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Abstract 
 

Oregon Health & Science University participated in the medical retrieval and medical 
annotation tasks of ImageCLEF 2007.  In the medical retrieval task, we created a web-
based retrieval system for the collection built on a full-text index of both image and 
case annotations. The text-based search engine was implemented in Ruby using Ferret, 
a port of Lucene, and a custom query parser.  In addition to this textual index of 
annotations, supervised machine learning techniques using visual features were used to 
classify the images based on image acquisition modality. All images were annotated 
with the purported modality. Purely textual runs as well as mixed runs using the 
purported modality were submitted. Our runs performed moderately well using the 
MAP metric and better for the early precision (P10) metric.  
In the automatic annotation task, we used the 'gist' technique to create the feature 
vectors. Using statistics derived from a set of multi-scale oriented filters, we created a 
512 dimensional vector. PCA was then used to create a 100-dimensional vector. This 
feature vector was fed into a two layer neural network. Our error rate on the 1000 test 
images was 67.8 using the hierarchical error calculations. 
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Medical Image Retrieval 

Advances in digital imaging technologies and the increasing prevalence of Picture Archival and 
Communication Systems (PACS) have led to a substantial growth in the number of digital images 
stored in hospitals and medical systems in recent years. In addition, on-line atlases of images have been 
created for many medical domains including dermatology, radiology and gastroenterology. Medical 
images can form an essential component of a patient’s health record. Medical image retrieval systems 
can be important with aiding in diagnosis and treatment. They can also be highly effective in health 
care education, for students, instructors and patients alike.  

a. Introduction 

Image retrieval systems do not currently perform as well as their text counterparts [1]. Medical and 
other image retrieval systems have historically relied on annotations or captions associated with the 
images for indexing the retrieval system. The labor-intensive task of indexing and cataloging the 
images in these collections has traditionally been performed manually, a process that can be subjective 
and prone to errors.  



 

The last few decades have seen numerous advancements in the area of content-based image retrieval 
(CBIR) [2,3]. Although CBIR systems have demonstrated success in fairly constrained medical 
domains including pathology, dermatology, chest radiology, and mammography, they have 
demonstrated poor performance when applied to databases with a wide spectrum of imaging 
modalities, anatomies and pathologies [1,4,5,6 ].  

Retrieval performance has shown demonstrable improvement by fusing the results of textual and visual 
techniques. This has especially been shown to improve early precision [7,8]. The medical image 
retrieval task within ImageCLEF (ImageCLEFmed) 2007 campaign is a TREC-style [9] and provides a 
forum and set of test collections for the medical image retrieval community to use to benchmark their 
algorithms on a set of queries. The ImageCLEF campaign has, since 2003, been a part of the Cross 
Language Evaluation Forum (CLEF) [9,10,11] which is an offshoot from the Text Retrieval Conference 
(TREC, trec.nist.gov). 

b. System description of our adaptive medical image retrieval system 

The ImageCLEF medical retrieval collection consists of about 66,000 medical images and annotations 
associated with them. We wanted to create a flexible database schema that could incorporate new 
collections easily while facilitating retrieval using both text and visual techniques. The text annotations 
in the collection are currently indexed and we continue to add indexable fields for incorporating visual 
information. 
Database and web application 
 We used the Ruby programming language, with the open source Ruby On Rails web application 
framework [http://www.ruby-lang.org, http://www.rubyonrails.org ].  A PostgreSQL relational 
database was used to store the images and annotations. 

The database has images from the four different collections that were part of the ImageCLEFmed 2006 
image retrieval challenge as well as two new collections for 2007. The approximately 66,000 images in 
these collections resided in cases, with annotations in English, German and/or French. The collections 
themselves were substantially heterogeneous in their architectures. Some collections had only one 
image per case while others had many images per case. Annotation fields were also quite different 
among the collections. Some collections had case-based annotations while others had image-based 
annotations. This difference is especially significant for text based retrieval as images of different 
modalities or anatomies or pathologies could be linked to the same case annotation. In this situation, 
even though only one image from a case containing many images might be relevant to a query (based 
on the annotation), all images for the case would be retrieved in a purely text based system, reducing 
the precision of the search.  

