
Hunting answers with RAPOSA (FOX)

Lúıs Sarmento
Faculdade de Engenharia da Universidade do Porto & Linguateca

las@fe.up.pt

Abstract

In this paper, we will present RAPOSA, an early prototype of a question answering
system for Portuguese that heavily relies on a named-entity recognition (NER) system
to discover answers for several types of factoid and simple definition questions. We
will describe the architecture of RAPOSA and explain the role of the NER system in
the question answering procedure. We will also compare and discuss the results of the
two runs submitted to the QA@CLEF05 evaluation track, each one using a different
question answering strategy. We will analyze the major sources of error and we will
then propose several solutions to solve the most severe problems.

Categories and Subject Descriptors

H.3 [Information Storage and Retrieval]: H.3.1 Content Analysis and Indexing; H.3.3 Infor-
mation Search and Retrieval; H.3.4 Systems and Software; H.3.7 Digital Libraries; H.2.3 [Database
Managment]: Languages—Query Languages

General Terms

Measurement, Performance, Experimentation

Keywords

Question answering, named-entity recognition

1 Introduction

RAPOSA (FOX) is a prototype question answering (QA) system for Portuguese that is being de-
veloped in Faculdade de Engenharia da Universidade do Porto as a subsidiary of a larger project
that aims at developing wide-scope semantic analysis tools for Portuguese. The RAPOSA project
was started mainly because the question answering task provides a good application scenario for
validating the capabilities of our semantic analysis tools, and also for guiding its future develop-
ments.

The version of RAPOSA that participated in the QA@CLEF06 track is still very simple and
is able to address only a very limited type of questions, mainly simple factoid questions that
involve people, locations, dates and quantities. Contrary to other question answering systems
for Portuguese that make use of extensive linguistic resources [2] or deep parsing techniques [8],
RAPOSA uses shallow parsing techniques and relies on the semantic annotation produced by
our named entity recognition (NER) system SIEMÊS [9], one of the key components of the suite
of analysis tools being currently developed. As we will explain more thoroughly in the next
sections, SIEMÊS is used to tag a list of text snippets where candidate answers is believed to be
found, extracted from the answer collection. For the type of questions being currently addressed,



RAPOSA assumes that the correct answer is one of the entities tagged by SIEMÊS, and its job is
thus to select the right one(s). SIEMÊS is also used during the question parsing stage in order to
identify relevant entities that may exist in the question. Other similar approaches that also heavily
rely on named-entity recognition as the major source of semantic information are described in [3]
and [12].

As a result of its dependency to SIEMÊS, RAPOSA is currently limited to answer questions
that involve factoids and simple definitions, although the number of different entities that SIEMÊS
is able to tag is relatively high (more than 100). Therefore, RAPOSA is not able to answer list
questions and definition / ”how to” questions that involve an explanation sentence. SIEMÊS
does not yet resolve co-reference and anaphoric references, which is also a severe limitation when
addressing questions whose answer can not be explicitly found in the scope of one sentence.
However, RAPOSA has two different search strategies, one of which allows coping with some of
these limitations.

The positive side of this dependency is that we have now an additional method for testing
SIEMÊS through a user-centered application. This indirect evaluation method is complementary
to the direct evaluation information that may be obtained by participating in NER evaluation
campaigns for Portuguese [11], and is especially interesting because it re-focus the task on practical
needs rather than on a definition. Question answering imposes some very practical requirements
over the named-entity recognition task (and semantic analysis in general) that helped us defining
new goals for SIEMÊS. During the development of RAPOSA, we came across with some apparently
simple questions that led us to improving SIEMÊS with new sets of rules for tagging elements that
are not usually considered named-entities but are extremely useful for finding anwers to certain
types of questions (namely those involving people).

2 The architecture of RAPOSA

The architecture of RAPOSA follows the standard approach, and consists of a pipeline of 4 blocks,
each one responsible for a different stage in the question answering problem:

1. Question Parser: receives a question in raw text, identifies the type of question, its argu-
ments, possible restrictions and other relevant keywords, and transforms it to a canonical
form. The admissible types of answer for the question are also identified at this stage.

