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Abstract. Sequential diagnosis methods compute a series of queries for discrim-
inating between diagnoses. Queries are answered by some oracle such that even-
tually the set of faults is identified. The computation of queries is based on the
generation of a set of most probable diagnoses. However, in diagnosis problem
instances where the number of minimal diagnoses and their cardinality is high,
even the generation of a set of minimum cardinality diagnoses is unfeasible with
the standard conflict-based approach. In this paper we propose to base sequential
diagnosis on the computation of some set of minimal diagnoses using the direct
diagnosis method, which requires less consistency checks to find a minimal diag-
nosis than the standard approach. We study the application of this direct method
to high cardinality faults in ontologies. In particular, our evaluation shows that
the direct method results in almost the same number of queries for cases when
the standard approach is applicable. However, for the cases when the standard ap-
proach is not applicable, sequential diagnosis based on the direct method is able
to locate the faults correctly.

1 Introduction

Standard sequential model-based diagnosis (MBD) methods [18, 15] acquire additional
information in order to discriminate between diagnoses. Queries are generated and an-
swered either by automatic probing or by asking humans for additional observations
about the system to be diagnosed. As various applications show, the standard meth-
ods work very satisfactorily for cases where the number of faults is low (single digit
number), consistency checking is fast (single digit number of seconds), and sufficient
possibilities for observations are available for discriminating between diagnoses.

MBD is a general method which can be used to find errors in hardware, software,
knowledge-bases, orchestrated web-services, configurations, etc. In particular, OWL
ontology debugging tools [14, 7, 10] can localize a (potential) fault by computing sets
of axiomsD ⊆ O called diagnosis for an ontologyO. At least all axioms of a diagnosis
must be modified or deleted in order to formulate a fault-free ontologyO∗. The latter is
faulty if some requirements, such as consistency of O, presence or absence of specific
entailments, are violated.

All the discrimination and diagnosis approaches listed above follow the standard
MBD technique [18] and compute diagnoses using minimal conflict sets, i.e. irreducible
sets of axioms CS ⊆ O that violate some requirements, by using a consistency checker
(black-box approach). Furthermore, diagnoses are ordered and filtered by some pref-
erence criteria, e.g. probability or cardinality, in order to focus debugging on the most
likely cases.
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In the common ontology development scenario where a user develops an ontology
manually, the changes between validation steps, e.g. consistency checking, are rather
small. Therefore, the number of faulty axioms is in a range where standard sequen-
tial MBD methods are applicable [20]. However, there are cases when the changes are
substantial. For example, in ontology matching two ontologies with several thousands
of axioms are merged into a single one. High quality matchers (e.g. [12]) require the
diagnosis of such merged ontologies, but often cannot apply standard MBD methods
because of the large number of minimum cardinality diagnoses and their high cardinal-
ity (e.g. greater than 20). This observation is supported by analysis of justifications [11],
which is a dual problem to computation of diagnoses. Moreover, most of the diagnostic
problems are NP-complete even if reasoning is done in polytime [4, 17].

In order to deal with hard diagnosis instances, we propose to relax the require-
ment for sequential diagnosis to compute a set of preferred diagnoses, such as a set of
most probable diagnoses. Instead, we compute some set of diagnoses which can be em-
ployed for query generation. This allows to use the direct computation of diagnoses [19]
without computing conflict sets. The direct approach was applied for non-interactive di-
agnosis of ontologies [3, 2] and constraints [6]. The computation of a diagnosis D by
a variant of QUICKXPLAIN [13] requires O(|D| log( |O||D| )) consistency checks, where
|D| is the cardinality of the diagnosis and |O| the size of the knowledge base. If m
diagnoses are required for query generation, then only m calls to a direct diagnosis
generator are needed. A recent approach [21] does not generate the standard HS-TREE,
but still depends on the minimization of conflict sets, i.e. |D| minimized conflicts have
to be discovered. Consequently, if |D| � m, substantially more consistency checks are
required.

Since we are replacing the set of most probable diagnoses by just a set of diagnoses,
some important practical questions have to be addressed. (1) Is a substantial number
of additional queries needed, (2) is this approach able to locate the faults, and (3) how
efficient is this approach?

