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Abstract. Many kinds of morphisms on Petri nets have been defined
and studied. They can be used as formal techniques supporting refine-
ment/abstraction of models. In this paper we introduce a new notion
of morphism on marked graphs, a class of Petri nets used for the rep-
resentation of systems having deterministic behavior. Such morphisms
can indeed be used to represent a form of abstraction on marked graphs,
consisting in folding cycles and identifying chains. We will then prove
that systems joined by these morphisms show behavioral similarities.
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1 Introduction

When working on concurrent and distributed systems, the dimensions and com-
plexity of a model may lead to difficulties in the analysis of its features and
properties. For this reason it is useful to have formal techniques allowing the
decomposition of the entire model into separate modules which can be studied
separately, then being recomposed maintaining their properties. Another way to
reduce the dimension and complexity of a model is to use a multilevel approach
to its analysis: we start working on a very abstract version of the model, then
proceed through different levels of refinement by adding details to the model.

In order to obtain such functionalities we can use morphisms on Petri nets. In
the literature (see, for example, [1], [2], [3], [4] and [5]) several kinds of morphism
on different classes of Petri nets have been introduced. In this paper we propose
a new definition of morphism on marked graphs, a class of Petri nets often
used for representing systems having deterministic behavior. These so called
F -morphisms and the subclass of F̂ -morphisms constitute a formal instrument
which can be used to obtain a kind of abstraction of marked graphs.

Some kinds of morphisms defined in the literature, such as ↵-morphisms ([5]),
allow to collapse part of the initial model on a single place or a single transition
in order to obtain the abstract system. Differently, F̂ -morphisms map places on
single places and transitions on single transitions, preserving the environment
of each mapped element. Instead of collapsing portions of the detailed model
into a single element, the abstraction is here obtained by “folding” cycles and



identifying chains and cycles. Both these elements still remain in the reduced
model.

Such kind of abstraction preserves the behavior of the mapped part of the
original system. This means that, whenever we apply a F̂ -morphism on a system,
all the sequences of actions executable in the reduced version can be found in
the original model.

In the last part of this paper, an analysis of preserved and reflected behavioral
properties and invariants of marked graphs joined by F̂ -morphisms is performed.

In the next section, basic definitions related to Petri nets and their unfoldings
are recalled. In Section 3 F - and F̂ -morphisms are introduced together with
their main features. Then the relationship between the unfoldings of two marked
graphs joined by a F̂ -morphism is explicated. Section 4 shows the results of the
analysis of behavioral and structural properties preserved and reflected by F̂ -
morphisms. The paper is closed by a short concluding section.

2 Preliminary definitions

In this section we recall basic definitions about marked graph theory and unfold-
ings. These notions will be used in the next chapters to study important aspects
of F -morphisms.

2.1 Petri nets

We first start introducing the notion of net as seen in [6], with some adjustements.

Definition 1. A net is a triple N = (S, T, F ), where

– S is a set of places,
– T is a set of transitions such that S \ T = ;,
– F is a set of directed arcs (flow relation), F ✓ (S ⇥ T ) [ (T ⇥ S).

All places and transitions are said to be elements of N . A net is finite if the
set of elements is finite.

For an element x of S [ T , its pre-set is defined by

•x = {y 2 S [ T | (y, x) 2 F}

while its post-set is defined by

x• = {y 2 S [ T | (x, y) 2 F}.

A directed path (path for short) in a net N is a nonempty sequence x
0

. . . xk

satisfying xi 2 x•
i�1

for each i (1  i  k). We say that this path leads from x
0

to xk. The net is strongly connected if for each two elements x and y there exists
a directed path leading from x to y.

An undirected path is a nonempty sequence x
0

. . . xk of elements satisfying
xi 2 •xi�1

[ x•
i�1

for each i (1  i  k). Such undirected path leads from x
0

to
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xk. The net is weakly connected if, for each two elements x and y, there exists
an undirected path leading from x to y. In this paper, we will call connected a
weakly connected net.