2. Snippet Extractor: this block is responsible for retrieving snippets of texts (currently sen-
tences) from the answer collection, using the information present in the canonical form of
the question produced, by the previous block. The Snippet Extractor may return several
text snippets.

3. Candidate Generator: after tagging the previously found snippets with SIEMÊS, this block
tries to find candidate answers using two optional strategies. Candidate answers are re-
stricted to the set of admissible types found by the Question Parser. Several candidate
answers may be found

4. Answer Selector: this block select one answer from the list of candidates found by the
previous block. At the moment selection is being made based on redundancy, i.e., on the
number of supporting snippets for each candidate.

Note that SIEMÊS is used in two of these blocks, namely in the Question Parser and in the
Candidate Generator block. All the four blocks are still in a very preliminary stage of development.

2.1 The Question Parser

The Question Parser operates in two steps. First it invokes SIEMÊS in order to identify named
entities in the question, namely people, places, organizations, dates, titles (eg: book titles), which
are usually either the arguments of the question to be parsed or some important restrictions.



SIEMÊS also helps to find other important elements such as for example ergonyms, personal titles
and jobs, that are relevant for parsing the question. In fact, this last funcionality was added to
SIEMÊS during the developement of RAPOSA motivated by the need to produce a better parse
for the questions.

In a second step, the Question Parser uses a set of 25 rules to analyze the type of question and
to identify its elements. After the type of question has been found, these rules try to identify the
arguments of the question, argument modifiers, temporal restrictions and other relevant keywords
that may represent good clues for retrieving snippets from the answer collection.

Currently, these rules are only able to address some types of questions, namely those that refer
to people (”Quem...?” / ”Who...?”), to places (”Onde...?” / ”Where...?”), to time (”Quando...?”
/ ”When...?” or ”Em que ano...?” / ”In what year..?”) and to quantities (”Quanto...?” / ”How
many...?”). Among these, a greater care has been given to questions refering to people, while for
the others we still do not have enough rules to parse all the possibilities.

Depending of the type of question, the Question Parser also generate a list of admissable answer
types that are compatible with the tagging capabilites of SIEMÊS. For example, a ”Onde...?” /
”Where...?” question one expects the answer to be a location, while for a ”Quem...acção?” /
”Who...action?” the admissible answer may be a person, a group or an organization, which are
all types of entities that SIEMÊS is able to classify. After all the mentioned information has been
identified, the question is transformed into a canonical form that can be easily manipulated by
subsequent blocks.

With all these parsing limitations, RAPOSA was only able to address a rather small number
of the 200 questions test set given for CLEF06. We will explain the experimental scenario in later
sections, but for illustrating this point we may say that RAPOSA tried to answer only 34 questions
in the first run submitted and 74 in the second run submitted, after relaxing several processing
restrictions.

2.2 The Snippet Extractor

The Snippet Extractor queries a MySQL database (http://www.mysql.org) that stores the entire
answer collection to obtain a set of text snippets where the answer to a given question might be
found. Currently, the answer collection is stored in raw text, one sentence per tuple and the text is
indexed using the fulltext index provided by MySQL database engine. This is a simple approach
that relies on the text indexing and search capabilities provided by the MySQL engine.

The Snippet Extractor receives the canonical form of the question and produces a SQL query
to search the database. Interesting snippets (currently a snippet is equivalent to a single sentence)
are those that contain all the arguments in the question (which most of the times are multi-
word expressions), and that may also contain some or all argument modifiers and other keywords
previously identified during the question parsing stage. Temporal restrictions are still ignored.
The Snippet Extractor may optionally perform a ”dumb” stemming procedure over all words used
in the query except the words the belong to the arguments to increase the number of snippets
found, although we were not able to assess the impact of this option in the global performance of
RAPOSA.

