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3 École Centrale de Lille, LAGIS, F-59651, Villeneuve d’Ascq, France
{baisi.liu, mohamed.ghazel}@ifsttar.fr, armand.toguyeni@ec-lille.fr

Abstract. In this paper, a software tool to deal with diagnosis of dis-
crete event systems (DESs) is presented. This tool called On-the-Fly
PEtri-Net-based Diagnosability Analyzer (OF-PENDA) implements the
techniques developed in [13] for the diagnosis of DESs modeled by la-
beled Petri nets (LPNs). This technique aims to cope with the state
explosion problem which is a major issue when dealing with diagnosis
of DESs. In particular, OF-PENDA implements an incremental and on-
the-fly algorithm which makes it possible to analyze (K-)diagnosability
without necessarily generating the whole state space of the model. Three
aspects for OF-PENDA are discussed in this paper: an overview on the
implemented technique is given; some features of the tool are discussed;
then two illustrative case studies are processed to show the efficiency in
terms of time and memory compared with some existing approaches.

Keywords: fault diagnosis, discrete event system, labeled Petri net, on-
the-fly analysis, incremental search, C++.

1 Introduction

Diagnosability analysis and online diagnosis are two crucial issues in safety crit-
ical systems. Most of such systems can be modeled as DESs [5] in a sufficiently
high abstraction level. For technical and/or economical reasons, it is generally
inconceivable to sense all the behavioral variations in a complex dynamic system.
Thereby, very often, monitoring activities in such systems have to be carried out
under partial observability. In particular, DES diagnosis is often explained as the
task which consists in deducing and identifying the occurrence of faulty unob-
servable events, based on the occurrence of observable events; and diagnosability
is the ability to diagnose any fault in a finite delay after its occurrence.

In the past two decades, diagnosability analysis has been studied using tech-
niques such as diagnoser automata [15], verifier automata [7, 17], integer linear
programming [1] and verifier Petri nets [3]. Software tools, such as the UMDES
library [9] can analyze diagnosability. A major issue that these works have to
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deal with is the computation complexity. In particular, the state explosion phe-
nomenon constitutes a major obstacle especially for the approaches based on
building and/or investigation of the state space. In [11], we have developed a
new technique which aims to cope (even partially) with this problem, by adapt-
ing an incremental and on-the-fly building of the state space in parallel with
(K-)diagnosability analysis.

OF-PENDA is a software tool developed in C++ for the diagnosability anal-
ysis and the online diagnoser generation for DESs modeled by LPNs. It is the
implementation of various algorithms developed in [11]. Diagnosability verdict
is emitted and when the system is diagnosable, an online diagnoser is generated
in a straightforward way. In addition, for diagnosable systems, Kmin, the mini-
mum number of steps (observable events) after the occurrence of fault to ensure
diagnosability, is also given to help describe diagnosability in a finer way.

The reminder of this paper is organized as follows. Section 2 briefly introduces
some notations pertaining to LPN and (K)-diagnosability. Section 3 discusses
the on-the-fly and incremental techniques implementated in OF-PENDA. In Sec-
tion 4, we present the features of OF-PENDA. Then, two cases WODES and
level crossing (LC) benchmarks are used to show the efficiency of OF-PENDA
in Section 5 and 6, respectively. Finally, some concluding remarks are given in
Section 7.

2 Preliminaries

2.1 Labeled Petri Nets

A Petri net (PN) is a tuple N = (P, T, Pre, Post), where P is a finite set of
places; T is a finite set of transitions; Pre and Post are the pre- and post-
incidence mappings. C = Post − Pre is the incidence matrix. A marking is a
vector M ∈ N |P | that assigns a non-negative integer to each place. A marked PN
(N,M0) is a PN N with given initial marking M0. For short, a marked PN will be
called PN afterward. A transition ti is enabled at marking M if M ≥ Pre(·, ti),
denoted by M [ ti >.

A PN (N,M0) is bounded if the number of tokens in each place does not
exceed a finite number m ∈ N for any marking reachable from M0. A PN is
live if, no matter what marking has been reached from M0, it is possible to
ultimately fire any transition of the net by progressing through some further
firing sequence.