In order to answer these questions we have exploited the most difficult diagnoses
problems of the ontology alignment competition [5]. Our evaluation shows that sequen-
tial diagnosis by direct diagnosis generation needs approximately the same number of
queries (±1) in order to identify the faults. This evaluation was carried out for cases
where the standard sequential diagnosis method was applicable. Furthermore, the eval-
uation shows that our proposed direct method is capable of locating faults in all cases
correctly. Moreover, for the hardest instance the computation costs which are introduced
in addition to the computational costs of theorem proving are less than 7%.

The remainder of the paper is organized as follows: Section 2 gives a brief introduc-
tion to the main notions of sequential ontology diagnosis. The details of the suggested
algorithms and their applications are presented in Section 3. In Section 4 we provide
evaluation results.

2 Basic concepts

In the following we present (1) the fundamental concepts regarding the diagnosis of
ontologies and (2) the interactive localization of axioms that must be changed.
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Diagnosis of ontologies. Given an ontology O which is a set of logical sentences (ax-
ioms), the user can specify particular requirements during the knowledge-engineering
process. The most basic requirement is consistency, i.e. a logical model exists. A further
frequently employed requirement is coherence. In addition, as it is common practice in
software engineering, the knowledge-engineer (user for short) may specify test cases,
which are axioms which must (not) be entailed by a valid ontology.

Given a set of axioms P (positive test cases) and a set of axioms N (negative test
cases), an ontology O∗ is valid iff O∗ is consistent (and coherent if required) and

1. O∗ |= p for all p ∈ P
2. O∗ 6|= n for all n ∈ N

Let us assume that there is a non-valid ontology O, then a set of axioms D ⊆
O must be removed and possibly some axioms EX must be added by a user s.t. an
updated O∗ becomes valid, i.e. O∗ := (O \ D) ∪ EX . The goal of diagnosis is to
provide information which sets of axioms D should be revised in order to formulate a
valid ontology. Furthermore, we allow the user to define a set of axioms B (called the
background theory) which must not be changed (i.e. the correct axioms).

Definition 1. Let 〈O,B, P,N〉 be a diagnosis problem instance (DPI) where O is a
ontology, B a background theory, P a set of axioms which must be implied by a valid
ontology O∗, and N a set of axioms which must not be implied by O∗.

A set of axioms D ⊆ O is a candidate diagnosis iff the set of axioms O \ D can be
extended by a set of logical sentences EX such that:

1. (O \ D) ∪ B ∪ EX is consistent (and coherent if required)
2. (O \ D) ∪ B ∪ EX |= p for all p ∈ P
3. (O \ D) ∪ B ∪ EX 6|= n for all n ∈ N

D is a diagnosis iff there is no D′ ⊂ D such that D′ is a candidate diagnosis. D is a
minimum cardinality diagnosis iff there is no diagnosis D′ such that |D′| < |D|.

The following proposition of [20] characterizes diagnoses by replacing EX with the
positive test cases.

Corollary 1. Given a DPI 〈O,B, P,N〉, a set of axioms D ⊆ O is a diagnosis iff (O \
D)∪B∪{

∧
p∈P p} is consistent (coherent) and ∀n ∈ N : (O\D)∪B∪{

∧
p∈P p} 6|= n

In the following we assume that there is always a diagnosis.

Proposition 1. A diagnosis D for a DPI 〈O,B, P,N〉 exists iff B ∪ {
∧

p∈P p} is
consistent (coherent) and ∀n ∈ N : B ∪ {

∧
p∈P p} 6|= n

For the computation of diagnoses conflict sets are usually employed to constrain
the search space. A conflict set is the part of the ontology that preserves the inconsis-
tency/incoherency.

Definition 2. Given a DPI 〈O,B, P,N〉, a set of axioms CS ⊆ O is a conflict set iff
CS ∪ B ∪ {

∧
p∈P p} is inconsistent (incoherent) or there is an n ∈ N s.t. CS ∪ B ∪

{
∧

p∈P p} |= n. CS is a minimal conflict set iff there is no CS′ ⊂ CS such that CS′ is
a conflict set.
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Minimal conflict sets can be used to compute the set of diagnoses as it is shown
in [18]. The idea is that each diagnosis should include at least one element of each
minimal conflict set.

Proposition 2. D is a diagnosis for the DPI 〈O,B, P,N〉 iff D is a minimal hitting set
for the set of all minimal conflict sets of the DPI.

Generation of a minimal conflict set is done by specific algorithms such as the
divide-and-conquer method QUICKXPLAIN (QX) [13]. In the worst case, QX requires
O(|CS| log( |O||CS| )) calls to the reasoner, where CS is the returned minimal conflict set.

