
Integrating Technical Debt into MDE

Fáber D. Giraldo1,2, Sergio España2, Manuel A. Pineda1,
William J. Giraldo1 and Oscar Pastor2

1 System and Computer Engineering, University of Quind́ıo, Colombia
email: {fdgiraldo, mapineda, wjgiraldo}@uniquindio.edu.co

2 PROS Research Centre, Universitat Politècnica de València, Spain
email: {fdgiraldo,sergio.espana,opastor}@pros.upv.es

Abstract. The main goal of this work is to evaluate the feasibility to
calculate the technical debt (a traditional software quality approach) in
a model-driven context through the same tools used by software deve-
lopers at work. The SonarQube tool was used, so that the quality check
was performed directly on projects created with Eclipse Modeling Frame-
work (EMF) instead of traditionals source code projects. In this work,
XML was used as the model specification language to verify in Sonar-
Qube due to the creation of EMF metamodels in XMI (XML Metadata
Interchange) and that SonarQube offers a plugin to assess the XML lan-
guage. After this, our work focused on the definition of model rules as
an XSD schema (XML Schema Definition) and the integration between
EMF-SonarQube in order that these metrics were directly validated by
SonarQube; and subsequently, this tool determined the technical debt
that the analyzed EMF models could contain.

Keywords: Model-driven engineering, technical debt, EMF, SonarQube.

1 Introduction

Two representative trends for the software development industry that appeared
in the nineties were the model-driven initiative and the technical debt metaphor.
Both trends promote software quality each in its own way: high abstract levels
(models) and software process management (technical debt). However, despite
the wide exposition of these trends in the literature, there are not more indica-
tions about the combination of them into software development scenarios; each
initiative is implemented in a separated way.

In traditional software development projects (those involving manual pro-
gramming), technical debt is mainly focused in quality assurance processes over
source code and related services (e.g. common quality metrics are defined over
source code). However, model-driven engineering (MDE) promotes for modelling
instead of programming [1]. A review of the literature reveals that there is cur-
rently no application of the technical debt concept to environments outside the
traditional software development. There exist approaches to the measurement
of model quality [7][8][9][10], but these do not include technical debt calculus.

146 Pre-proceedings of CAISE’14 Forum

Therefore, we claim that dealing with technical debt in MDE projects is an open
problem.

Two issues pose challenges to the inclusion of technical debt into MDE. (i)
Different authors provide conflicting conceptions of quality in model manage-
ment within MDE environments[5]. (ii) The MDE literature often neglects tech-
niques for source code analysis and quality control3. Therefore, in model-driven
developments it is difficult to perform an analysis of the state of the project that
is important for technical debt management: establishing what has been done,
what remains to be done, how much work has been left undone. Also, other
specific issues that belong to model theory such as: number of elements in the
metamodel, coverage for the views, complexity of the models, the relationship
between the abstract syntax and the concrete syntax of a language, quantity of
OCL verification code, among others, contribute to increase the technical debt
in model-driven projects.

The main contributions of this paper are the following: (i) A demonstration
of a integration between model-driven and technical debt tools for supporting
a technical debt calculus process performed over conceptual models. (ii) The
operationalization of a recognized framework for evaluating models.

2 Implementation of a technical debt plugin for EMF

We implemented an Eclipse plugin for integrating the EMF enviroment with
SonarQube; so that, results of the technical debt can be shown directly on
the Eclipse work area instead of changing the context and opening a browser
with the SonarQube report. We used configuration options belonging to EMF
XMIResource objects to export the XMI file as an XML without the specific
XMI information tags.

2.1 Definition of an XSD for SonarQube

One of the most critical issues in a technical debt program is the definition of me-
trics or procedures for deducting technical debt calculations; in works like [4][6]
it is highlighted the absence of technical debt values (established and accepted),
and features such as the kinds of technical debt. Most of the technical debt
calculation works are focused on software projects without an applied model-
driven approach; some similar works report the use of high level artifacts as
software architectures[12], but they are not model-driven oriented. Emerging
frameworks for defining and managing technical debt [13] are appearing, but
they focus on specific tasks of the software development (not all the process
itself).

3 Neglecting the code would seem sensible, since MDE advocates that the model is
the code [2]. However, few MDE tools provide full code generation and manual
additions of code and tweakings are often necessary.

146

Integrating Technical Debt into MDE 147

From one technical perspective, the SonarQube tool demands an XSD (XML
Scheme Document) configuration file that contains the specific rules for valida-
ting the code; or in this case, a model. Without this file, the model could be
evaluated like a source code by default. In order to define these rules, we chose
one of the most popular proposals for validating models (Physics of notations of
Moody [11]) due to its relative easiness to implement some of its postulates in
terms of XSD sentences.

In the case of this work, visual notation was taken as the textual information
managed by XMI entities from EMF models (text are perceptual elements too),
focusing that each item meets syntactic rules to display each information field
regardless about what is recorded as a result of the EMF model validation. The
analysis does not consider the semantic meaning of the model elements to be
analyzed.