An LPN is a tuple NL = (N,M0, Σ, ϕ), where (N,M0) is a marked PN; Σ is
a finite set of events and ϕ : T → Σ is the transition labeling function. ϕ is also
extended to sequences of transitions, ϕ : T ∗ → Σ∗. The language generated by
NL is L(NL) = {ϕ(σ) ∈ Σ∗ | σ ∈ T ∗, M0 [ σ >}. For short, we write L instead
of L(NL). We denote by s = s1s2 . . . sn the concatenation of s1, s2, . . . , sn, where
s1, s2, . . . , sn ∈ Σ∗.
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2.2 K-diagnosability

In event-based diagnosis of DESs, event set Σ is partitioned into two disjoint
sets, Σ = Σo ] Σu, where Σo is a finite set of observable events and Σu is a
finite set of unobservable events. Fault events are unobservable, thus the set of
fault events Σf ⊆ Σu. Likewise, the set of transitions T is partitioned into sets
of observable and unobservable transitions: T = To ] Tu. Moreover, the faulty
transitions are unobservable (Tf ⊆ Tu). Also, the set of fault events can be
partitioned into m sets, Σf =

⊎m
i=1ΣFi , where ΣFi denotes one class of faults.

Let Po : Σ∗ → Σ∗o be the projection which “erases” the unobservable events
in a sequence s ∈ Σ∗. The inverse projection operator P−1o is defined as P−1o (r) =
{s ∈ L | Po(s) = r} for r ∈ Σ∗o . Given a live and prefix-closed language L ⊆ Σ∗
and a string s ∈ L, the post-language of L after s denoted by L/s is L/s =
{s′ ∈ Σ∗| ss′ ∈ L}. We denote the length of string s by |s|, and the ith event
of sequence s by si. For a ∈ Σ and s ∈ Σ∗, we write a ∈ s if i exists such that
si = a.

Definition 1. Given an LPN NL and K ∈ N , e ∈ Σf is K-diagnosable if
∀u ∈ L, u|u| ∈ Σf and ∀v ∈ L/u such that |Po(v)| ≥ K, then

r ∈ P−1o (Po(uv))⇒ e ∈ r

For a K-diagnosable system S, it is obvious that S is K ′-diagnosable for any
K ′ ≥ K. Besides, Kmin exists such that S is Kmin-diagnosable, and S is not
K ′-diagnosable for all K ′ < Kmin.

3 Techniques Applied in OF-PENDA

3.1 On-the-fly Analysis

For most existing approaches, diagnosability analysis is composed of two stages.
First, advanced models are developed for extracting the necessary information
for diagnosability analysis from the original model, e.g., diagnoser automata [15],
verifier automata [17], verifier Petri nets [3], and linear inequalities [1]. Secondly,
diagnosability analysis is tackled based on the structure analysis of the plant (or
by solving mathematical models), e.g., through checking the existence of certain
specific states or cycles, and verifying the existence of linear inequalities solu-
tions. Traditionally, the two stages are proceeded independently and sequentially.
The analysis of advanced models is performed after their state spaces have been
completely generated. This presents the state explosion problem when dealing
with large systems. In OF-PENDA, we tackle this problem by using on-the-fly
techniques [16], since such techniques have the following advantages:

On-the-fly techniques can save memory resources. Generally, on-the-fly tech-
niques permit us to generate and investigate only a part of the state space to
find solutions, unlike the classic enumerative approaches which have to build
the whole state space a priori. On-the-fly exploration techniques do not reduce
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the complexity of the original algorithms, but they do save memory resources in
general, depending on the system structure and on the searching strategy.

On-the-fly techniques can save computing time. On the one hand, on-the-
fly exploration terminates as soon as some specific features are found, which
requires less time than investigating the whole state space. On the other hand,
for two-stage analysis, such as our approaches that will be given in this paper,
the advanced models can be derived and analyzed step by step as the on-the-fly
building of the basic models, rather than being analyzed after building the whole
basic models, which can save time from both analysis stages.

On-the-fly techniques can deal with some unbounded systems, since they re-
turn a verdict as soon as some specific features are found, instead of investigating
the whole infinite state space, as will be shown in Section 5.