The computation of diagnoses in ontology debugging systems is implemented using
Reiter’s Hitting Set HS-TREE algorithm [18]. The algorithm constructs a directed tree
from the root to the leaves, where each non-leave node is labeled with a minimal conflict
set and leave nodes are labeled by X (no conflicts) or × (pruned).

Each (X) node corresponds to a diagnosis. The subset minimality of the diagnoses
is guaranteed by the minimality of conflict sets used for labeling the nodes, the pruning
rule and the breadth-first strategy for tree generation [18]. Moreover, because of the
breadth-first strategy the diagnoses are generated in increasing order of their cardinality.
Under the assumption that diagnoses with lower cardinality are more probable than
those with higher cardinality, HS-TREE generates most probable diagnoses first.
Diagnoses discrimination. For many real-world DPIs, an ontology debugger can return
a large number of diagnoses. Each diagnosis corresponds to a different set of axioms
that must be changed in order to formulate a valid ontology. The user may extend the test
cases P and N s.t. diagnoses are eliminated, thus identifying exactly those axioms that
must be changed. That is, we assume that the user (oracle) is equipped with sufficient
knowledge about the valid ontologyO∗ such that axiomQ can be classified either as en-
tailed byO∗ or not. If a user finds that Q must be entailed byO∗, then it is added to the
set P yielding the new DPI 〈O,B, P ∪ {Q} , N〉, and to N , i.e. 〈O,B, P,N ∪ {Q}〉,
otherwise. According to Definition 1, any diagnosis of the original DPI is not a diagno-
sis of an updated DPI if it violates any of its test cases. Moreover, in case Q ∈ O, each
diagnosis of an updated DPI must comprise Q if Q ∈ N and not comprise Q if Q ∈ P .

Property 1. Given set of diagnoses D for a DPI 〈O,B, P,N〉 and an axiom Q rep-
resenting the oracle query O∗ |= Q . If the oracle gives the answer yes then every
diagnosis Di ∈ D is a diagnosis for 〈O,B, P ∪ {Q}, N〉 iff both conditions hold:

(O \ Di) ∪ B ∪ {
∧
p∈P

p} ∪ {Q} is consistent (coherent)

∀n ∈ N : (O \ Di) ∪ B ∪ {
∧
p∈P

p} ∪ {Q} 6|= n

If the oracle gives the answer no then every diagnosis Di ∈ D is a diagnosis for
〈O,B, P,N ∪ {Q}〉 iff both conditions hold:

(O \ Di) ∪ B ∪ {
∧
p∈P

p} is consistent (coherent)

∀n ∈ (N ∪ {Q}) : (O \ Di) ∪ B ∪ {
∧
p∈P

p} 6|= n
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However, many different queries might exist for some set of diagnoses |D| > 2,
in the extreme case exponentially many (in |D|). To select the best query, the authors
in [20] suggest two query selection strategies: SPLIT-IN-HALF (SPL) and ENTROPY
(ENT). The first strategy is a greedy approach preferring queries which allow to remove
half of the diagnoses in D, for both answers to the query. The second is an information-
theoretic measure, which estimates the information gain for both outcomes of each
query and returns the query that maximizes the expected information gain. The prior
fault probabilities required for evaluating the ENTROPY measure can be obtained from
statistics of previous diagnosis sessions. For instance, if the user has problems to apply
“∃”, then the diagnosis logs are likely to contain more repairs of axioms including this
quantifier. Consequently, the prior fault probabilities of axioms including “∃” should be
higher. Given the fault probabilities of axioms, one can calculate prior fault probabilities
of diagnoses as well as evaluate ENTROPY (see [20] for more details). The queries
for both strategies are constructed by exploiting so called classification and realization
services provided by description logic reasoners. Given a ontology O the classification
generates the subsumption hierarchy, i.e. the entailments O |= A v B, where B is the
most specific concept that subsumesA. Realization computes, for each individual name
t occurring in an ontology O, a set of most specific concepts A s.t. O |= A(t) (see [1]
for details).

Due to the number of diagnoses and the complexity of diagnosis computation, not
all diagnoses are exploited for generating queries but a set of (most probable) diagnoses
of size less or equal to some (small) predefined number m [20]. We call this set the
leading diagnoses and denote it by D from now on. The set of leading diagnoses D
acts as a representative of the set of all diagnoses.