A directed circuit is a directed path x
0

. . . xkx0

such that, for each i, j 2 N,
i, j  k, i 6= j, xi 6= xj holds.

The states of a Petri net are defined by its markings. State changes are caused
by the occurrences of transitions. A marking of a net N = (S, T, F ) is a mapping
M : S ! N. A place s 2 S is marked by a marking M if M(s) > 0.

A transition t is enabled at a marking M if M marks every place in •t. Then
t can occur. Its occurrence transforms M into the marking M 0, defined for each
place s as

M 0(s) =

8

>

<

>

:

M(s)� 1 if s 2 •t \ t•,
M(s) + 1 if s 2 t• \ •t,

M(s) otherwise.

In this case we write M t�! M 0. Notice that a place in •t\t• is marked whenever t
is enabled but does not change its token count by the occurrence of t. A marking
is called dead if it enables no transition of N . A net N together with an initial
marking M

0

constitutes a Petri Net System (also called place/transition system),
denoted (N,M

0

).
Let M be a marking of a net. A finite sequence t

1

. . . tk of transitions is called
a finite occurrence sequence, enabled at M , if there are markings M

1

, . . . ,Mk such
that

M
t
1�! M

1

t
2�! . . .

tk�! Mk.

In this case we write M
!�! Mk, where ! = t

1

. . . tk. The empty sequence E is
enabled at any marking M and satisfies M

E�! M . A marking M 0 is said to be
reachable from a marking M if there exists a finite occurrence sequence ! such
that M

!�! M 0.
In this paper we will mainly work on a particular kind of Petri nets, the

marked graphs.

Definition 2. A Petri net N = (S, T, F,M
0

) is a marked graph if, for every
s 2 S, |•s|  1 and |s•|  1.

2.2 Behavioral properties

The presence of an initial marking M
0

allows to identify the behavior of the
Petri net system (N,M

0

), defined as the set of all markings reachable from M
0

together with the set of occurences of each transition which make the global
state of the system change.

Properties of a net depending on the initial marking are known as behavioral
properties of the net. We now introduce some behavioral properties ([7]) which
will be used in the next sections.
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Definition 3. A Petri net (N,M
0

) is said to be k-bounded or simply bounded
if the number of tokens in each place does not exceed a finite number k for any
marking reachable from M

0

, i.e., M(s)  k for every place s and every reachable
marking M . (N,M

0

) is said to be safe if it is 1-bounded.

While boundedness implies the presence of a finite number of global states
for a finite net, liveness ensures that every event can potentially occur in the
future.

Definition 4. A Petri net (N,M
0

) is said to be live (or equivalently M
0

is
said to be a live marking for N) if, no matter which marking has been reached
from M

0

, it is possible to ultimately fire any transition of the net by progressing
through some further firing sequence.

2.3 Incidence matrix and structural invariants

Definitions recalled in this section are taken from [7], with some adaptations.

Definition 5. Let (N,M
0

) be a Petri net with n transitions and m places. Its
incidence matrix A = [aij ] is an m ⇥ n matrix of integers and its typical entry
is given by

aij = a+ij � a�ij

where a+ij = 1 if there is an arc of N going from transition j to its post-condition
i, otherwise a+ij = 0, while a�ij = 1 if there is an arc to transition j from its
pre-condition i, otherwise a�ij = 0.

Some properties of a Petri net can be studied through the incidence matrix
and its invariants. A S-invariant associates weights to places in a way such that
the weighted sum of tokens is the same in all reachable markings.

Definition 6. Let N be a net and let A be its incidence matrix. A vector I :
S ! Z is a S-invariant for N iff it is a solution of: IA = 0.

T-invariants allow to identify possible cyclic behaviors in a Petri net.