3.2 Incremental Search Technique

The incremental method [8] is a search technique that reuses the information
from previous searches when some parameters change. Generally, it is faster than
performing the search for each changed parameter from scratch. The analysis of
the kth step is based on the search result of the (k − 1)th step. Different from
other speeding up searches, it can guarantee finding the shortest paths.

As in [13], the classic diagnosability can be analyzed based on incrementally
investigating K-diagnosability with increasing the value of K, and the Kmin

value which ensures the diagnosability will be eventually found (for diagnosable
systems). Note that some approaches based on integer programming [1] have to
rebuild and solve the equation system (or inequalities) when seeking out Kmin,
without using the previous search results.

The incremental technique is a skillful technique to speed up the search pro-
cedure. It should be used for bounded systems so that the search can terminate
well. In particular, it can be used for unbounded systems when some conditions
for terminating the search exist.

Incremental techniques can be used with on-the-fly analysis to perform an
efficient analysis. Both techniques do not change the computation complexity.
However, they improve the searching efficiency when dealing with real systems.

4 Features of OF-PENDA

In [13], we deal with diagnosability of LPN models using on-the-fly and incremental
techniques. Classic diagnosability is transformed into a series ofK-diagnosability,
where K increases progressively. Unlike several existing approaches [7,15,17], we
do not enumerate the state space. Instead, the state space is often partially gen-
erated as necessary, and the investigation is stopped as soon as some special
criteria are met. This can potentially offer efficiency in terms of time and mem-
ory, compared with the aforementioned approaches.

OF-PENDA is the implementation of various algorithms elaborated in [13]
for the diagnosis of DESs modeled by LPNs. It is a command-line software tool
developed in C++.
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OF-PENDA takes the mathematical model of an LPN as input, i.e., the
matrices Pre, Post, M0, the event-mapping matrix [13] and the fault partitions.
While analyzing (K-)diagnosability, the generated model for the Kth step are
used for (K + 1)th step. If the system is diagnosable, the minimum value Kmin

ensuring K-diagnosability is given, and the on-line diagnoser is generated.
In order to show the efficiency of on-the-fly and incremental techniques in

diagnosability analysis, the WODES benchmark [6] and the LC diagnosis bench-
mark are used in the comparative simulation using OF-PENDA and the UMDES
library [9], with the help of TINA tool [2], as will be presented in Section 5 and 6.
Based on the simulation results, we will point out the similarities and differences
between our approach and some existing diagnosis approaches.

5 Application to the WODES Diagnosis Benchmark

5.1 WODES Benchmark

The WODES diagnosis benchmark [6] is shown in Figure 1 and describes a
manufacturing system characterized by three parameters: n,m and k, where:

– n is the number of production lines;
– m is the number of units of the final product that can be simultaneously

produced. Each unit of product is composed of n parts;
– k is the number of operations that each part must undergo in each line.

The observable transitions are indicated by white boxes, and the unobservable
transitions by black boxes.

5.2 Comparative Results

We now analyze the diagnosability upon the fault class ΣF1 = {f1, . . . , fn−1}.
In other terms, only one class of faults is considered here. In order to per-
form a comparative simulation with OF-PENDA and the UMDES library, some
preparations are necessary. The UMDES library deals with automata models by
importing a .fsm file. Thus, we first generate the reachability graph of the consid-
ered PN with the help of TINA yielding to a .aut file, which is then transformed
into a .fsm file by a script integrated in OF-PENDA that we have developed.
This ensures that the comparative simulation is performed with the same input.

The simulation has been performed on a PC Intel with a clock of 2.26 GHz
and the results are shown in Table 1.

– The first 3 columns entitled “m”, “n” and “k” are the basic structural pa-
rameters of the WODES diagnosis benchmark.

– The 4th column entitled “|R|” is the number of nodes in the marking graph
computed by TINA, which is equal to the number of states of the automaton
for building the diagnoser by the UMDES library.

– The 5th column entitled “|N |” is the number of the FM-graph nodes.
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Fig. 1. The WODES diagnosis benchmark

– The 6th column entitled “|Diag|” is the number of the diagnoser automaton
states generated by UMDES.

– The 7th column entitled “|Xv|” is the number of the fault marking set tree
(FM-set tree) nodes.

– The 8th (resp. 9th) column entitled “DD” (resp. DO) is the diagnosability
verdict returned by UMDES (resp. OF-PENDA), where “Yes” indicates that
the system is diagnosable and “No” indicates undiagnosable.

