.6 Modeling the network

The message exchange in an ad hoc network has special characteristics, because
all the nodes act like routers. When a node transmits a message, it is received
only by the nodes which have a direct connection to that node. Then, each
of the nodes which received the message, processes it according to the routing

M. Pura, D. Buchs: Using Symbolic Techniques and Algebraic Petri Nets 101

protocol, and then retransmits it. This process continues until the message gets
to the destination. Another aspect that must be taken into consideration is the
fact that messages can be of unicast or broadcast type. If a message is unicast,
it will be processed only by the node to which it is destined. If a message is
broadcast, it should be processed by all the nodes which can receive it directly
according to the topology of the network.

The messages transmitted by all the nodes are stored in the place called
Transmitted Packets (Fig. 3). The network processes the messages from this
place and then stores them in the place called Received Packets (Fig. 3), from
where the nodes can take them for processing and so on.

Received Packets

Transmitted Packets

Packet is Unicast Packet is Broadcast

$pkt $pkt

$pkt

get_sendto($pkt)b=i0 get_sendto($pkt)=i0&...

[packet(i0,i(i0),sign(...

[broadcast_to_unicast(get_router($pn),$pkt)]

Fig. 3. The model for the ad hoc network operation

In order to have in the High level Petri net model the behavior presented
above, we need to model accordingly two elements: the format of the messages
exchanged by the nodes and the network itself. Regarding the format of the
messages, besides the fields that a message has according to the considered rout-
ing protocol, we added two extra fields: a field that stores the identity of the
previous node that transmitted it (prev), and a field that represents the identity
of the node which should receive the message (next). If next field contains the
value i0, then it means that the message is broadcast. Otherwise the message is
unicast. The structure of the AADT Packet is provided in Fig. 4.

The modeling of the transmission/reception of a message is given in Fig. 3. All
the messages transmitted by the nodes are stored in the place called Transmitted
Packets. From here they are processed in order to provide the behavior explained
in the previous paragraph. First we check if the message is unicast or broadcast.
If it is unicast, no other processing is required (transition Packet is unicast) so
the message is placed in the Received Packets place from where the destination
node can pick it up for processing.

102 PNSE’14 – Petri Nets and Software Engineering

Identity
of the

node that
sent the
message

Identity of the
node that

should process
the message/

Broadcast
message

Signature(s)

Message type
(route discovery

request/route
discovery response) D

es
tin

at
io

n
no

de
N

on
ce

C
er

tif
ic

at
e(

s)

Fig. 4. The model for the ARAN messages

If the message is broadcast (transition Packet is broadcast), we search in
the topology for all the identities of the nodes which can receive the message
according to it, and we produce the same number of copies for the message, but
with the next field filled with the corresponding identity. To verify in the APN
if a certain node with identity i can receive a message, we search the variable of
type Topology if it contains a pair of identities formed by the identity stored in
prev and by i.

It is worth mentioning that this model of broadcast has an atomicity problem
caused by some limitations of the Petri nets. Unfortunately there is no better
way of modeling it with the current formalism. The problem is the fact that all
the copies of the broadcasted message should reach all the destination nodes at
the same time, as if they would be produced in the same transition. This is not
possible to model, so, as a result, given the non determinism of the Petri net,
other transition could be fired before all the copies reach the destination nodes.
This could be solved by an extension of the Petri net, as the one proposed in
[20]. The LLAMAS (Language for Advanced Modular Algebraic Systems) model
proposed here is based on the old ideas of CO-OPN and it uses synchronization
between the transitions in order to provide a better control of the atomicity. By
using such synchronization it would be possible to force the correct transmis-
sion of a broadcast message by preventing any other transition to fire before the
transition that handles the broadcast fires all the possible times. Such a mech-
anism will also have an impact over the combinatorial explosion by eliminating
possibilities that have no meaning in the real ad hoc networks.

3.7 Modeling the adversary

The model that we used for the adversary was the Dolev-Yao model ([21]). In this
model it is presumed that the adversary can perform the following operations:

– he can intercept all the messages transmitted in the network (1);
– he can generate new messages based on the knowledge he obtained from the

intercepted messages (2);
– he can transmit messages (without modifying them) in the name of any node

in the network (3);
– he can prevent a node from receiving a message that was meant for it, with

the purpose of sending it another message (4).