Definition 7. Let N be a net and let A be its incidence matrix. A vector J :
T ! Z is a T-invariant for N iff it is a solution of: AJT = 0.

2.4 Branching processes and unfoldings

The behavior of a Petri net N can be represented in different ways. One of these
is to use the so called unfolding of N . In order to understand what the unfolding
of a net is, we first need to introduce some formal definitions. The theoretical
notions we will relate in this subsection are all taken from [7]. From now on, we
will only consider Petri nets such that, for every transition t, •t and t• are finite
sets and, moreover, we assume them to be nonempty. Furthermore, we do not
allow more than one token on a place in the initial marking. Such constraints do
not result too restrictive with respect to the behavior of the studied systems.
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Definition 8. Let N = (S, T, F,M
0

) be a Petri net. For x, y 2 S [ T we say
that x precedes y if there is a (possibly empty) directed path from x to y in N .
N is finitary if for every y 2 S [ T the set {x 2 S [ T | x precedes y} is finite.

The relation precedes defines a partial order on S [ T , and Min(N) is the
set of minimal elements of that partial order. We now introduce the notion of
conflict.

Definition 9. Let N = (S, T, F,M
0

) be a Petri net. For x
1

, x
2

2 S [ T , x
1

and
x
2

are in conflict, denoted x
1

# x
2

, if there exist distinct transitions t
1

, t
2

2 T
such that •t

1

\ •t
2

6= ; and ti precedes xi, for i = 1, 2. For x 2 S [ T , x is in
self-conflict if x # x.

The concept of conflict is used to define occurrence net.

Definition 10. An occurrence net is a finitary acyclic net N = (S, T, F,M
0

)
such that

– for every s 2 S, |•s|  1,
– no transition t 2 T is in self-conflict, and
– M

0

= Min(N).

We now define a particular kind of morphism called “folding” in [8]. Intu-
itively, a homomorphism from net N

1

to net N
2

formalizes the fact that N
1

can
be folded onto a part of N

2

, or, in other words, that N
1

can be obtained by
partially unfolding a part of N

2

.

Definition 11. Let Ni = (Si, Ti, Fi,M i
0

) be nets, i = 1, 2. A homomorphism
from N

1

to N
2

is a mapping h : S
1

[ T
1

! S
2

[ T
2

such that

– h(S
1

) ✓ S
2

and h(T
1

) ✓ T
2

,
– for every t 2 T

1

, the restriction of h to •t is a bijection between •t and •h(t),
and similarly for t• and h(t)•, and

– the restriction of h to M1

0

is a bijection between M1

0

and M2

0

.

The notions of homomorphism and occurrence net are necessary to formally
define branching processes.

Definition 12. Let N = (S, T, F,M
0

) be a net. A branching process of N is
a pair (N 0,⇡), where N 0 = (S0, T 0, F 0,M 0

0

) is an occurrence net and ⇡ is a
homomorphism from N 0 to N , such that, for every t

1

, t
2

2 T , if •t
1

= •t
2

and
⇡(t

1

) = ⇡(t
2

), then t
1

= t
2

.

In [9], a notion of homomorphism between branching processes of the same
net N is also defined. Injective homomorphisms define a partial order for the
branching processes of N , called approximation. The set of the isomorphism
classes of the branching processes of N , together with approximation, form a
complete lattice. The least upper bound of such lattice is the unfolding of N .
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3 A new class of morphisms on marked graphs

In this section we introduce a new kind of morphism on marked graphs, the
F -morphisms. We will then focus on a subclass of such morphisms, the F̂ -
morphisms, analysing some interesting features of theirs. Finally, we will study
the relationship between the unfoldings of two marked graphs joined by a F̂ -
morphism. In this paper we only consider a particular kind of marked graphs.

Remark From now on, we only consider connected marked graphs without
self-loops.

It is now possible to introduce the main notion of this work.