The standard sequential ontology debugging process can be sketched as follows. As
input a DPI and some meta information, i.e. prior fault estimates F , a query selection
strategy sQ (SPL or ENT) and a stop criterion σ, are given. As output a diagnosis is
returned that has a posterior probability of at least 1 − σ. For sufficiently small σ this
means that the returned diagnosis is highly probable whereas all other leading diagnoses
are highly improbable.

1. Using QX and HS-TREE (re-)calculate a set of leading diagnoses D of cardinality
min(m, a), where a is the number of all diagnoses for the DPI andm is the number
of leading diagnoses predefined by a user.

2. Use the prior fault probabilities F and the already specified test cases to compute
(posterior) probabilities of diagnoses in D by the Bayesian Rule (cf. [20]).

3. If some diagnosis D ∈ D has probability greater or equal to 1 − σ or the user
accepts D as the axioms to be changed then stop and return D.

4. Use D to generate a set of queries and select the best query Q according to sQ.
5. Ask the user O∗ |= Q and, depending on the answer, add Q either to P or to N .
6. Remove elements from D violating the newly acquired test case.
7. Repeat at Step 1.

3 Interactive Direct Diagnosis of Ontologies

The novelty of our approach is the interactivity combined with the direct calculation
of diagnoses. To this end, we provide modifications to Step 1 of the diagnosis process

43



given above. Namely, we utilize an “inverse” version of the QX algorithm [13] called
INV-QX and an associated “inverse” version of HS-TREE termed INV-HS-TREE.

This combination of algorithms was first used in the earlier version of [6]. However,
we introduced two modifications: (i) a depth-first search strategy instead of breadth-first
and (ii) a new pruning rule which moves axioms from O to B instead of just removing
them from O, since not adding them to B might result in losing some of the diagnoses.
INV-QX – Key Idea. INV-QX relies on the monotonic semantics of the used knowl-
edge representation language. The algorithm takes a DPI 〈O,B, P,N〉 and a ranking
heuristic as input and outputs either one diagnosis or no-diagnosis-exists. The ranking
heuristic assigns a fault probability to each axiom in O, if this information is available;
otherwise every axiom has the same rank. In the first step INV-QX verifies if a diag-
nosis exists, next whether O is faulty and, if so, sorts all axioms in descending order.
Ordering of axioms according to their fault probabilities allows the algorithm to com-
pute an approximation of a most probable diagnosis. Next, INV-QX enters the recursion
in which O is partitioned into two subsets S1 and S2 such that S1 comprises axioms
with higher fault probabilities and S2 with lower. In our implementation O is split in
half. Then the algorithm verifies whether S1 is a candidate diagnosis of the input DPI
according to Definition 1. The algorithm continues to operate in a divide-and-conquer
strategy until a diagnosis is found. INV-QX requiresO(|D| log( |O||D| )) calls to a reasoner
to find a diagnosis D.

INV-QX is a deterministic algorithm. In order to obtain a different next diagnosis,
the DPI used as input for INV-QX must be modified accordingly. To this end we employ
INV-HS-TREE.
INV-HS-TREE – Construction. The algorithm is inverse to the HS-TREE algorithm
in the sense that nodes are now labeled by diagnoses (instead of minimal conflict sets)
and a path from the root to an open node is a partial conflict set (instead of a partial
diagnosis). The algorithm constructs a directed tree from the root to the leaves, where
each node nd is labeled either with a diagnosis D or × (pruned) which indicates that
the node is closed. For each s ∈ D there is an outgoing edge labeled by s. Let H(nd)
be the set of edge labels on the path from the root to the node nd. Initially the algorithm
generates an empty root node and adds it to a LIFO-queue, thereby implementing a
depth-first search strategy. Until the required number m of diagnoses is reached or the
queue is empty, the algorithm removes the first node nd from the queue and labels the
node by applying the following steps.

1. (reuse): if D ∩H(nd) = ∅ for some D ∈ D, then label the node with D; add for
each s ∈ D a node to the LIFO-queue and return

2. Call INV-QX(O \H(nd),B ∪H(nd), P,N) = V alue
3. (prune): if V alue = no-diagnosis-exists, then label the node with × (see Proposi-

tion 1) and return
4. (assign): Otherwise V alue is a diagnosis, label the node with D = V alue; add D

to D and add for each s ∈ D a node to the LIFO-queue.