Blindly relying on the MySQL indexing mechanism, as we did, also brings some problems.
One of those problems is that the default options of the MySQL exclude from the index any
word with less than 4 charecters, even if it is rare enough to be possibly considered a content
word. There are however many important words in Portuguese with only three characters that
might be relevant to factoid questions such as some family relations (”pai”, ”mãe”, ”tia”, ”avô”...)
locations (”rio”, ”rua”, etc...), proper names (”Rui”, ”Ana”, ”Sá”, etc) and many other common
words (”cor”, ”mil”, sul”,...) or acronyms. In some cases, these words are automatically ignored
by MySQL when performing a search using the fulltext search functions, which usually results
in a very large number of noisy text snippets because the smaller words are not used to restrict
the search. This problem can be avoided by performing a sequential scan search with a regular
expression, but this option becomes impractical for large collections due to performance issues. A
more ”content-aware” indexing mechanism is needed in order to effectivelly deal with this problem.



Eventually, the Snippet Extractor may be unable to find in the document database any match
for the query produced. At the moment, the Snippet Extractor does not try to expand or refor-
mulate the query - which could helpful in some cases - and RAPOSA returns NIL as the answer
for the question. RAPOSA gives a relatively high value of confidence to that NIL answer because
it believes that there is not enough information in the document collection to produce the ap-
propriate answer. The value of confidence given is fixed to 1.0 but a more reliable evaluation of
confidence could eventually be performed based on the number of words in the query and on the
result of shorter queries.

In this version of RAPOSA we decided not to pre-process the entire answer collection with
SIEMÊS but, instead, we opted to store the collection in raw text and invoke SIEMÊS for each text
snippet retrieved. Preprocessing the collection with SIEMÊS would allow us to obtain text snippets
already tagged with semantic information, and to query the collection using both keywords and
tags. It would also allow us to find answers more quicky and efficiently because invoking SIEMÊS
on all snippets found for a given question implies a significant overhead in processing times.
However, since RAPOSA is mainly intended to help the development of SIEMÊS (and other
semantic tools), it is much more convenient to perform the named-entity recognition procedure
for each question, which allows us to imediatly observe the impact of the changes in SIEMÊS over
the final results. In future versions of RAPOSA, when the performance of SIEMÊS increases to a
higher level, we may opt to pre-proccess the entire test collection and develop an alternative text
indexing procedure.

2.3 The Candidate Generator

The Candidate Generator takes as input the question in canonical form and the list of snippets
given by the Snippet Extractor. The Candidate Generator then invoques SIEMÊS for each snippet
to obtain information about the named-entities and other related elements. RAPOSA assumes
that the answer to the question is one of the elements tagged by SIEMÊS, and since the type of
admissable answers for the question at stake has already been determined by the Question Parser,
the answer is usually already quite constrained.

The Candidate Extractor may use one of two available strategies to find candidate answers.
The first one is based on a set of context evaluation rules. For each tagged text snippet, RAPOSA
tries to match certain contexts around the position of argument (note that the argument of the
question must be present in the text snippets). For example, for a question like ”Who is X?” with
X being the name of a person, the answer is expected to be a job title or an ergonym so that
checking the existence of those elements around ocorrences of X in certain contexts might lead to
the candidate answer. In this case, the rule might check for patterns like ”... < job title > X ...”
or ”... X, < job title > ...” with < job title > standing for the element in the text snippet tagged
by SIEMÊS as a job title. RAPOSA has currently 25 of such rules for dealing with question of
the type ”Who is < job title >?” and 6 rules to deal with questions of the type ”Who is < person
name >?”.

In this version of RAPOSA we were not able to develop similar rules for dealing with other
types of questions, so we developed a second strategy for finding candidate answers in the tagged
text snippets. This is a much simpler strategy that collects as a possible answer any element
tagged with a semantic category that is considered an admissable answer to the question at stake.
For example, in answering a question like ”When was < EVENT > ?” the Candidate Generator
will collect all elements tagged as < date > in the text snippets (which match the string < EVENT
>) provided by the Snippet Extractor. Although this strategy may potentially be very noisy, since
more than one compatible element may exist in the snippet, one expects the correct answer to be
one of the most frequent candidates extracted, provided that there is enough redundancy in the
answer collection. We call this simple type checking strategy.