We used the relational database to maintain the mappings between the collections, the cases in the 
collections, the cased-based annotations, the images associated with a collection, and the image based 
annotations.   

Image Processing and Analysis 

The image itself has important visual characteristics such as color and texture that can help in the 
retrieval process. Images that may have had information about the imaging modality or anatomy or 
view associated with them as part of the DICOM header can lose that information when the image is 
compressed to become a part of a teaching or on-line collection, as the image format used by these 
collections is usually compressed JPEG.  

We created additional tables in the database to store image information that was created using a variety 
of image processing techniques in MATLAB (www.mathworks.com). For instance, the images in the 
collection typically do not contain explicit details about the imaging modality. In previous work [8], we 
have described our modality classifier that can identify the imaging modality for medical images with a 
high level of confidence (>95% accuracy on the database used for the validation).  Grey scale images 
are classified into a set of modalities including x-rays, CT, MRI, ultrasound and nuclear medicine. 
Color image classes include gross pathology, microscopy, and endoscopy. 

Each image was annotated in the database with the purported image modality and a confidence value. 
This can be extremely useful for queries where the user has specified a desired image modality. An 
example query from ImageCLEF 2006 was “Show me microscopic images of tissue from the 
cerebellum”.  



 

The precision of the result of such a query can be improved significantly by restricting the images 
returned to those of the modality desired [8]. This is especially useful in eliminating images of the 
incorrect modality that may be part of a case containing a relevant image from the returned list of 
images. However, this increase in precision may result in a loss in recall if the classification algorithm 
incorrectly classifies the image modality. 

We continue to experiment with a variety of image clustering and classification algorithms and adding 
the numerical data and labels to the database. Clustering images that look visually similar can be again 
used to improve the precision of the image retrieval process and speed up the system searching of 
images in the same cluster as the query image (if available). 

Query parser and Search Engine 
The system presents search options to the user including Boolean OR, AND and exact match. There are 
also options to perform fuzzy searches and custom query parsing. 

The cornerstone of our system is the query parser, written in Ruby. Ferret, a Ruby port of the popular 
Lucene system, was used in our system as the underlying search  engine 
[http://ferret.davebalmain.com].  

Queries were first analyzed using MedPost, a Parts-of-Speech (POS) Tagger created using the Medline 
corpus, and distributed by the National Library of Medicine 
[ftp://ftp.ncbi.nlm.nih.gov/pub/lsmith/MedPost/medpost] [14].  

A simple Bayesian classifier [classifier.rubyforge.org] was trained to discern the desired image 
modality from the query, if available. The classifier performed extremely well within the constrained 
vocabulary of imaging modalities. Stop words were then removed from the query. These include 
Standard English stop words as well as a small set of stop words determined by analyzing queries from 
the last three years, including ‘finding’, ‘showing’, ‘images’, ‘including’ and ‘containing’. 

The system is also linked to the UMLS metathesaurus. The user can choose to perform automatic query 
expansion using synonyms from the metathesarus. 

A sample query “Show me CT images with a brain infarction” is automatically parsed and the 
following information is extracted from it: CT-> imaging modality, brain -> anatomic location, 
infarction -> finding. This information can be used to combine the results of the textual and visual 
systems more effectively. 

c. Runs submitted 

We submitted a total of 10 runs.  These runs included textual and mixed, automatic and manual 
options. We also submitted runs using different weighted combinations of the FIRE baseline 
(published by the organizers) with our baseline textual runs. The run labels and a short 
description is given below. 

d. Results and Discussion 

Table 2 presents the mean average precision (MAP) and early precision of the OHSU runs as well that 
of the best overall run. 

Our baseline textual system performed quite well, with a MAP of 0.3453. There was only a minimal 
improvement in performance with the use of the image modality. Our system is tuned to improve 
precision, at the cost of recall as we believe that most real users are interested in early precision. 
Consequently, our system demonstrated good early precision, with the highest P10 and high P30 
results.  

Our baseline textual system performed quite well, with a MAP of 0.3453. There was only a minimal 
improvement in performance with the use of the image modality. Our system is tuned to improve 
precision, at the cost of recall as we believe that most real users are interested in early precision. 
Consequently, our system demonstrated good early precision, with the highest P10 and high P30 
results. 