The operationalization of Moody principles over the XSD file posteriorly
loaded in SonarQube was defined as follows:

– Visual syntax - perceptual configuration: in the XSD file, it is ensured that all
elements and/or attributes of the modelled elements are defined according
to the appropriate type (the consistence between the values of attributes and
its associated type is validated).

– Visual syntax - attention management: a validation order of the elements is
specified by the usage of order indicadors belonging to XML schemes.

– Semiotic clarity - redundant symbology: a node in the model can only be
checked by an XSD element.

– Semiotic clarity - overload symbology: an XSD element type only validates
a single model node type.

– Semiotic clarity - excess symbolism: a metric to validate that there are no
blank items was implemented (for example, we could create several elements
of Person type, but its data does not appear).

– Semiotic clarity - symbology deficit: a validation that indicates the presence
of incomplete information was made (e.g., we could have the data of a Person
but we don’t have his/her name or identification number). For this rule, we
made constraints with occurrence indicators to each attribute.

– Perceptual discriminability: in the XML model, nodes must be organized in
a way that they can be differentiated, e.g., one Project element does not
appear like a Person element. This is ensured by reviewing in the XSD that
it does not contain elements exactly alike, and in the same order.

– Semantic transparency: this was done by putting restrictions on the names
of the tags, so that the tags correspond to what they must have, e.g, a data
label must be of data type.

– Complexity management: this was done by the minOccurs and maxOccurs
occurrence indicators. With these indicators it is possible to define how many
children one node can have.

– Cognitive integration: this was done using namespaces in the XSD file, so
that it is possible to ensure the structure for the nodes independent from
changes in the model design.

147

148 Pre-proceedings of CAISE’14 Forum

<choice maxOccurs= 5 minOccurs= 0 >

 <element name= Persons type= Person />

 <element name= Projects type= Project />

</choice>

Complexity

management

<complexType name= Person >

<attribute name= lastname type= string />

<attribute name= firstname type= string />

<complexType>

<complexType name= Project >

<attribute name= shortname type= string />

<attribute name= longname type= string />

<complexType>

Perceptual

discriminability

<xs:simpleType Name= NoNullString >

 <restriction base= String >

 <minLength value= 1 />

 </restriction>

</simpleType>

Semiotic clarity –

symbology deficit

Fig. 1. Mapping between some Moody principles to XSD code.

– Dual codification: this was done by measuring the quantity of commented
code lines with respect to the XML lines that define the elements of the
model.

– Graphic economy: we established a limit for different items that can be han-
dled in the XSD, and reporting when different elements are found marking
the mistake when these data types are not found in the schema.

– Cognitive fit: this was done by creating several XSD files where each one is
responsible for reviewing a specific view model.

Figure 1 exposes a portion of the XSD code implemented for some Moody
principles.

2.2 Verification of technical debt from EMF models

In order to demonstrate the integration of both tools (EMF-SonarQube), a sam-
ple metamodel (Figure 2) was made in EMF4. We introduce some errors like
capital letters, blank spaces, and others, to evidence abnormalities not covered
with model conceptual validation approaches like OCL.

Once the validation option had been chosen (by the SonarQube button or
menu), we obtain a report similar to Figure 3. Part A indicates the number of
lines of code that have been tested, comment lines, and duplicate lines, blocks
or files. Also, part B of this figure reports the total of errors that contain the
project (in this case the EMF model), as well as the technical debt graph (part
C), which shows the percentage of technical debt, the cost of repair, and the

4 this metamodel was extracted from a web tutorial about EMF; source:
http://tomsondev.bestsolution.at/2009/06/06/galileo-emf-databinding-part-1/

148

Integrating Technical Debt into MDE 149

Fig. 2. Sample metamodel implemented over EMF.

Fig. 3. SonarQube screen report loaded into EMF work area

number of men needed to fix errors per day (this information was not configured
for this case).

SonarQube offers an issues report where it indicates the number of errors
found; and consequently, the error list distributed in order of importance from
highest to lowest:

– Blocker: they are the most serious errors; they should have the highest pri-
ority to review.

149

150 Pre-proceedings of CAISE’14 Forum

– Critical: they are design errors which affect quality or performance of the
project (model errors can be classified in this category).

– Major: although these errors do not affect performance, they require to be
fixed for quality concerns.

– Minor: they are minor errors that do not affect the operation of the project.
– Info: they are reporting errors, not dangerous.

Fig. 4. SonarQube issues report of technical debt in EMF.

Figures 4 and 5 present the reports about technical debt errors detected
over the sample model. In the first place, an error category was chosen. For
the respective category, the error list associated is show in detail posteriorly.
Intentionally, we introduced errors over the XML information of the model to
test the respective detection by SonarQube according with the rules defined in
the XSD file from the Moody proposal.