The output of the Candidate Generator, using any of the two strategies, is a set of tuples
containing the candidate answer and the text snippets as the supporting evidence for the answer.
This list may be rather long, especially when the second strategy is employed. There is also
the possibility of not finding any candidate answer in the text snippets given by the Snippet



Extractor. In those cases, RAPOSA produces a NIL answer for the question, but it gives a low
value of confidence to the answer (0.25) to acknowledge the fact that such result is possibly due
to the lack of better analysis capabilites.

2.4 The Answer Selector

The job of the Answer Selector is (i) to choose one of the candidate answers produced by the
Candidate Generator, (ii) to select the best supporting text snippets and (iii) to assign a confidence
value to that answer. For now, RAPOSA is not dealing with list questions, so answers are expected
to have only one element (factoid or simple definition). The job of the Answer Selector is in
theory quite complex, especially the task of deciding the best supporting snippets and giving an
appropriate confidence value to the answer. But, again, the strategies employed in the current
version of RAPOSA are very simplistic.

For deciding which of the candidates is the best answer, the Answer Selector calculates the
number of supporting snippets for each candidate and chooses the one with the higher number of
snippets. When candidates are generated using the context matching strategy of the Candidate
Generator, this simple procedure is expected to lead to good results since those rules tend to
be quite precise in choosing candidates, and it is quite difficult to generate wrong candidates
with the same number of supporting snippets. Also, if the candidate is generated using the
simple type checking strategy, and assuming the answer collection has enough redundancy, the
best snippet-supported candidate is probably the right answer. However, using this strategy, it is
quite possible that, due to lack of redundancy in the answer collection, the Candidate Generator
obtains more than just one ”top” candidate of the same type, all supported by the same number
of snippets, possibly only one snippet. In those cases the Answer Selector chooses one of the
candidate randomly, which obviously leads to many incorrect answers.

Choosing the supporting snippets and determining the confidence level of the answer is also
done in a simplistic way. Chosing the ”best” supporting snippets is quite straight forward when
the Candidate Generator uses the context matching strategy: supporting snippets match a very
specific patterns, and almost always have explicit information for supporting the answer. However,
if the candidate answers are obtained using the simple type checking strategy, the Answer Selector
has no way, at the moment, of deciding if a given snippet (containg both the argument and the
chosen candidate answer) really supports the answer. So, in both cases, the procedure is simply to
randomly choose up to 10 supporting snippets associated with the chosen answer. The confidence
level assigned to the such an answer is 1.0, which obviously disregards important information such
as the number of alternative candidates available and the corresponding number of supporting
snippets. Improving the way the confidence level is assigned is a matter of future work.

3 Results in CLEF06

We were able to submit two runs. The first run, R1, was configured to extract candidate answers
using only the context matching rules, i.e. using the most restrictive and hopefully the highest
precision strategy of the Candidate Extractor. Because we were only able to develop rules for
”Who is < job title >?” and ”Who is < person name >?” questions, for R1 only 34 questions
from the 200 question set were addressed. The second run, R2 applied the same strategy for the
questions the R1 was attempting to answer but it used the more relaxed type checking strategy
for trying to answer place (”Onde...?” / ”Where...?”), time (”Quando...?” / ”When...?” or ”Em
que ano...?” / ”In what year..?”) and quantities (”Quanto...?” / ”How many...?”) questions. Using
this combined strategy RAPOSA tried to answer 74 questions in run R2.