– The 10th column is the stopping value of K in the incremental search. Note
that for a diagnosable case (cf. Column 9), this “K ” value is equal to “Kmin”.

All the results are obtained under a simulation time of less than 6 hours.
“o.t.” (out of time) means the result cannot be computed within 6 hours.

5.3 Discussions

A Finer Version of Diagnosability Both the OF-PENDA and the UMDES
library allow us to check diagnosability for bounded DESs. In particular, thanks
to our incremental investigation of diagnosability, our tool also gives Kmin for
diagnosable systems, while the UMDES library [9] does not. It is worth recalling
that the K-diagnosability is a finer version of diagnosability with the following
two main features:

Online, the value of Kmin gives us a valuable piece of information indicat-
ing the minimum number of steps necessary to detect and identify faults for a
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Table 1. Comparative results obtained by UMDES and OF-PENDA

m n k |R| |N | |Diag| |Xv| DD DO K m n k |R| |N | |Diag| |Xv| DD DO K

1 2 1 15 8 4 3 Yes Yes 2 1 5 1 3,295 2,607 o.t. 66 o.t. Yes 5

1 2 2 24 10 4 3 Yes Yes 2 1 5 2 9,691 o.t. o.t. o.t. o.t. o.t. o.t.

1 2 3 35 12 4 3 Yes Yes 2 2 2 1 96 68 20 9 No No 8

1 2 4 48 14 4 3 Yes Yes 2 2 2 2 237 137 o.t. 9 o.t. No 8

1 3 1 80 52 10 6 Yes Yes 3 2 3 1 1,484 801 20 12 No No 11

1 3 2 159 90 10 6 Yes Yes 3 2 3 2 5,949 2,746 o.t. 12 o.t. No 11

1 3 3 274 138 10 6 Yes Yes 3 2 4 1 28,203 8,795 o.t. 15 o.t. No 14

1 3 4 431 196 10 6 Yes Yes 3 2 4 2 180,918 o.t. o.t. o.t. o.t. o.t. o.t.

1 4 1 495 367 29 17 Yes Yes 4 3 2 1 377 290 66 12 No No 11

1 4 2 1,200 822 29 17 Yes Yes 4 3 3 1 12,048 5,165 o.t. 16 o.t. No 15

1 4 3 2,415 1,533 o.t. 17 o.t. Yes 4 3 4 1 484,841 o.t. o.t. o.t. o.t. o.t. o.t.

1 4 4 4,320 2,554 o.t. 17 o.t. Yes 4

diagnosable system. Note that in [1], K is the number of both observable and
unobservable transitions after a faulty transition. While here, as well as in [3]
K is the value relative to only observable events. Modifying our algorithm to
compute both observable and unobservable transitions can be done easily.

Secondly,K-diagnosability allows a meticulous description of the diagnosabil-
ity for multiple faults. It is advisable to discuss the traditional diagnosability as
a series of K-diagnosability problems for each class of faults ΣFi ⊆ Σf . Fur-
ther analysis on K could help to enhance the diagnosability. In order to solve
K-diagnosability for each ΣFi, it is sufficient to perform our algorithm for each
class of faults ΣFi iteratively. Thus, the computational complexity will be linear
with the number of fault classes.

An On-the-fly and Incremental Method The UMDES library deals with
diagnosability of systems modeled by automata based on the construction of an
observer and a diagnoser automaton, which requires an exhaustive enumeration
of the state space. However, we solve the classic diagnosability by handling a
series of K-diagnosability problems, where K increases progressively. In other
words, we reuse the state space generated while analyzing K-diagnosability to
deal with (K + 1)-diagnosability. This is totally different from the approach
in [1], since for each value of K a new system of equations is generated in their
technique based on linear programming. Additionally, by progressively increasing
K, it is certain to find Kmin if the system is diagnosable.

Thanks to the on-the-fly investigation of diagnosability, building the whole
FM-set tree is not necessary. Actually, for undiagnosable systems, the FM-set
tree building as well as its exploration are stopped as soon as an indeterminate
cycle is found. Moreover, for diagnosable systems, while generating a branch
in the FM-set tree, we stop as soon as an F -certain or an existing node is
obtained. This is a notable advantage compared with the existing approaches [4,
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15] which first build an exhaustive diagnoser or a reachability graph. The test
result using the WODES diagnosis benchmark has shown this point since we
were able to investigate diagnosability on models which are not tractable using
UMDES library.