M. Pura, D. Buchs: Using Symbolic Techniques and Algebraic Petri Nets 103

Due to the state space explosion problem, we were unable to fully implement
this kind of adversary in our model. We have only implemented attack types (1),
(3) and (4). To implement attack type (1), the adversary was modeled as having
access to all the messages exchanged in the network (places Transmitted Packets
and Received Packets in Fig. 3). Thus he can perform the following actions over
the messages: he can drop a message and thus preventing a node to receive it
(implementation of attack type (4)) with the purpose of replacing the dropped
message with another one, and he can retransmit a message (without modifying
it) to another node than the node it was meant for (attack type (3)).

Received Packets

Transmitted Packets

Replay Attacks

$pkt

$id]=i0[change_sendto($id,$pkt)]

[trs_packet($pkt,$nd)] [packet(i0,i(i0),sign(...

Fig. 5. The model for the adversary

As a consequence, cryptographic security properties like authentication, con-
fidentiality and integrity cannot be checked. Correctness properties can be checked
and we will present how in section 4.

3.8 ARAN operation

When modeling ARAN, we have focused on the most important part of the
protocol which is the route discovery. As one can see from Fig. 6, the behav-
ior of a node that participates in a route discovery process was modeled with
two transitions. The transition REP Packet at source corresponds to the fact
that the node that initiated the route request receives the response message.
The transition Packet processing corresponds to all the other processing that a
node has to do: broadcast of a route request message by an intermediary node,
reception of the route request message by the targeted node, validation of the

104 PNSE’14 – Petri Nets and Software Engineering

digital signature(s) from the message, response to a route request message by
the destination node, and the unicast of a response to a route discovery mes-
sage. The actual behavior is implemented by axioms in the AADTs that define
the nodes, the messages, the certificates, and the cryptographic operations. The
conceptual difference between the two transitions is the presence of the place
called Witness Nodes I. The purpose of Witness Nodes I will be explained in
the following paragraph.

Nodes

Received Packets

Witness Nodes I Witness Nodes S

Transmitted PacketsPacket Processing

REPPacket at Source

fnd

fnd

fpkt

fpkt

[node(i(i0),cons(pair...

[update_node_state(fpkt,fnd)]

[get_identity(fnd)]

[packet(i0,i(i0),sign(i...[trs_packet(fpkt,fnd)][verify_cnd(fpkt,fnd)]

[verify_cnd(fpkt,fnd)]

Fig. 6. The model for the node behavior in ARAN

4 Verification of security properties for ARAN

The security objectives of ARAN are to provide authentic and correct routing
information for the nodes that issue a route request. Thus, the security proper-
ties that have to be verified are authentication of the nodes which participate
in the route discovery, and integrity and correctness of the exchanged routing
information. ARAN was already modeled and verified using different tools, and
we will only cite the latest paper on the subject, [22]. ARAN is successful in
assuring authentication and integrity, but an intruder can disturb it by replay-
ing attacks and can propagate incorrect information about the topology of the
network. In order to validate our method of modeling using AlPiNA, we wanted
to see if we will obtain the same results as the ones already reported by previous
research.

The security property that we have verified is correctness of routing infor-
mation. Authentication and integrity were not considered for reasons explained
in section 3 and there are no known attacks against these objectives.

To present what correctness of routing information means, let us consider
the topology presented in Fig. 2. If i(i0) is the initiator node, and i^5(i0) is the

M. Pura, D. Buchs: Using Symbolic Techniques and Algebraic Petri Nets 105

destination node, then the expected path between them that should be returned
by the protocol is: i(i0), i^2(i0), i^3(i0), and i^5(i0). In this case, we say that
the protocol provided correct routing information, if and only if for each route
discovery request made by node i(i0) for node i^5(i0), the protocol will always
return the above path. In all the other cases the routing information would not
be correct.