The results we present in the following tables refer only to the questions that RAPOSA has
tried to answer and therefore diverge from the official results given by the QA@CLEF organization.
We have manually checked the corresponding answers against the list of correct answer given by
the organization. We considered an answer correct if and only if it exactly matches the answer
given in the answer list. Using this criteria we considered all partially correct answers as incorrect,



type correct incorrect
∑

ANS 5 11 16
NUL 1 14 15
NUL2 0 3 3∑

6 28 34

Table 1: Results of run R1

type correct incorrect
∑

ANS 10 24 34
NUL 7 29 36
NUL2 0 4 4∑

17 57 74

Table 2: Results of run R2

as well as answers that contained more information that what it was required (e.g: a complete
date instead of just the year). We will make the distinction between three types of cases among
the questions that RAPOSA tried to answer:

1. ANS: questions that were answered and supported by a certain number of text snippets.

2. NIL: questions to which RAPOSA did not find any answer after analysing snippets provided
by the Snippet Extractor.

3. NIL2: questions to which RAPOSA was not able to find any snippet in the document
collection to search for the answer

We used the confidence values assiged to answers to identify these three possible cases. The
results of both runs are given in Table 1 and Table 2. Precision values for both runs are given in
Table 3.

3.1 Discussion of the results

The results in Table 1 and 2 show several interesting differences between runs R1 and R2. RAPOSA
was able to answer more than twice as many questions in run R2 than in R1. At first sight, it seems
surprising that run R2 obtained much better global precision values than R1 - 0.25 against 0.18 -
since R1 supposedly used a much more precise strategy. In fact, if we consider just the questions
that RAPOSA was able to answer, run R1 exhibits a slightly better perfomance than R2 - 0.31
against 0.29 - but this difference is not enough to compensate for the extremely low cability of
R1 in obtaining answers after analysing the text snippets given by the Snippet Extractor. This
means that the context analysis rules we developed apply only to a very limited number of cases,
so that in almost half the cases RAPOSA can not extract any candidate answer with them.

On the other hand, the rather simpler type checking strategy that was combined in R2 was
able to maintain a value of precision comparable to run R1 for those questions to which an answer
was found (ANS). However, run R2 was much more efficient in avoiding false negatives, i.e., in

R1 R2
P(ANS) 0.31 0.29
P(NUL) 0.07 0.19
P(NUL2) 0 0
P(

∑
) 0.18 0.23

Table 3: Partial and Global Precision values for runs R1 and R2



assigning a NUL answer when there was in fact one answer in the collection. Apparently, this
simpler strategy provides a better recall without comprimissing to much the precision, by being
more efficient in avoiding the false negatives. But one has to consider that the chance of avoiding
false negatives may be easier for questions that refer to dates and quantities because identifying
and classifying these type of expressions is easier than for other named-entities (namely people,
locations, organizations, book titles, etc.).

Still, it is rather suprising to see how low the precision of answers obtained using the context
analysis rules actually is: 0.31. Looking in more detail at the 11 wrong answers produced by
RAPOSA in run R1, we observe that most of the incorrect answers have only one supporting
snippet and, except for one case, the problem does not have to do directly with the context
analysis rules. In two of the cases the problem comes from SIEMÊS, which was not able to
correctly delimit the elements to be extracted. For example, in one case the correct answer was
”primeiro imperador da China” but SIEMÊS only chunked ”imperador da China”. In two other
cases, the problem came from the inability of RAPOSA to choose the ”best” answer from the set
of candidates generated, all of them supported by the same number of snippets (only one). In
such cases, RAPOSA chooses randomly among the alternatives, and since some might be wrong,
incomplete or under-specified, there is a great probability of choosing a wrong answer. The problem
here is clearly with the Answer Selector component that is not able to differentiate among these
answers.

In other cases, the supporting snippet obtained (again usually only one) is only slightly related
to the topic of the question and is actually misleading for the context analysis rules. This may
happen for several reasons, but an important factor is related to the rather naive text indexing
capabilities provided by MySQL (at least for Portuguese) that, when combined with the rudimen-
tary stemming procedure we implemented produces many spurious snippets. Since some of the
rules are less restrictive than others, some false candidates are thus generated. This shows the
importance of the Snippet Extractor component that needs to be able to obtain more relevant
snippets for subsequent analysis.