Reuse of known diagnoses in Step 1 and the addition of H(nd) to the background the-
ory B in Step 2 allows the algorithm to force INV-QX to search for a diagnosis that is
different to all diagnoses in D. In case INV-QX returns no-diagnosis-exists the node
is pruned. Otherwise, a new diagnosis D is added to the set D and is used to label the
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node. The depth-first search strategy maintains only a set of diagnoses comprising at
most m elements. No conflicts are stored. This allows a significant reduction of mem-
ory usage by INV-HS-TREE compared to HS-TREE. The worst case space complexity
of INV-HS-TREE computing m diagnoses is linear and amounts to O(m), whereas the
worst case space complexity of HS-TREE is O(|CSmax|d) where |CSmax| is the max-
imal cardinality minimal conflict set (i.e. there is no minimal conflict set with larger
cardinality) and d is the depth were m diagnoses have been generated w.r.t. a DPI.

The disadvantage of INV-HS-TREE is that it cannot guarantee the computation of
diagnoses in a special order, e.g. minimum cardinality or maximum probability first.
INV-HS-TREE – Update Procedure for Interactivity. Since paths in INV-HS-TREE
are (1) irrelevant and need not be maintained, and (2) only a small (linear) number
of nodes/paths is in memory due to the application of a depth-first search, the update
procedure after a query Q has been answered involves a reconstruction of the tree. In
particular, by answering Q, m− k of (maximally) m leading diagnoses are invalidated
and deleted from memory. The k still valid diagnoses are used to build a new tree. To
this end, the root is labeled by any of these k diagnoses and a tree is constructed as
described above where the k diagnoses are incorporated for the reuse check. Note, the
recalculation of a diagnosis that has been invalidated by a query is impossible as in
subsequent iterations a new DPI is considered which includes the answered query as a
test case.
Example. Consider a DPI with O = {ax 1 : C v A ax 2 : C v E ax 3 :
A v ¬(C t ¬B) ax 4 : B v C ax 5 : B v ¬D} the background knowledge
B = {A(v), B(w), C(s)}, one positive P = {D(v)} and one negative N = {E(w)}
test case. For the sample DPI the set of minimal conflict sets comprises four elements
{CS1 : 〈ax 1, ax 3〉 , CS2 : 〈ax 2, ax 4〉 , CS3 : 〈ax 3, ax 5〉 , CS4 : 〈ax 3, ax 4〉}, as
well as the set of diagnoses {D1 : [ax 2, ax 3] , D2 : [ax 3, ax 4] , D3 : [ax 1, ax 4, ax 5]}.
Assume also that the number of leading diagnoses required for query generation is set
to m = 2. Applied to the sample DPI, INV-HS-TREE computes a diagnosis D1 :=
[ax 2, ax 3] returned by INV-QX(O,B, P,N) to label the root node, see Figure 1. Next,
it generates one successor node that is linked with the root by an edge labeled with
ax 2. For this node INV-QX(O \ {ax 2} ,B ∪ {ax 2} , P,N) yields a diagnosis D2 :=
[ax 3, ax 4] disjoint with {ax 2}. Now |D| = 2 and a query is generated and answered
as in Figure 1. Adding C(w) to the negative test cases invalidates D1 because of
ax 4 ∈ (O \ D1) and B(w) ∈ B, that is (O \ D1) ∪ B ∪ {

∧
p∈P p} |= C(w). In

the course of the update, D1 is deleted and D2 used as the root of a new tree. An edge
labeled with ax3 is created and diagnosis D3 := [ax 1, ax 4, ax 5] is generated. After the
answer to the second query is added to the positive test cases, D3 is invalidated and all
outgoing edge labels ax 3, ax 4 of the root D2 of the new tree are conflict sets for the
current DPI 〈O,B, {D(v), A v C} , {E(w), C(w)}〉, i.e. all leaf nodes are labeled by
× and the tree construction is complete. So, D2 is returned as its probability is 1.

4 Evaluation

We evaluated our approach DIR (based on INV-QX and INV-HS-TREE) versus the
standard technique STD [20] (based on QX and HS-TREE) using a set of ontologies
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[ax3, ax4]

[ax2, ax3]
ax2

��

〉 D:
D1 = [ax2, ax3]
D2 = [ax3, ax4]
Query: C(w)
Answer: no

〉
[ax1, ax4, ax5]

[ax3, ax4]

ax3��

〉 D:
D2 = [ax3, ax4]
D3 = [ax1, ax4, ax5]
Query: A v C
Answer: yes

→ No further minimal diagnoses, return [ax3, ax4]