Definition 13. Let Ni = (Si, Ti, Fi,M i
0

), i = 1, 2, be two marked graphs. A
F -morphism from N

1

to N
2

is a pair (�, ⌧), where � : S
1

! S
2

and ⌧ : T
1

! T
2

are partial surjective functions, such that:

– if ⌧(t
1

) is undefined, then �(•t
1

) = ; = �(t•
1

),
– if ⌧(t

1

) = t
2

, then the restriction of � to •t
1

is an injective and surjective
partial function from •t

1

to •t
2

and, similarly, the restriction of � to t•
1

is
an injective and surjective partial function from t•

1

to t•
2

,
– for every s0 2 S

2

M2

0

(s0) =
X

s2��1

(s0)

M1

0

(s).

We define the composition of two F -morphisms (�
1

, ⌧
1

) : N
1

! N
2

and
(�

2

, ⌧
2

) : N
2

! N
3

by using the notion of composition of functions, i.e., (�
1

, ⌧
1

)�
(�

2

, ⌧
2

) = (�
2

� �
1

, ⌧
2

� ⌧
1

) : N
1

! N
3

. F -morphisms are closed by composition.

Theorem 1. Let Ni = (Si, Ti, Fi,M i
0

) be marked graphs for i = 1, . . . , 3. Let
(�i, ⌧i), i = 1, 2, be F -morphisms from Ni to Ni+1

. The function (�, ⌧) : N
1

!
N

3

, where � = �
2

� �
1

and ⌧ = ⌧
2

� ⌧
1

is a F -morphism.

This theorem is proved in [10]. The identity function 1N = (idS , idT ) is a F -
morphism, where idS : S ! S and idT : T ! T are the total identity functions.
The composition is associative. Hence, the family of F -morphisms, together with
marked graphs, form a category which takes the name of Marked Graph System,
denoted MGS.

With these morphisms we allow to map chains on cycles, as shown in Figure
1, representing an example of F -morphism from N

1

to N
2

. The labels suggest
the arrows of the morphism. Notice that the cardinality of the pre-images of the
elements labelled by 1, b and 2 of N

2

is one, while the place labelled by ac has
two elements in its pre-image.

By adding a further constraint to the definition of F -morphisms, we get a
subclass of morphisms which preserve cycles and chains.

Definition 14. Let Ni = (Si, Ti, Fi,M i
0

) be marked graphs for i = 1, 2. A F̂ -
morphism from N

1

to N
2

is a F -morphism (�, ⌧) with the following restriction:
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Fig. 1

– for all s
1

2 S
1

such that �(s
1

) = s
2

, the restriction of ⌧ to •s
1

is a bijection
from •s

1

to •s
2

and, similarly, the restriction of ⌧ to s•
1

is a bijection from
s•
1

to s•
2

.

It is easy to see that F̂ -morphisms are closed by composition. In fact, since
we already know that a F̂ -morphism (�, ⌧) is a F -morphism, it is sufficient to
prove that the additional constraint that characterizes F̂ -morphisms is preserved
by composition. We prove it simply by observing that the composition of two
bijections is also a bijection.

The example in Figure 1 shows a F -morphism (�, ⌧) which is not a F̂ -
morphism: let s

1

be the place of N
1

labelled with c and let �(s
1

) = s
2

(therefore,
s
2

is the place of N
2

labelled with ac). The restriction of ⌧ to s•
1

is not a bijection
from s•

1

to s•
2

, in fact we have that s•
1

= ; 6= s•
2

.
In Figure 2 three examples of F̂ -morphisms are shown: the first two of them,

((�
1

, ⌧
1

) : N
1

! N
2

and (�
2

, ⌧
2

) : N
3

! N
4

, respectively, Figure 2a and Figure
2b), allow us to observe that, using F̂ -morphisms, it is possible to compress cy-
cles and to identify chains; in the last one, ((�

3

, ⌧
3

) : N
5

! N
6

, Figure 2c), an
identification of cycles is represented.