If we analyse the answers from run R2 in more detail it is possible to see that a about 20% of
the incorrect answers result from incorrently choosing the answer candidate among those elements
in the snippet that in fact have the correct admissable semantic type. For example, RAPOSA
answered ”Lisboa” to the question ”Onde morreu Kurt Cobain?” / ”Where did Kurt Cobain
die?” because there was a reference to Seattle and to Lisboa in the snippet extracted. Although
each one of the admissable elements was correctly tagged and generated an answer candidate, the
Answer Selector decided randomly, ignoring any possible semantic or heursitic information (such
as preferring the candidate that is closer to the argument in the text snippet).

Another very frequent type of errors in run R2 reveals yet one more weakness of the Snippet
Extractor component, that could be easily avoided. After querying the database based on keywords
(i.e. the argument and other words in the question) the Snippet Extractor does not check the
keywords in the sentence to make sure that they actually refer to expected semantic type. For
example, if the argument in the question refers to place, we would want to make sure that the
snippets retrived using the keywords actually refer to the argument as a place, and not to any of
the possible homographs. The problem with homography is especially severe for question involving
places or people because it is very common for people to have surnames that are also names of
places. This led to some unexpected answers simply because the Candidate Generator was looking
at the wrong text snippets. Most of other errors in R2 came again from a combination of various
problems in Snippets Extractor, which collects many irrelevant snippets, with the inability of the
Answer Selector to choose the ”best” candidate.

3.2 Some preliminary conclusions

After briefly analyzing the results of both run, R1 and R2, there are some preliminary conclusion
that can be drawn. First of all, and rather surprinsingly, the simple type checking strategy is
able to provide a comparable performance to the context checking strategy, for a much wider set
of question types. Apparently, this is the result of the superior capability of the type checking



strategy in avoiding false negatives (the NIL answer when there is in fact one answer in the
collection) in many cases. However, for those questions that RAPOSA is able to answer (the ANS
line in tables 1, 2 and 3), it is not clear if the tight difference between the precision of R1 and R2
is due of the flexibility of the type checking strategy or if it is due to the tight bottleneck imposed
by the Snippet Extractor and, especially, the Answer Selector.

Another conclusion is that any problems that may exist in the Answer Selector become more
evident when RAPOSA tries to address questions for which there is not enough redundacy in the
answer collection. The Answer Selector may provide a suitable answer whenever the redundancy is
high enough to promote one of the candidates, but it is extremelly poor in deciding among equally
supported candidates, usually by only one text snippet. This suggests that one way of helping the
Answer Selector (besides making it more intelligent) is to try to obtain additional evidence from
other large text collection available (for example the WPT03 web collection, or the Wikipedia).

Finally, it is obvious that the Snippet Extractor needs to be improved because spurious snippets
were the cause of many wrong answers. This will require a much better indexing mechanism that
does not ignore certain short yet important words, and an appropriate query expansion method
that is capable of performing stemming in a safer way, or of substituting words by semantically
similar ones (except for the argument).

4 Improving RAPOSA

There is plenty of room for improvement in RAPOSA, and it may be achieved through two
complementary ways.

First of all, we would like to improve RAPOSA automatically just by improving SIEMÊS. This
is in fact related to our main concern, which is using the question answering scenario to motivate
the development of our analysis tools. At this level, RAPOSA will immediately benefit if SIEMÊS
improves its capability to identify entities with several modifiers, like ”primeiro imperador da
China”. In this particular case, it would be quite easy to improve SIEMÊS with immediate impact
on RAPOSA. But processing references to people like ”o vice primeiro ministro russo responsável
pelas Nacionalidades” (”the russian vice prime-minister responsible for the Nationality Affairs”),
or to locations like ”a 900 quilómetros a norte dos Açores” (”at 900 kilometers north from Azores”)
or to time/date like ”nos dois primeiros meses de 1994” (”in the first two months of 1994”) seems
more complex because of the various internal dependencies involved. Since SIEMÊS is still unable
to process these kind of structures, this is a good opportunity to prepare it for dealing with such
dependencies, and improve RAPOSA almost automatically as a result.