 

 
Figure 1: Screen shot of our system displaying user options 

  

run# Label Description 

1 
OHSU-
iclefmed2007_as_out_1000rev1_c.txt.eval Baseline textual run using the custom query parser (automatic) 

2 OHSU-ohsu_m1.eval 
Mixed run using modality to resort the results of the standard 
textual baseline, only 50 images returned per topic (automatic) 

3 OHSU-OHSU_txt_exp2.eval Textual run using UMLS term expansion (automatic) 

4 OHSU-oshu_c_e_f_q.eval 
Weighted combination of FIRE and OHSU textual runs 
(automatic) 

5 OHSU-oshu_man2.eval Manual query modification, purely textual (manual) 

6 ohsu_comb3_ef_wt1_rev1_c.txt.eval 
Weighted combination of FIRE and OHSU textual runs 
(automatic) 

7 ohsu_fire_ef_wt2_rev1_c.txt.eval 
Weighted combination of FIRE and OHSU textual runs 
(automatic) 

8 ohsu_m2_rev1_c.txt.eval 

Mixed run using modality to resort the results of the standard 
textual baseline 
(automatic) 

9 ohsu_text_e4_out_rev1.txt.eval Textual run using modified query parser (automatic) 
   

Table 1: OHSU run labels and descriptions 

 

 

 

 



 

Label MAP P10 p30 
OHSU-
iclefmed2007_as_out_1000rev1_c.txt.eval 0.3453 0.53 0.4433 

OHSU-ohsu_m1.eval 0.2117 0.52 0.4578 

OHSU-OHSU_txt_exp2.eval 0.3135 0.5867 0.4878 

OHSU-oshu_c_e_f_q.eval 0.1129 0.2 0.1544 

OHSU-oshu_man2.eval 0.3428 0.54 0.44 

ohsu_comb3_ef_wt1_rev1_c.txt.eval 0.1134 0.3 0.1833 

ohsu_fire_ef_wt2_rev1_c.txt.eval 0.0586 0.2 0.1211 

ohsu_m2_rev1_c.txt.eval 0.3461 0.5567 0.4622 

ohsu_text_e4_out_rev1.txt.eval 0.3321 0.5867 0.4878 

LIG-MRIM-LIG_MU_A.eval 0.3962 0.5067 0.46 

Table 2: Results of OHSU runs 

 

 

Run Type MAP 

Visual 0.23 

Mixed 0.35 

Textual 0.47 

Table 3: Results of OHSU best run by topic category 

 

Although there was significant inter-category variation, our textual runs performed well on textual 
queries and more poorly on visual queries. 

Future Work 

We will continue to improve our image retrieval system by adding more image tags using automatic 
visual feature extraction. Our next goal is to annotate the images with the their anatomical location and 
view attributes.  

2. Automatic Image Annotation 
The goal of this task was to correctly classify 1000 radiographic medical images using the hierarchical 
IRMA code. This code classifies the image along the modality, body orientation, body region, and 
biological system axes.  There were 116 unique classes. The task organizers provided a set of 9,000 
training images  and 1000 development images.  The goal of the task was to classify the images to the 
most precise level possible, with a greater penalty applied for incorrect classification than for a less 
specific classification in the hierarchy. 

a. Introduction 

A supervised machine learning approach using global gist features and neural network architecture was 
employed for the task of automatic annotation of medical images with the IRMA code.  

b. System Description 

The automatic image annotation was based on a neural network classifier using Gist features [14].  The 
classifiers were created in MATLAB using the Netlab toolbox [15].  

All images were convolved with a set of 32 multiscale-oriented Gabor filters. We created a 512-
dimensional vector using statistics from these filters. Principal component analysis was then used to 
reduce the dimensionality of the vector to 100.  



 

A multilayer perceptron with one hidden layer containing 250-500 nodes was used to create and train a 
multi-class classifier.  The training data set of 10,000 images was used to optimize performance of the 
development set of 1000 images. The final configuration of the classifier used 300 hidden nodes.  