Let us now compare F̂ -morphisms with another kind of morphisms defined
in [2], N -morphisms, corresponding to a kind of partial simulation. We want
to do this since we will later show that we can always find a N -morphism be-
tween the unfoldings of two marked graphs joined by a F̂ -morphism. First of all,
N -morphisms are defined on elementary net systems, while F̂ -morphisms are
defined on marked graphs. N -morphisms define a relation between the places
of the joined systems, such that its inverse is a partial function. Differently,
F̂ -morphisms allow two places to have the same image. Furthermore, for F̂ -
morphisms the mapping between events is surjective, while N -morphisms do
not require such constraint. The last main difference is that, if two places s and
s0 of different elementary net systems are joined by a N -morphism, s belongs to
the initial case of the first system if and only if s0 is in the initial case of the
second one, whereas whith F̂ -morphism a place of the starting system contain-
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(a)

(b)

(c)

Fig. 2

120 PNSE’14 – Petri Nets and Software Engineering



ing no tokens in the initial marking can be mapped on a place containing tokens.

We now show some interesting features of F̂ -morphisms.

Theorem 2. Let Ni = (Si, Ti, Fi,M i
0

) be marked graphs, for i = 1, 2, joined
by a F̂ -morphism (�, ⌧) : N

1

! N
2

. Let A
1

and A
2

be the incidence ma-
trices of, respectively, N

1

and N
2

. Let s0 2 S
2

be a place of N
2

such that
��1(s0) = {s

1

, s
2

, . . . , sn}. For every transition t 2 T
1

such that ⌧(t) is defined,
the following equation holds:

n
X

i=1

A
1

(si, t) = A
2

(s0, ⌧(t)). (1)

Proof. In order to prove the theorem, we need to compare the incidence matrices
of N

1

and N
2

. Let Ai, i = 1, 2, be the incidence matrices of, respectively, N
1

and
N

2

. Because of the structure of a marked graph, it is possible to say that every
row of Ai contain one 1 or -1 value or both of them, while the remaining entries of
that row contain 0 values. Let us now consider n distinct places s

1

, . . . , sn of N
1

,
such that �(si) = s0, 1  i  n. For each si 2 ��1(s0), if |•si| = 1 we denote tpre
the input transition of |si| and, similarly, if |s•i | = 1, we denote tpost the input
transition of |si|. So, if such entries exist, A

1

(si, tpre) = 1 and A
1

(si, tpost) =

�1. For definition of F̂ -morphism, A
2

(s0, ⌧(tpre)) = 1 and A
2

(s0, ⌧(tpost)) =
�1. Furthermore, since we consider marked graphs without self-loops and �
defines an injective and surjective partial function between the pre-conditions of
transitions joined by ⌧ , for each sj 2 ��1(s0), j 6= i, we have A

1

(sj , tpre) = 0 and
A

1

(sj , tpost) = 0. This proof about one generic s0 place of N
2

can be extended
to all the places of N

2

: so the theorem is proved.

The previous theorem allows us to introduce another interesting feature of
F̂ -morphisms. Intuitively, if two marked graphs N

1

and N
2

are joined by a F̂ -
morphism (�, ⌧) : N

1

! N
2

, the pre-images of any element of N
2

contain the
same number n of elements.

Theorem 3. For i = 1, 2, let Ni = (Si, Ti, Fi,M i
0

) be marked graphs and let
(�, ⌧) : N

1

! N
2

be a F̂ -morphism. Every x 2 P
2

[ T
2

has pre-image containing
the same number n of elements.

Proof. Let Ai, i = 1, 2, be the incidence matrices of, respectively, N
1

and N
2

.
For every place s0 2 S

2

, if |��1(s0)| = n, then it is possible to find n dis-
tinct columns t

1

, . . . , tn of A
1

such that A
1

(si, ti) = 1 or A
1

(si, ti) = �1, with
si 2 ��1(s0). Let t0 be the input or output transition of p0; it is easy to verify
that ⌧�1(t0) = {t

1

, . . . , tn}. This means that, if the pre-image of a place of N
2

contains n elements, the pre-images of its input and output transitions also con-
tain n elements. We can extend this proof to every place of N

2

, thus proving the
theorem.