In order to verify routing information correctness, we reduced the model of
the intruder so that he will only use the possibility of replay attacks. Also, we
added to the Petri net the places Witness Nodes I, and Witness Nodes S. Their
role will be presented next. Each time an intermediary node along the routing
path from the source node to the destination node processes a message related
to the discovery process, its identity is stored in Witness Nodes I. The same
thing will happen for the destination node too: when it will respond to the route
discovery, its identity will be stored in Witness Nodes I. In the same manner,
when the source node, the node that initiated the route discovery request, will
receive the response from the destination node, its identity will be copied to the
place called Witness Node S.

In the initial marking of the Petri net, the place called Transmitted Packets
contains a route discovery message from node i(i0) for the destination i^5(i0).
The places Witness Nodes S and Witness Nodes I are empty. When generating
the state space of the model, the place Witness Nodes S will eventually contain
the identity of the source node i(i0). This will mean the protocol run has finished,
and the route to the destination was obtained. The identities of the nodes forming
the returned route will be in the place Witness Nodes I.

To verify the correctness of the routing information, we need to compare
the identities of the nodes from Witness Nodes I place with the identities of
the nodes from the actual path in the considered topology. Using the property
specification language available in AlPiNA, we have specified this property in
the following way: If the number of nodes in the place Witness Nodes S is equal
to one it implies that the number of nodes in the place Witness Nodes I is equal
to the number of nodes in the path from the considered topology. Here is the
specification of this property in AlPiNA’s property specification language:

(card($x in WitnessNodesS) = 1) =>
(card($y in WitnessNodesI) = value);

If the property holds when model checking is performed it means the protocol
provided correct routing information. Otherwise, the routing information is in-
correct and AlPiNA will display a counter-example: content for the place Witness
Nodes I that contains a different number of nodes. Based on this counter-example
we can reconstitute the attack performed by the intruder.

After performing the model checking we have seen that the protocol does not
always provide correct routing information, meaning that the intruder was able
to mount an attack on it (in concordance with [22]).

Returning to the example we have considered when explaining how the ver-
ification is done, when model checking the protocol for this topology, the place

106 PNSE’14 – Petri Nets and Software Engineering

Witness Nodes I, contains {i^2(i0)}, or {i^3(i0)}, or {i^5(i0)}, or {i^2(i0),
i^3(i0), i^5(i0)}. Only the last value for Witness Nodes I corresponds to a cor-
rect run of the protocol. The other values represent incorrect routing information
that the intruder manages to propagate in the network by replaying attacks. For
example, if place Witness Nodes I contains {i^5(i0)}, it means that the intruder
managed to replay the route discovery message sent by i(i0) to i^5(i0), and pre-
vented node i^2(i0) from receiving it. In this way i^5(i0) believes it has a direct
connection with A, and responds accordingly. The intruder does the same with
the route response message from i^5(i0).

Table 1. Quantitative information

0.95

Tool name
Tool-s performance for ARAN

AlPiNA

AVISPA

Number of nodes Time (s) No of
states

4 (all nodes attacked)

5 (all nodes attacked)

6 (all nodes attacked)

7 (6 nodes attacked)

8 (5 nodes attacked)

9 (5 nodes attacked)

10 (5 nodes attacked)

4

5

3.70

80.82

110.95

20.22

32.92

44.06

0.05

0.07

436

4655

77239

79131

11637

15500

19363

-

-

The table above presents quantitative information regarding the verification
of routing information correctness, as previously described, in comparison with
another model checker called AVISPA, used in [22], where the authors reported
the same verification results as we have. The variable of the runs is the number
of nodes, besides the adversary, in the topology of the ad hoc network that is
taken into consideration. For some of the cases, the tool was unable to compute
the state space for all the possible attacks. So we limited the number of nodes
which were attacked to some maximum value, which is provided in the table
between parentheses, in the same cell as the number of nodes.

AVISPA uses an on-the-fly model checking technique in which attacks are
searched for without a prior computation of the whole state space. On the con-
trary, AlPiNA first computes the entire state space in a symbolic manner, and
only then makes the search for attacks. As a consequence, the values provided
for AVISPA represent the time of finding the replaying attack for the consid-
ered specification, while in the case of AlPiNA, the time column represents the
time of computing the entire state space of the considered model. These values
cannot be directly compared, but they reveal the fact that AlPiNA is capable of

M. Pura, D. Buchs: Using Symbolic Techniques and Algebraic Petri Nets 107

handling the whole state space of the specifications verified with AVISPA, but
with the limitation explained above. AlPiNA is capable of handling state spaces
of 1-2 millions of states, but in this case, because of the atomicity problem pre-
sented at the end of subsection 3.6, starting with 7 nodes, all being attacked,
the size of the state spaces goes directly to more millions of states than AlPiNA
can handle. This is the reason of using these limitations and also the reason for
the fact that the biggest size of the state space in the table is a little less then
80000.