Relation between Diagnosability and Boundedness of PNs The UMDES
library solves the diagnosability problem based on exhaustive enumeration of the
state space. Therefore, it can only deal with bounded systems modeled by finite
state automata.

It is worth noting that there exist two PN-based approaches for the diagnos-
ability analysis of unbounded models. In [3], the authors check the diagnosability
of unbounded PN models by analyzing the structure of the generated verifier
net reachability graph. This approach requires an exhaustive enumeration of the
reachability set of the verifier net, which may be larger than the reachability set
of the original PN. In [1], the proposed approach is based on linear programming
technique. System behavior is represented by a series of linear equations. The
diagnosability of the unbounded PN models can be verified only if the faulty
behavior can be described by a finite number of equations.

With the help of the on-the-fly computation, our algorithm can determine
undiagnosability as soon as an Fi-indeterminate cycle is detected. Hence, this
approach can be applied to some unbounded PNs with an Fi-indeterminate
cycle. Although an unbounded PN has infinite fault markings, which may result
in an infinite number of fault marking sets (FM-sets), the construction of an
FM-set tree terminates once an Fi-indeterminate cycle is detected and a negative
diagnosability verdict is emitted. From a practical point of view, some thresholds
need to be used if our algorithm is used to deal with unbounded LPNs.

Case of Unlive PNs Note that we have extended our algorithm to also deal
with unlive systems, while considering the definition of diagnosability relative to
unlive DES, given in [14]. Besides, the WODES diagnosis benchmark we dealt
with is unlive when n ≥ 2, which is against the assumption of liveness in [15].
Concretely, as the computation of the FM-set tree is performed on the fly, we
have added an additional stopping condition: when some F -uncertain FM-set
containing a deadlock state is obtained. Indeed, in this case, the system may
stay indefinitely in this uncertain state, and no diagnosis verdict can be emitted.

Limitations It is shown that some limitations of the WODES benchmark exist
when testing diagnosability analysis approaches:

– The benchmark is only live when k = 1.
– The benchmark is only diagnosable when m = 1.

In order to overcome these limitations, we develop the bounded and live n-line
LC benchmark [12], which integrates both diagnosable and undiagnosable faults
for any parameter n, as will be introduced in the following section.



Lecture Notes in Computer Science: Authors’ Instructions 9

6 Application to the LC benchmark

In this section, OF-PENDA is applied to a case study pertinent to railway safety.
We study the fault diagnosis problems on an LC system. Our purpose here is two-
fold: first, we show that OF-PENDA can deal with complex systems; secondly,
the analysis results obtained on a quite complex example can show the efficiency
of on-the-fly and incremental techniques in terms of time and memory compared
with other existing approaches. Here, the complex model, namely the n-line LC
will be modeled by an LPN with a great number of reachable markings.

6.1 n-line LC Benchmark

The n-line LC benchmark, as shown in Figure 2, describes an n-line LC system
composed of railway traffic, LC controller and barriers subsystems. The n-line
LC benchmark can be obtained from the single-line LC model [10] while fulfilling
the following controlling rules under a nominal situation:

– The LC must be closed if any approaching train is detected in any line;
– The LC can be reopened if there is no train in the “within” or “before”

sections in any line.

In other terms, the above rules eliminate all the possibilities that the collision
between railway and road traffic may take place.

In this global model, all the transitions are observable, but the faulty transi-
tions, i.e., To = T\Tu and Tu = Tf = {t6} ∪ (∪i{ti,5}).

The n-line LPN model can be rather big when n takes great values. The
state space of the corresponding LPN models for the various values of n can be
calculated by the TINA tool [2], as will be shown in Table 2.

Recall here that not the whole state space will be generated while using our
on-the-fly technique. However, the reachability graphs are generated in order to
transform them into the input file (language equivalent automata) for UMDES.

As shown in Table 2, the size of the reachability graph grows very quickly as
n increases, since places p2 and p6 can hold as many as n tokens, due to which
so many markings exist.