We call n the reduction factor of (�, ⌧). The F̂ -morphism shown in Figure
2b has reduction factor 2, while the one in Figure 2c has reduction factor 3.
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3.1 ˆF -morphisms and behavioral relationships

We now want to show the relationship between the behaviors of two marked
graphs joined by a F̂ -morphism. In this paper we assume that the behavior of
a system can be entirely described by means of its unfolding, according to the
definition given in [9]. For this reason, from now on, we will only consider marked
graphs with one technical restriction: in the initial marking there should not be
more than one token on each place.

Marked graphs are used to model deterministic systems. The absence of
choices in the behavior of deterministic systems can be used to observe that
the unfolding of a marked graph does not contain conflicts. In [9] the unfolding
of a net N is formally defined as a pair (N 0,⇡), where N 0 is an occurrence net and
⇡ is a homomorphism from N 0 to N . An occurrence net containing no conflicts
is called causal net, which is an acyclic marked graph.

Let us now consider N -morphisms defined in [2] for elementary net systems,
and compared to F̂ -morphisms in the previous subsection. Causal nets, used to
represent the unfoldings of marked graphs, form a subclass of elementary net
systems. This allows us to explicit the relationship between the behaviors of two
marked graphs joined by a total F̂ -morphism.

Theorem 4. For i = 1, 2, let Ni = (Si, Ti, Fi,M i
0

) be marked graphs joined by
a F̂ -morphism (�, ⌧) : N

1

! N
2

and let (N 0
1

,⇡
1

) and (N 0
2

,⇡
2

) be, respectively,
the unfoldings of N

1

and N
2

. Then, there exists a N -morphism (�, ⌘) : N 0
1

! N 0
2

which makes the following diagram commute.

N
1

�,⌧����! N
2

x

?

?

⇡
1

x

?

?

⇡
2

N 0
1

�,⌘����! N 0
2

In particular, ��1 is an injective partial function and, if (�, ⌧) is total, (�, ⌘) is
an isomorphism.

The proof of this theorem can be found in [10], together with the necessary
theoretical notions. Such proof uses an improved version of McMillan’s unfolding
algorithm (see [11]) with some modifications.

4 ˆF -morphisms and their properties

In this section we want to analyze some properties about liveness, boundedness,
safeness, S and T-invariants of two marked graphs N

1

and N
2

, joined by a F̂ -
morphism (�, ⌧) : N

1

! N
2

. We will first analyze behavioral properties and then
structural invariants.
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4.1 Analysis of behavioral properties

First of all, it is useful to observe that directed circuits are preserved by F̂ -
morphisms. Intuitively, this means that, given two marked graphs N

1

and N
2

and a F̂ -morphism (�, ⌧) : N
1

! N
2

, if � = x
1

x
2

. . . xkx1

is a directed circuit of
N

1

, xi 2 S
1

[ T
1

, (�, ⌧) maps � on a directed circuit of N
2

.
In [7] marked graphs are defined as Petri nets N = (S, T, F,M

0

) in which,
for each s 2 S, it holds |•s| = |s•| = 1. Then, they prove that a marked graph N
is live iff the initial marking places at least one token on each directed circuit
in N . In this paper we consider a more general notion of marked graph: for each
place s we have |•s|  1 and |s•|  1. It is well known (for example, see [7])
that, given a marked graph N such that |•s| = 1 for each place s, N is live if
and only if the initial marking places at least one token on each directed circuit
in N .

(a)

(b)

Fig. 3

The previous remarks allow to prove that F̂ -morphisms preserve liveness.