One of the weakest points in RAPOSA is the Snippet Extractor, that produced many spurious
snippets. One of the reasons for that to happen was that our stemming procedure too basic,
because it simply replaced the last 2 or 3 characters of a word for a wildcard. The reason we
used our stemming procedure in the first place (even knowing it was rudimentary) was because
it seemed unrealistic to use only the exact forms of the words in the question to retrieve the
snippets. However, the way stemming was performed resulted in an over-generalization of the
queries. If we, instead, could make use of some sort of controlled thesaurus for expanding the
queries we could avoid using the stemming procedure, and even solve other difficulties during
the candidate generation stage. For example, for answering a question like ”Quem escreveu ’A
Capital’?” / ”Who wrote ’A Capital’?”, instead of generating a query like ”escre* ’A Capital’”
it would be very interesting to generate several queries by expanding ”escreveu” (”wrote”) to
{”escritor” (”writer”), ”autor” (”author”), ...} or to some other paraphrastic constructions. Such
controlled expansion requires semantic resources for Portuguese that, as far as we know, are not
publicly available. Several author have proposed automatic ways of creating similar resources - for
identifying relations among verbs see [4], or see [7] for the discovery of paraphrases - and it seems
interesting to replicate those methods for Portuguese in the Snippet Extractor. A interesting
approach that has been directly applied in a question answering scenario uses Wikipedia a source
for synonyms and hypernyms [6] .

Note that such semantic resources and techniques may also be very useful for the Answer



Selector. After analyzing the results in more detail, we noticed that it is very common that, during
the candidate generation stage, two lexically different yet semantically equivalent candidates are
found. Lets suppose that for answering a question like ”Who is X?” we obtain several candidates
each one supported by one snippet only. Among those candidates we find ”portuguese musician”,
”portuguese composer” and several other spurious candidates. If the Answer Selector is able to
infer that ”composer” and ”musician” have some kind of relation, than it might admit that the
two candidates are equivalent, and it may consider them as the same answer supported by two
text snippets. This would avoid choosing one the answer randomly among the candidates, with
great chances of choosing a wrong one. There are several automatic ways of deciding the similarity
of two of such answers using large corpora [13] that we might explore in the near future.

The performance of the Answer Selector could also be improved by using an alternative docu-
ment collection for checking answers and for estimating the confidence value of the answers. Since
the lack of redundancy greatly increases the possibilities of selecting a wrong answer, using more
documents to obtain additional evidence about each candidate found might provide the level of
repetition that the Answer Selector needs to choose the right candidate. Obvious options for such
alternative collections are large crawls of the web in Portuguese (e.g.: WTP03 or WBR99) or
the Wikipedia. This approach is being already followed by several question answering systems
(for example [1] and [5]). We made some experiments with RAPOSA using a MySQL encoded
version WPT03 collection [10] as the answer collection and, although several new difficulties arise
in parsing the web documents, we were able to find the correct answer for some of the questions
in the CLEF set. It seems thus possible to obtain confirmation regarding one of the candidates
found using the official CLEF answer collection. Future experiments of RAPOSA will be run over
the WPT03 collection. This will also impose new requirements on SIEMÊS, which will need to
cope with the rather messy text that one usually finds in web collections.

5 Conclusions

Developing a question answer system, even as simple as RAPOSA, provides valuable insights
regarding the development or improvement of semantic analysis tools in general. In our case,
during the development of RAPOSA we were faced with many analysis requirements that we did
not considered before, and they made us rethink some of the analysis capabilities of our named-
entity recognition system, SIEMÊS. Because of this experience, we are now considering extending
the number of elements that SIEMÊS will try to identify and classify so that the information
required for question answering becomes more readily available after tagging text snippets. This
will require both the sophistication of SIEMÊS and the development of more advanced lexical
databases that are used by SIEMÊS. By helping us to focus on very specific and practical analysis
problems, we consider that the first participation of RAPOSA in the QA track at CLEF was very
useful and motivating.