6.2 Diagnosability Analysis

In this section, we will analyze the diagnosability of the LC model while consid-
ering various values of n. Here, we will consider two fault classes:

– For TF1 = ∪ni=1{ti,5}, we consider all the faults ti,5 in each track as belonging
to the same class. Recall that such faults express the fact that trains can
enter the crossing zone while the barriers are not ensured to be down.

– For TF2 = {t6}, this fault class depicts an early lowering of the barriers, i.e.,
before all the trains are ensured to have left the LC.
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p1,1 p1,2 p1,3 p1,4

pn,1 pn,2 pn,3 pn,4

t1,5, ig

tn,5, ig

t4

tn,4, aw4

p1 np2 p3 p4

p5 n p6

t1, cr p9 t2, or

t1,1, ap1 t1,3, lv1

tn,1, apn tn,3, lvn

p7, up

p8, down

t6, bf

t1,2, in1

tn,2,inn

t4, lwt3, kd t5, rs

n n

railway traffic

· · · · · ·
· · · · · ·
· · · · · ·

LC controller

barriers

Fig. 2. n-line LC benchmark

A comparative simulation with UMDES library is performed on an Intel PC
(CPU: 2.50 GHz, RAM: 3.16 GB) and the results are given in Table 2, Figure 4
and Figure 3, where:

– n is the number of railway tracks;
– ΣFi is the considered fault class (ΣF1 or ΣF2);
– |P | and |T | are the number of places and transitions of the LPN model

respectively;
– |A| and |R|, which are the number of the arcs and the nodes of the reachabil-

ity graph respectively, give the scale of the LPN reachability graph computed
by TINA and which serves as the input automaton states for UMDES;
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Fig. 3. Time cost for the diagnosability analysis on ΣF2

Fig. 4. Time cost for the diagnosability analysis on ΣF1

– |N | is the number of (on-the-fly) generated fault markings by OF-PENDA
when the diagnosability verdict is issued;

– |Diag| is the number of diagnoser states generated by UMDES (the diagnoser
approach) which were needed to give the diagnosability verdict;

– |Xv| is the number of (on-the-fly) generated FM-sets by OF-PENDA when
the diagnosability verdict is issued, and corresponds also to the number of
nodes of the diagnoser derived from this FM-set tree when the model is
diagnosable;

– DD, DV and DO are the diagnosability verdicts obtained by diagnoser ap-
proach, verifier approach of UMDES and OF-PENDA respectively, where
“Yes” indicates that the system is diagnosable and “No” indicates undiag-
nosable;

– K is the minimum value ensuring diagnosability computed by OF-PENDA,
if the system is diagnosable; otherwise, it is the last value under which K-
diagnosability is investigated before concluding that the system is undiag-
nosable;
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– TT is the time needed to generate the LPN reachability graph computed
by TINA, i.e., the time used for preparing the input automaton needed for
UMDES;

– TD, TV and TO are the times needed to obtain the diagnosability verdict
by dcycle.exe (diagnoser approach), verifer dia.exe (verifier approach) of
UMDES and OF-PENDA (on-the-fly approach), respectively.

6.3 Discussions

For the comparative simulation results, the following remarks can be made:

1. The UMDES library has been integrated in the DESUMA framework which
also integrates GIDDES for graphical facilities. Here, we directly use the com-
mand lines in UMDES library rather than the interface framework (DESUMA),
since the DESUMA takes so much time to load large automaton models.

2. The scale of the PN reachability graph grows quickly (cf. the columns enti-
tled with |A| and |R| in Table 2) as n increases. The capability of TINA to
calculate the reachability graph considerably depends on the memory of the
computer, since TINA needs to refer to the already built part of the reacha-
bility graph all along the computation. One can observe that the generated
.aut files become considerable starting from n = 7. For instance, the size of
the .aut files for 1, 2, 3, 4, 5, 6, 7-line LC benchmark is 655b, 11KB, 128KB,
1.2MB, 9.9MB, 74.8MB, 518.6MB, respectively. A Mac with a RAM of 16GB
cannot store the .aut file for 8-line benchmark even if it can be calculated
eventually. For the case of n = 9, the calculation stops with an “out of mem-
ory” error. Thus, the analysis of the cases with n ≥ 9 cannot be performed
using UMDES.