Fig. 1. Identification of the target diagnosis [ax3, ax4] using interactive direct diagnosis.

created by automatic matching systems. Given two ontologies Oi and Oj , a matching
system outputs an alignmentMij which is a set of mappings (correspondences) between
semantically related entities ofOi andOj . LetE(O) denote the set of all elements ofO
for which mappings can be produced, i.e. names of concepts. Each mapping is a tuple
〈xi, xj , r, v〉, where xi ∈ E(Oi), xj ∈ E(Oj) and xi, xj are either two concepts or
two roles, r ∈ {v,≡,w} and v ∈ [0, 1] is a confidence value. The latter expresses the
probability of a mapping to be correct. Each 〈xi, xj , r, v〉 ∈ Mij can be translated to
the axiom of the form xi r xj . Let O(Mij) be the set of axioms for the alignment Mij ,
then the result of the matching process is an aligned ontologyOij = Oi∪O(Mij)∪Oj .
The ontologies considered in this section were created by ontology matching systems
participating in the Ontology Alignment Evaluation Initiative (OAEI) 2011 [5]. Each
matching experiment in the framework of OAEI represents a scenario in which a user
obtains an alignment Mij by means of some (semi)automatic tool for two real-world
ontologies Oi and Oj .

The goal of the first experiment was to compare the performance of sequential STD
and sequential DIR on a set of large, but diagnostically uncomplicated ontologies, gen-
erated for the Anatomy experiment of OAEI1. In this experiment the matching systems
had to find mappings between two ontologies describing the human and the mouse
anatomy. O1 (Human) and O2 (Mouse) include 11545 and 4838 axioms respectively,
whereas the size of the alignment M12 produced by different matchers varies between
1147 and 1461 mappings. Seven matching systems produced a consistent but incoher-
ent output. One system generated a consistent and coherent aligned ontology. However,
this system employes a built-in heuristic diagnosis engine which does not guarantee to
produce diagnoses. I.e. some axioms are removed without reason. Four systems pro-
duced ontologies which could not be processed by current reasoning systems (e.g. Her-
miT [16]) since consistency of these ontologies could not be checked within 2 hours.

For testing the performance of our system we have to define the correct output of
sequential diagnosis which we call the target diagnosis Dt. We assume that the only
available knowledge is Mij together with Oi and Oj . In order to measure the perfor-
mance of the matching systems the organizers of OAEI provided a golden standard
alignment Mt considered as correct. Similarly to OAEI evaluation, in our experiments
Mt was unavailable explicitly, e.g. in form of test cases, during a debugging session,
just as none of matching systems has any knowledge of Mt during the competition.
However, we assumed that an oracle answers debugging queries using its knowledge

1 All ontologies and source code of programs used in the evaluation can be downloaded from
http://code.google.com/p/rmbd/wiki/DirectDiagnosis. The tests were performed on Core i7,
64GB RAM running Ubuntu, Java 7 and HermiT as DL reasoner.
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of Mt. Therefore, for every alignment Oij we selected a diagnosis as target diagno-
sis Dt which is outside the golden standard, i.e. Mt ∩ Dt = ∅. Moreover, we used
Oij \ Dt to answer the queries instead of Mt to ensure that the system finds exactly
Dt and not some other diagnosis. By this procedure we mimic cases where additional
information can be acquired such that no mapping of the golden standard is removed
in order to establish coherence. We stress that this setting is unfavorable for diagnosis,
since providing more information as test cases using the golden standard would reduce
the number of queries to ask.

In particular, the selection of a target diagnosis for each Oij output by a match-
ing system was done in two steps: (i) compute the set of all diagnoses AD w.r.t. the
mappings which are not in the golden standard, i.e. O(Mij \Mt), and use Oi ∪ Oj ∪
O(Mij ∩Mt) as background theory. The set of test cases are empty. That is, the DPI is
〈O(Mij \Mt),Oi ∪ Oj ∪ O(Mij ∩Mt), ∅, ∅〉. (ii) selectDt randomly from AD. The
prior fault probabilities of mapping axioms ax ∈ O(Mij) were set to 1 − vax where
vax is the confidence value provided by the matching system.

The tests were performed for the mentioned seven incoherent alignments where the
input DPI is 〈O(Mij),Oi ∪ Oj , ∅, ∅〉 and the output is a diagnosis. We tested DIR and
STD with both query selection strategies SPLIT-IN-HALF (SPL) and ENTROPY (ENT)
in order to evaluate the quality of fault probabilities based on confidence values. More-
over, for generating a query the number of leading diagnoses was limited to m = 9.