Theorem 5. For i = 1, 2, let Ni = (Si, Ti, Fi,M i
0

) be two marked graphs joined
by a F̂ -morphism (�, ⌧) : N

1

! N
2

. If N
1

is live, then N
2

is also live.
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Generally, liveness is not reflected by F̂ -morphisms. In Figure 3a an example
of F̂ -morphism from N

1

to N
2

is shown. N
2

is a live net, while N
1

is not live:
transitions labelled with 5 and 6 are never enabled.

Since we proved that there is a N -morphism between the unfoldings of two
marked graphs joined by a F̂ -morphism, it is easy to observe that F̂ -morphisms
also preserve occurrence sequences.

Theorem 6. Let Ni = (Si, Ti, Fi,M i
0

), i = 1, 2, be two marked graphs joined by
a F̂ -morphism (�, ⌧) : N

1

! N
2

. Let ! = t
1

. . . tk, be an occurrence sequence
of N

1

enabled at the initial marking M1

0

. Therefore !0 = ⌧(t
1

) . . . ⌧(t
2

) is an
occurrence sequence of N

2

enabled at M2

0

.

From the definition of F̂ -morphism, it follows immediately that, if two marked
graphs N

1

and N
2

are joined by a F̂ -morphism (�, ⌧) : N
1

! N
2

, for each place
s of N

2

, the sum of the number of tokens placed by the initial marking of N
1

in
the elements of the pre-image of s is equal to the number of tokens placed by
the initial marking of N

2

in s. It is possible to extend this condition to every
reachable marking of the two systems.

Theorem 7. For i = 1, 2, let Ni = (Si, Ti, Fi,M i
0

) be two marked graphs joined
by a F̂ -morphism (�, ⌧) : N

1

! N
2

. Let ! = t
1

. . . tk be an occurrence sequence
of N

1

enabled at M1

0

such that M1

0

!�! M . Then, !0 = ⌧(t
1

) . . . ⌧(tk) is an
occurrence sequence of N

2

enabled at M2

0

such that M2

0

!0
�! M 0 and, for each

s0 2 S
2

, the following equation holds

M 0(s0) =
X

s2��1

(s0)

M(s).

Using Theorem 7 it is easy to prove that boundedness is preserved by F̂ -
morphisms.

Theorem 8. For i = 1, 2, let Ni = (Si, Ti, Fi,M i
0

) be two marked graphs joined
by a F̂ -morphism (�, ⌧) : N

1

! N
2

. If N
1

is bounded, then N
2

is also bounded.

So F̂ -morphisms preserve boundedness but, generally, they do not reflect it.
The F̂ -morphism from N

1

to N
2

represented in Figure 3a does not preserve
boundedness: N

2

is a 1-bounded net, while in N
1

the places labelled with e and
f can be filled with an infinite number of tokens.

Note that the reflection of boundedness is obtained if (�, ⌧) is total.

Theorem 9. For i = 1, 2, let Ni = (Si, Ti, Fi,M i
0

) be two marked graphs joined
by a F̂ -morphism (�, ⌧) : N

1

! N
2

such that � is total. If N
2

is bounded, then
N

1

is also bounded.

Proof. Each place of N
1

is mapped on a place of N
2

. If N
2

is bounded, by
theorem 7 it is easy to see that N

1

is also bounded.

Notice that, in general, safeness (1-boundedness) is not preserved. Let us
consider the example shown in Figure 3b: there is a F̂ -morphism from N

3

to N
4

and, while N
1

is a safe net, N
2

is 2-bounded.
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4.2 On structural invariants

We now focus on some properties about S and T-invariants of two marked graphs
N

1

and N
2

joined by a F̂ -morphism (�, ⌧) : N
1

! N
2

. It is possible to prove
that F̂ -morphisms reflect S-invariants. In order to obtain such result, we need
to order the rows of the incidence matrix A

1

of N
1

in the following way. Let A
2

be the incidence matrix of N
2

and let n be the reduction factor of (�). Given
the first row of A

2

, representing the place s of N
2

, let us consider the n rows of
A

1

corresponding to places of N
1

mapped by � on s. We will put such rows in
the first n positions of the matrix. The same procedure can be used to order the
remaining rows of A

1

. The rows corresponding to places not mapped by � will
occupy the last positions of A

1

.