In [22], the authors state they were unable to check the protocol for more
than four and five nodes respectively, because of the state space explosion. But
using AlPiNA, we managed to model check the protocol for 10 nodes.

5 Conclusions and Future Work

In this paper we have presented the use of algebraic Petri nets for modeling
ad hoc networks and for verifying correctness properties for security protocols
specially designed for this type of networks, with the use of AlPiNA, a symbolic
model checker based on APNs. As far as we know this is the first report of using
Petri nets for verifying security properties of the protocols designed for ad hoc
networks.

As one can see from the figures we have provided, the Petri net that models
the ad hoc network and the security protocol is very simple and clear and has a
very small number of places. For example, the model for ARAN has six places.
The heavy part of the model is represented by the AADTs that were defined.
Thus AlPiNA combines the powerful symbolic model checking with the easy to
use APN formalism, providing a good user experience, but also with the ability
to master state space explosion.

The limitation of our approach refers to the fact that fabrication attacks
were not considered. Fabrication refers to the ability of the intruder to create
and send new messages, based on what he previously learned from the network.
Our model for the adversary is capable of using the messages he learned from the
network, but cannot create new messages. Because it is a symbolic model checker,
when an attack is found, AlPiNA cannot provide attack traces. This makes
it very difficult to model fabrication attacks, because of the lack of feedback
from the tool. But we plan to address this limitation by developing a technique
for inversing transitions in an APN, and thus providing attack traces and the
necessary feedback.

The model and the verification performed for ARAN secure routing protocol
discovered all the attacks that were previously reported for this protocol. This
proves the validity of the method, but most importantly, it proves that AlPiNA
can be used with success for verifying security protocols.

As future work, we have proposed to perform a quantitative comparison be-
tween CPN Tools and AlPiNA in order to see the actual performance improve-
ment brought by the latter. Also we will work on proposing an extension to the
current APN model, that will be more adequate to the modeling of distributed

108 PNSE’14 – Petri Nets and Software Engineering

protocols, in general, and which, in particular, will be capable of handling broad-
cast and similar operations in a correct manner. Another future work direction
is to modify the modeling of the topology, such that equivalent topologies will
be eliminated from the verification, thus reducing the state space and increasing
the performance of the model checking.

References

1. Steve Patrick Hostettler, High-level Petri net model checking: the symbolic way,
PhD thesis, University of Geneva, 2011.

2. Yongyuth Permpoontanalarp, Panupong Sornkhom, A New Colored Petri Net
Methodology for the Security Analysis of Cryptographic Protocols, in The 10th
Workshop and Tutorial on Practical Use of Colored Petri Nets and the CPN Tools,
Denmark, pp. 81-100. 2009.

3. Didier Buchs, Steve Hostettler, Alexis Marechal, Matteo Risoldi, Alpina: A symbolic
model checker, Applications and Theory of Petri Nets, pp. 287-296, 2010.

4. Steve Patrick Hostettler, Alexis Marechal, Alban Linard, Matteo Risoldi, Didier
Buchs, High-Level Petri Net Model Checking with AlPiNA, Fundamenta Informati-
cae, IOS Press, Amsterdam, The Netherlands, vol. 113, no. 3-4, August 2011, ISSN,
0169-2968, pp. 229-264, 2011.

5. AlPiNA tool web page, http://alpina.unige.ch/, the 23 of December 2013.
6. Kimaya Sanzgiri, Bridget Dahill, A Secure Routing Protocol for Ad Hoc Networks,

Proceedings of the 10th IEEE International Conference on Network Protocols, pp.
78-87, 2002.

7. L. Khoukhi, S. Cherkaui, Intelligent Solution for Congestion Control in Wireless Ad
hoc Networks, in WONS 2006: Third Annual Conference on Wireless On-demand
Network Systems and Services, pp. 10-19. 2006.