The results of the first experiment are presented in Table 1. DIR computedDt within
36 sec. on average and slightly outperformed STD which required 36.7 sec. The num-
ber of asked queries was equal for both methods in all but two cases resulting from
ontologies produced by the MapSSS system. For these ontologies DIR required one
query more using ENT and one query less using SPL. In general, the results obtained
for the Anatomy case show that DIR and STD have similar performance in both runtime
and number of queries. Both DIR and STD identified the target diagnosis. Moreover,
the confidence values provided by the matching systems appeared to be a good estimate
for fault probabilities. Thus, in many cases ENT was able to find Dt using one query
only, whereas SPL used 4 queries on average. In the first experiment the identification
of the target diagnosis by sequential STD required the computation of 19 minimal con-
flicts on average. Moreover, the average size of a minimum cardinality diagnosis over
all ontologies in this experiment was 7. In the second experiment (see below), where
STD is not applicable, the cardinality of the target diagnosis is significantly higher.

The second experiment was performed on ontologies of the OAEI Conference bench-
mark which turned out to be problematic for STD. For these ontologies we observed
that the minimum cardinality diagnoses comprise 18 elements on average. In 11 of the
13 ontologies of the second experiment (see Table 2) STD was unable to find any di-
agnosis within 2 hours. In the other two cases STD succeeded to find one diagnosis for
csa-conference-ekaw and nine for ldoa-conference-confof. However,
DIR even succeeded to find 30 diagnoses for each ontology within time acceptable for
interactive diagnosis settings. Moreover, on average DIR was able to find 1 diagnosis
in 8.9 sec., 9 diagnoses in 40.83 sec. and 30 diagnoses in 107.61 sec. (see Column 2 of
Table 2). This result shows that DIR is a stable and practically applicable method even
in cases where an ontology comprises high-cardinality faults.
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HS-TREE INV-HS-TREE

System Scoring Time #Queries Reaction Time #Queries Reaction
AgrMaker ENT 19.62 1 19.10 20.83 1 18.23
AgrMaker SPL 36.04 4 8.76 36.03 4 8.28
GOMMA-bk ENT 18.34 1 18.07 14.47 1 12.68
GOMMA-bk SPL 18.95 3 6.15 19.51 3 5.91
GOMMA-nobk ENT 18.26 1 17.98 14.26 1 12.49
GOMMA-nobk SPL 18.74 3 6.08 19.47 3 5.89
Lily ENT 78.54 1 77.71 82.52 1 72.83
Lily SPL 82.94 4 20.23 115.24 4 26.93
LogMap ENT 6.60 1 6.30 13.41 1 11.36
LogMap SPL 6.61 2 3.17 15.13 2 6.82
LogMapLt ENT 14.85 1 14.54 12.89 1 11.34
LogMapLt SPL 15.59 3 5.05 17.45 3 5.29
MapSSS ENT 81.06 4 19.86 56.17 3 17.32
MapSSS SPL 88.32 5 17.26 77.59 6 12.43

Table 1. HS-TREE and INV-HS-TREE applied to Anatomy benchmark. Time is given in sec,
Scoring stands for query selection strategy, Reaction is the average reaction time between
queries.

In the Conference experiment we first selected the target diagnosis Dt for each
Oij just as it was done in the described Anatomy case. Next, we evaluated the per-
formance of sequential DIR using both query selection methods. The results of the
experiment presented in Table 2 show that DIR found Dt for each ontology. On aver-
age DIR solved the problems more efficiently using ENT than SPL because also in the
Conference case the confidence values provided a reasonable estimation of axiom fault
probabilities. Only in three cases ENT required more queries than SPL. Moreover, the
experiments show that the efficiency of debugging methods depends highly on the run-
time of the underlying reasoner. For instance, in the hardest case consistency checking
took 93.4% of the total time whereas all other operations – including construction of
the search tree, generation and selection of queries – took only 6.6% of time. Conse-
quently, sequential DIR requires only a small fraction of computation effort. Runtime
improvements can be achieved by advances in reasoning algorithms or the reduction of
the number of consistency checks. Currently DIR requires O(m ∗ |D| log( |O||D| )) checks
to find m leading diagnoses. A further source for improvements can be observed for
the ldoa-ekaw-iasted ontology where both methods asked the same number of
queries. In this case, ENT required only half of the consistency checks SPL did, but
an average consistency check of ENT took almost twice as long as an average one for
SPL. The analysis of this ontology showed that there is a small subset of axioms (hot
spot) which made reasoning considerably harder. Identification of such hot spots [8]
could result in a significant improvement of diagnosis runtime, since a hot spot can be
resolved by suitable queries. This can be observed in the ldoa-ekaw-iasted case
where SPL acquired appropriate test cases early and thereby found Dt faster.