Conclusions

In this work we show the technical feasibility to integrate a technical debt tool
like SonarQube with a model-driven development enviroment such as the Eclipse
modelling framework. We present an example of technical debt validation applied

150

Integrating Technical Debt into MDE 151

Fig. 5. Example of error detected by SonarQube.

over a sample metamodel implemented for testing purposes. Thereby, we demon-
strate the technical feasibility for measuring any artefact used in an model-driven
engineering process [3]. However, the main challenge is the definition of the model
quality metrics and the operationalization of the model quality frameworks re-
ported in terms of expressions that can generate metrics, and its association with
a model-driven development process.

Acknowledgments

F.G, thanks to Colciencias (Colombia) for funding this work through the Col-
ciencias Grant call 512-2010, and the Pan-American Software Quality Institute
(PASQI) for the participation and feedback received in the PASQI Workshop
2013. F.G. and M.P. thanks to David Racodon (david.racodon@sonarsource.com)
and Nicla Donno (nicla.donno@sonarsource.com) for their suppport with the
SQALE plugin for SonarQube. This work has been supported by the Spa-
nish MICINN PROS-Req (TIN2010-19130-C02-02), the Generalitat Valenciana
Project ORCA (PROMETEO/2009/015), the European Commission FP7 Project
CaaS (611351), and ERDF structural funds.

References

1. Marco Brambilla, Jordi Cabot, and Manuel Wimmer. Model-Driven Software En-
gineering in Practice. Synthesis Lectures on Software Engineering. Morgan &

151

152 Pre-proceedings of CAISE’14 Forum

Claypool Publishers, 2012.
2. David W. Embley, Stephen W. Liddle, and Oscar Pastor. Conceptual-model pro-

gramming: A manifesto. In David W. Embley and Bernhard Thalheim, editors,
Handbook of Conceptual Modeling, pages 3–16. Springer Berlin Heidelberg, 2011.
ISBN 978-3-642-15864-3.

3. Bertoa Manuel F. and Vallecillo Antonio. Quality attributes for software meta-
models. In Proc. of 13th TOOLS workshop on quantitatives approaches in object-
oriented software engineering. QAAOSE 2010. July 2nd. Málaga, Spain, February
2010.

4. D. Falessi, M.A. Shaw, F. Shull, K. Mullen, and M.S. Keymind. Practical consider-
ations, challenges, and requirements of tool-support for managing technical debt.
In Managing Technical Debt (MTD), 2013 4th International Workshop on, pages
16–19, 2013.

5. Peter Fettke, Constantin Houy, Armella-Lucia Vella, and Peter Loos. Towards the
reconstruction and evaluation of conceptual model quality discourses - methodical
framework and application in the context of model understandability. In Ilia Bider,
Terry A. Halpin, John Krogstie, Selmin Nurcan, Erik Proper, Rainer Schmidt,
Pnina Soffer, and Stanislaw Wrycza, editors, BMMDS/EMMSAD, volume 113 of
Lecture Notes in Business Information Processing, pages 406–421. Springer, 2012.
ISBN 978-3-642-31071-3.

6. C. Izurieta, I. Griffith, D. Reimanis, and R. Luhr. On the uncertainty of techni-
cal debt measurements. In Information Science and Applications (ICISA), 2013
International Conference on, pages 1–4, 2013.

7. John Krogstie. Quality of models. In Model-Based Development and Evolution of
Information Systems, pages 205–247. Springer London, 2012. ISBN 978-1-4471-
2935-6.

8. C.F.J. Lange and M.R.V. Chaudron. Managing Model Quality in UML-Based
Software Development. In Software Technology and Engineering Practice, 2005.
13th IEEE International Workshop on, pages 7–16, 2005. LCCN 0029.

9. Beatriz Maŕın, Giovanni Giachetti, Oscar Pastor, and Alain Abran. A quality
model for conceptual models of mdd environments. Adv. Soft. Eng., 2010:1:1–1:17,
January 2010.

10. Parastoo Mohagheghi and Vegard Dehlen. Developing a quality framework for
model-driven engineering. In Holger Giese, editor, Models in Software Engineering,
volume 5002 of Lecture Notes in Computer Science, pages 275–286. Springer Berlin
Heidelberg, 2008. ISBN 978-3-540-69069-6.

11. Daniel L. Moody. The ’́physicś’ of notations: Toward a scientific basis for con-
structing visual notations in software engineering. IEEE Transactions on Software
Engineering, 35(6):756–779, 2009.

12. R.L. Nord, I. Ozkaya, P. Kruchten, and M. Gonzalez-Rojas. In search of a met-
ric for managing architectural technical debt. In Software Architecture (WICSA)
and European Conference on Software Architecture (ECSA), 2012 Joint Working
IEEE/IFIP Conference on, pages 91–100, 2012.

13. Carolyn Seaman and Yuepu Guo. Chapter 2 - measuring and monitoring technical
debt. volume 82 of Advances in Computers, pages 25 – 46. Elsevier, 2011.

152