8. Tzu-Chiang Chiang, Zueh-Min Huang, Multicast Routing Representation in Ad Hoc
Networks Using Fuzzy Petri Nets, Proceedings of the 18th International Conference
on Advanced Information Networking and Application, vol. 2, pp. 420, 2004.

9. Congzhe Zhang, Mengchu Zhou, A Stochastic Petri Net Approach to Modeling and
Analysis of Ad Hoc Network, in Proceedings of the International Conference on
Information Technology: Research and Education, pp. 152-156, 2003.

10. Marco Beccuti, Massimiliano De Pierro, Andras Horvath, Adam Horvath, Karoly
Farkas, A Mean Field Based Methodology for Modeling Mobility in Ad Hoc Net-
works, in Vehicular Technology Conference (VTC Spring), 2011, IEEE 73rd, pp.
1-5, 2011.

11. Piyush Prasad, Baltej Singh, Asish Kumar Sahoo, Validation of Routing Protocol
for Mobile Ad Hoc Networks using Colored Petri Nets, bachelor thesis, National
Institute of Technology, Rourkela, 2009.

12. Chaoyue Xiong, Tadao Murata, Jeffery Tsai, Modeling and Simulation of Routing
Protocol for Mobile Ad Hoc Networks using Colored Petri Nets, Proceedings of the
Conference on Application and Theory of Petri Nets: Formal Methods in Software
Engineering and De-fence Systems, vol. 12, pp. 145-153, 2002.

13. Mohammad Ali Jabraeil Jamali, Tahere Khosravi, Validation of Ad Hoc On-
demand Multipath Distance Vector Using Colored Petri Nets, International Confer-
ence on Computer and Software Modeling, Singapore, vol. 14, pp. 29-34, 2011.

M. Pura, D. Buchs: Using Symbolic Techniques and Algebraic Petri Nets 109

14. Kristian L. Espensen, Mads K. Kjeldsen, Lars M. Kristensen, Modeling and Initial
Validation of the DYMO Routing Protocol for Mobile Ad-Hoc Networks, Appli-
cations and Theory of Petri Nets: 29 International Conference, Lecture Notes in
Computer Science Volume 5062, pp. 152-170, 2008.

15. Yongyuth Permpoontanalarp, Apichai Changkhanak, Security Analysis of the
TMN Protocol by Using Colored Petri Nets: On-the-fly Trace Generation Method
and Homomorphic Property, the 8th International Joint Conference on Computer
Science and Software Engineering (JCSSE), pp. 63-68, 2011.

16. Yang Xu, Modeling and Analysis of Security Protocols Using Colored Petri Nets,
Journal of Computers, vol. 6, no. 1, pp. 19-27, 2011.

17. Ulrike Golas, Kathrin Hoffman, Hartmut Ehrig, Alexander Rein, Julia Padberg,
Functional Analysis of Algebraic Higher-Order Net Systems with Applications to
Mobile Ad-Hoc Networks, Bulletin of the EATCS, no. 101, pp.148-160, June 2010.

18. J. Padberg, H. Ehrig, L. Ribeiro, Formal Modeling and Analysis of flexible Pro-
cesses in mobile ad-hoc networks, Bulletin of the EATCS, pp. 128-132, 2007.

19. Hartmut Ehrig, Bernd Mahr, Fundamentals of Algebraic Specification 1: Equations
and Initial Semantics, Monographs in Theoretical Computer Science, An EATCS
Series, Springer, 1985.

20. Alexis Ayar Marechal Marin, Unifying the syntax and semantics of modular ex-
tensions of Petri nets, PhD thesis, University of Geneva, 2013.

21. Danny Dolev, Andrew Yao, On the Security of Public Key Protocols, IEEE Trans-
actions on Information Theory, vol. IT-29, nr.2, pp. 198–208, 1983.

22. Davide Benetti, Massimo Merro, Luca Vigano, Model Checking Ad Hoc Network
Routing Protocols: ARAN vs. endairA, The 8th IEEE International Conference on
Software Engineering and Formal Methods (SEFM), pp. 191-202, 2010.

110 PNSE’14 – Petri Nets and Software Engineering