In order to speed up the computation of conflicts and diagnoses we tested two pop-
ular module extraction methods [9, 3]. In ontology debugging these methods are used
as preprocessors allowing to generate a smallest possible ontology O′ ⊆ O for a faulty
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Ontology (Expressivity) 30 Diag min |D| Scoring Time #Queries Reaction #CC CC
ldoa-conference-confof 48.06 16 ENT 11.6 6 1.5 430 0.003
SHIN (D) SPL 11.3 7 1.6 365 0.004
ldoa-cmt-ekaw 42.28 12 ENT 48.6 21 2.2 603 0.016
SHIN (D) SPL 139.1 49 2.8 609 0.054
mappso-confof-ekaw 55.66 10 ENT 10 5 1.9 341 0.007
SHIN (D) SPL 31.6 13 2.3 392 0.021
optima-conference-ekaw 62.13 19 ENT 16.8 5 2.6 553 0.008
SHIN (D) SPL 16.1 8 1.9 343 0.012
optima-confof-ekaw 44.52 16 ENT 24 20 1.1 313 0.014
SHIN (D) SPL 17.6 10 1.7 501 0.006
ldoa-conference-ekaw 56.98 16 ENT 56.7 35 1.5 253 0.053
SHIN (D) SPL 25.5 9 2.7 411 0.016
csa-conference-ekaw 62.82 17 ENT 6.7 2 2.8 499 0.003
SHIN (D) SPL 22.7 8 2.7 345 0.02
mappso-conference-ekaw 70.46 19 ENT 27.5 13 1.9 274 0.028
SHIN (D) SPL 71 16 4.2 519 0.041
ldoa-cmt-edas 15.47 16 ENT 24.7 22 1 303 0.008
ALCOIN (D) SPL 11.2 7 1.4 455 0.002
csa-conference-edas 39.74 26 ENT 18.4 6 2.7 419 0.005
ALCHOIN (D) SPL 240.8 37 6.3 859 0.036
csa-edas-iasted 377.36 20 ENT 1744.6 3 349.2 1021 1.3
ALCOIN (D) SPL 7751.9 8 795.5 577 11.5
ldoa-ekaw-iasted 229.72 13 ENT 23871.5 9 1886 287 72.6
SHIN (D) SPL 20449 9 2100.1 517 37.2
mappso-edas-iasted 293.74 27 ENT 18400.3 5 2028.3 723 17.8
ALCOIN (D) SPL 159299 11 13116.6 698 213.2

Table 2. Interactive debugging with direct computation of diagnoses. 30 Diag the time required
to find 30 diagnoses, min |D| the cardinality of a minimum cardinality diagnosis, Scoring query
selection strategy, Reaction average system reaction time between queries, #CC number of con-
sistency checks, CC gives average time needed for one consistency check. Time is given in sec.

ontology O such that O′ comprises all axioms relevant to a fault and often |O′| � |O|.
The algorithm based on syntactic locality [9] was used in all STD tests since it improved
performance of conflict set computation. The second module extraction algorithm [3]
was not as effective as [9] when applied to compute conflict sets for most of our test
cases. In fact, [3] tended to generate large modules including all axioms relevant to top
classes of the hierarchy since all these classes are declared to be pairwise disjoint in all
but two Conf ontologies. The same was observed for Anat where all top classes of the
Human ontology are defined to be disjoint as well.

5 Conclusions

In this paper we presented a sequential diagnosis method for faulty ontologies which
is based on the direct computation of diagnoses. We reduce the number of consistency
checks by avoiding the computation of minimized conflict sets and by computing some
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set of diagnoses instead of a set of most probable diagnoses or a set of minimum car-
dinality diagnoses. The evaluation results presented in the paper indicate that the per-
formance of the suggested sequential diagnosis system is either comparable with or
outperforms the existing approach in terms of runtime and the number of queries in
case a ontology includes a large number of faults. The scalability of the algorithms was
demonstrated on a set of large ontologies including thousands of axioms.
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