As far as results are concerned, RAPOSA has still a long way to go in order to achieve the
results that other more advanced systems already do. But before trying to answer other types of
questions, we will now focus on improving the performance of RAPOSA in answering the simpler
factoid questions. As we have shown in the previous section, there are multiple possibilities for
improvement, both in RAPOSA and in SIEMÊS. Future efforts on RAPOSA will concentrate
in improving the query processing capabilites of the Snippet Extractor, in order to reduce the
number of spurious snippets found, and in developing better selection machanisms for the Answer
Selector, possibly using additional external document collections for choice validation.

6 Acknowledgments

This work was partially supported by grant SFRH/BD/ 23590/2005 from Fundação para a Ciência
e Tecnologia (Portugal), co-financed by POSI.



References

[1] David Ahn, Valentin Jijkoun, Karin MUller, Maarten de Rijke, and Erik Tjong Kim San. The
Universisty of Amsterdam at QA@CLEF 2005. In Proceedings of the CLEF 2005 Workshop,
Vienna, Austria, September 2005.

[2] Carlos Amaral, Helena Figueira, André Martins, Afonso Mendes, Pedro Mendes, and Cláudia
Pinto. Priberam’s question answering system for Portuguese. In Proceedings of the CLEF
2005 Workshop, Vienna, Austria, September 2005.

[3] Lili Aunimo and Reeta Kuuskoski. Question Ansering using Semantic Annotation. In Pro-
ceedings of the CLEF 2005 Workshop, Vienna, Austria, September 2005.

[4] Timothy Chklovski and Patrick Pantel. VerbOcean: Mining the Web for Fine-Grained Se-
mantic Verb Relations. In In Proceedings of Conference on Empirical Methods in Natural
Language Processing (EMNLP-04), Barcelona, Spain, 2004.

[5] Lúıs Costa. Esfinge - a modular question answering system for Portuguese. In Proceedings of
the CLEF 2006 Workshop (to appear), Alicante, Spain, 20-22 September 2006.

[6] Boris Katz, Gregory Marton, Gary Borchardt, Alexis Brownell, Sue Felshin, Daniel Loreto,
Jesse Louis-Rosenberg, Ben Lu, Federico Mora, Stephan Stiller, Ozlem Uzuner, and Angela
Wilcox. External Knowledge Sources for Question Answering. In Proceedings of the 14th
Annual Text REtrieval Conference (TREC2005), Gaithersburg, MD, November 2005.

[7] Dekang Lin and Patrick Pantel. Discovery of inference rules for Question Answering. Natural
Language Engineering, 7(4):343–360, 2001.

[8] Paulo Quaresma and Irene Rodrigues. A logic programming based approach to the
QA@CLEF05 track. In Proceedings of the CLEF 2005 Workshop, Vienna, Austria, September
2005.

[9] Luis Sarmento. SIEMÊS - a named entity recognizer for Portuguese relying on similarity rules.
In PROPOR 2006 - Encontro para o Processamento Computacional da Ĺıngua Portuguesa
Escrita e Falada, pages 90–99, ME - RJ / Itatiaia, Rio de Janeiro - Brasil, 13 a 17 de Maio
2006.

[10] Lúıs Sarmento. BACO - A large database of text and co-occurrences. In Proceedings of the
5th International Conference on Language Resources and Evaluation (LREC’2006), Genova,
Italia, 22-28 May 2006.

[11] Nuno Seco, Diana Santos, Nuno Cardoso, and Rui Vilela. A Complex Evaluation Architecture
for HAREM. In PROPOR 2006 - Encontro para o Processamento Computacional da Ĺıngua
Portuguesa Escrita e Falada, pages 260–263, ME - RJ / Itatiaia, Rio de Janeiro - Brasil, 13
a 17 de Maio 2006.

[12] Rohini K. Srihari and Wei Li. A Question Answering System Supported by Information
Extraction. In ANLP, pages 166–172, 2000.

[13] Peter D. Turney. Mining the Web for Synonyms: PMI-IR versus LSA on TOEFL. In
Proceedings of the 12th European Conference on Machine Learning, volume Lecture Notes in
Computer Science 2167, pages 491–502, 2001.