3. The simulation using UMDES and OF-PENDA is performed on a Windows
PC. For ΣF1, some “accidental quits” happen during the running of dcy-
cle.exe (diagnoser approach in UMDES) for some cases. However, the diag-
nosability verdict can be obtained by using the verifier technique (command
verifier dia.exe) in UMDES library. Note that the relative results given by
OF-PENDA when an accidental quit happens are the last outputs before
the program’s exit. We do not know exactly the reason for this problem.
The improvement of the source code and using other operation systems may
eliminate the problems.

4. In order to compare the efficiency in terms of time, we make a record of the
computing time for each case. The time indicated in the columns entitled
with To, TD and TV are obtained by an external timer, since TINA and
UMDES do not output this information. Thus, there is an error margin of
±1s. For the OF-PENDA, an automatic timer has been integrated with an
error margin of less than 1ms.

5. Besides the diagnosability verdict, OF-PENDA also gives the minimum value
of K to ensure diagnosability, which cannot be obtained by UMDES.

6. In these cases, the number of FM-sets generated by OF-PENDA is lower than
the number of diagnoser states given by UMDES. This shows the advantage
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offered by our on-the-fly technique in terms of memory consumption in terms
of memory consumption. Besides, it is worthwhile to mention that the FM-
sets can be far fewer than the diagnoser states when an indeterminate cycle
exists, i.e., if the model is undiagnosable, and is detected early.

7. It is worthwhile to notice that the FM-set tree is generated by OF-PENDA
directly from the LPN, while the UMDES takes an automaton as an input
which is equivalent to the reachability graph of the LPN. In other words,
the inputs for UMDES and OF-PENDA are not the same and we had to
compute the LPN reachability graph a priori before performing analysis via
UMDES, whereas, on the contrary, the reachable markings are computed on
the fly while investigating diagnosability by OF-PENDA.

8. The results (cf. column TD and TV ) show that the diagnoser approach is
more efficient than the verifier approach while dealing with the n-line LC
benchmark. This does not violate the claim that the verifier approach is more
efficient in terms of time complexity (polynomial for the verifier approach
vs. exponential for the diagnoser approach), since the theoretical complexity
is always computed while considering the worst case.

More importantly, compared with the diagnoser and verifier approaches, our
on-the-fly approach can deal with some quite complex models that UMDES
cannot deal with (e.g., for the cases ΣF1 when n ≥ 7), especially for some
undiagnosable systems, and shows better efficiency in terms of time and memory.
For example, the diagnosability analysis for the LC model is performed in less
than 6 seconds, for even when n = 40, whereas UMDES (diagnoser and verifier
techniques) do not issue a verdict within 6 hours for n > 4. However, for the
diagnosable cases (ΣF2), we spend less memory but more time than UMDES,
although the obtained results remain comparable: OF-PENDA and UMDES-
verifier block from n = 4, whereas UMDES-diagnoser blocks at n = 5. This
gap in terms of efficiency depending on whether the model is diagnosable or
not can be explained as follows: For the undiagnosable models, the analysis by
OF-PENDA is completed as soon as an indeterminate cycle is found which can
occur quickly, hence avoiding the generation and analysis of an important part
of the state space. However, for diagnosable models, it is likely that a bigger part
of the state space is generated/analyzed since, in this case, the only stopping
condition which allows us to avoid building/investigating the whole state space
is when a faulty node is generated. Indeed, since we deal with permanent faults,
it is useless to continue investigating the following nodes since they are faulty as
well.

7 Conclusion

OF-PENDA is a software tool for the diagnosis of DESs modeled by LPNs, on
the basis of the techniques developed in [11]. For diagnosable bounded systems,
the minimum value Kmin ensuring K-diagnosability is given. Besides, thanks
to the incremental search it implements, OF-PENDA can also issue diagnosis
verdict for some unlive and/or unbounded LPN models under some conditions.
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Two benchmarks have been used in this paper for illustrating the efficiency of
OF-PENDA while a comparison discussion is carried out w.r.t some existing
techniques. As future works, we intend to improve the source code of our tool
and to integrate some heuristics to guide the depth-first search technique adopted
here, while defining some priority rules as regards the branches to be investigated
first.
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