Fig. 4

Theorem 10. For i = 1, 2, let Ni = (Si, Ti, Fi,M i
0

) be two marked graphs joined
by a F̂ -morphism (�, ⌧) : N

1

! N
2

. Let A
1

, A
2

and n be, respectively, the
incidence matrices of N

1

and N
2

, ordered as seen before, and the reduction factor
of (�, ⌧). If I

2

= (↵
1

↵
2

. . .↵P ), with ↵j 2 N and P = |S
2

|, is a S-invariant for
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N
2

, then

I
1

= (

n times

z }| {

↵
1

↵
1

. . .↵
1

n times

z }| {

↵
2

↵
2

. . .↵
2

. . .

n times

z }| {

↵P↵P . . .↵P 0 . . . 0)

is a S-invariant for N
1

.

The previous theorem is proved in [10]. Let us now consider the F̂ -morphism
(�, ⌧) : N

1

! N
2

shown in Figure 4, having reduction factor n = 2. The incidence
matrix of N

1

is ordered as explained. I
2

= (11) is a S-invariant for N
2

. The
corresponding S-invariant for N

1

is built by taking n times each single value of
I
2

as the first components and adding 0s in the remaining positions. Thus, we
obtain I

1

= (1111000).
F̂ -morphisms reflect S-invariants but do not preserve them. The S-invariant

IA = (0100111) for N
1

in Figure 4 can not be used to build a corresponding S-
invariant for N

2

. It is impossible to assign to each place of N
2

the weight of the
elements of its pre-image. For example, let s be the place of N

2

labelled with bd:
IA assigns a different weights to the elements of ��1(s). IB , built by assigning
to each place of N

2

the sum of the weights of the elements of its pre-image, is
not a S-invariant of N

2

.
Regarding T-invariants, we observe that, in marked graphs, an occurrence

sequence leads back to the initial marking if and only if it fires every transition
an equal number of times. Then, since F̂ -morphisms are surjective, by Theorem
7 they preserve T-invariants.

In general, T-invariants are not reflected by F̂ -morphisms. For instance, let
us consider the example in Figure 4. JT

2

= (11) is a T-invariant for N
2

. For
each transition t of N

2

, we assign to the elements of its pre-image the weight
given by JT

2

to t, and we use 0s for the other transitions of N
1

. So, we obtain
JT
1

= (011110), which is not a T-invariant for N
1

.

5 Remarks and conclusions

We have introduced F - and F̂ -morphisms, new kinds of morphisms on marked
graphs, a basic class of Petri nets. These morphisms can be used as a formal
technique to deal with a kind of abstraction on marked graphs, consisting in the
folding of cycles and the identification of chains. We have also proved that the
unfoldings of two systems joined by a F̂ -morphism are joined by a N -morphism
(see [2]). We have finally shown that liveness, boundedness and T-invariants are
preserved by such morphisms, while S-invariants are reflected.

We now plan to define a new operation for the composition of marked graphs
driven by F̂ -morphisms mapping the components on a net which works as an
interface, similarly to what described in [12], [13] for N̂ -morphisms. We also
intend to extend the theory related to F -morphisms to other classes of Petri nets,
such as persistent, free choice and Place/Transition Petri nets, thus applying such
functions to systems having conflicts. Finally, we want to apply F̂ -morphisms
to models representing real systems having deterministic behavior (such as, for
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example, manufacturing systems or cyclic processes) to formally analyze them
by using a step-by-step approach based on different levels of refinement of the
modelled system.
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