Images originally classified as classes 108 and 111 in the old code were commonly misclassified by the 
neural network classifier described above. To handle this special case, we created a second layer of 
classification built around a support vector machine (SVM) using scale-invariant feature transform 
(SIFT) features [16] as inputs. This new binary classify was used to determine the final class 
assignments for images in classes 108 and 111 

c. Runs submitted 

OHSU submitted two runs for the automatic annotation task. The first run used gist feature vectors to 
train the multi-layer perceptron. A neural network was used to create a multi-class classifier consisting 
of 116 classes.  These were the original classes from 2006 and did not use the hierarchical nature of the 
IRMA code.  These classes were then converted to the IRMA code, as required for the submission in 
2007. 

The second run used a hierarchical classifier architecture, with the first layer as described above and 
the second classifier using SIFT features and an SVM. 

d. Results and Analysis 

The relationship between semantic and visual hierarchy remains an open area of research. Based on our 
experiments using this collection of images used for automatic annotation, the use of hierarchy of the 
semantic classes did not improve our automatic annotations.  

The error count for both our runs were quite similar at 67.8 and 67.97 for 1000 images, compared to the 
best count of 26.84 and worst count of 505.61. There was only a very slight improvement in using the 
two-layer classifier.  There were 227 errors using the 2006 classes, which corresponds to an 
classification accuracy of 77.3%. However, of these 227 errors, only 15 were wrong along all 4 axes. 
76 were misclassified along two axes (primarily view and anatomy) while 12 were misclassified along 
3 axes. 77 of our single misclassifications were along the view axis. A significant portion of these 
occurred where class 111 was misclassified as 108, an error due to confusion between posterior-
anterior and anterior-posterior views of the chest. 

e. Future Work 

We would like to further investigate the mapping between the semantic and visual hierarchy of images 
in the IRMA collection. We also plan to further explore specifying the image classification in the 
semantic hierarchy only to the level  

Acknowledgments 
We acknowledge the support of NLM Training Grant 1T15 LM009461 and NSF Grant ITR-0325160. 
We would also like to thank Steven Bedrick, DMICE, OHSU for his help in creating the web-based 
image retrieval system. 

References 

1. Hersh, W, Muller H, et al. Advancing biomedical image retrieval: development and analysis of a 
test collection. J. Am. Med. Inform. Assoc. 13(5), 488-96, 2006. 

2. Smeulders AWM, Worring M et al. Content-Based Image Retrieval at the End of the Early Years, 
IEEE Transactions on Pattern Analysis and Machine Intelligence 22(12), 1349-1380, 2000. 

3. Tagare HD, Jaffe C et al, Medical Image Databases: A Content-Based Retrieval Approach, J. Am. 
Med. Inform. Assoc. (JAMIA), 4(3):184-198, 1997. 

4. Aisen AM, Broderick LS, et al, Automated storage and retrieval of thin-section CT images to 
assist diagnosis: System description and preliminary assessment, Radiology, 228,. 265-270, 2003. 

5. Schmid-Saugeon P, Guillod J, et al, Towards a computer-aided diagnosis system for pigmented 
skin lesions, Computerized Medical Imaging and Graphics 27,65-78, 2003. 

6. Müller H, Michoux N, Bandon D, Geissbuhler A, A review of content-based image retrieval 
systems in medicine – clinical benefits and future directions, Int. J. Med. Inform., 73,1-23, 2004. 

7. Hersh W, Kalpathy-Cramer J, et al. Medical image retrieval and automated annotation: OHSU at 
ImageCLEF 2006, Springer Lecture Notes in Computer Science (LNCS). 

8. Kalpathy-Cramer J, Hersh W, Automatic Image Modality Based Classification and Annotation to 
Improve Medical Image Retrieval, accepted to MedInfo 2007, Brisbane, Australia, 2007. 



 

9. Braschler M, Peters C. Cross-language evaluation forum: objectives, results, achievements. Inform 
Retriev 2004 (7) 7–31. 

10. Müller H, Deselaers T, Lehmann T, Clough P, Hersh W, Overview of the ImageCLEFmed 2006 
medical retrieval annotation tasks, Evaluation of Multilingual and Multi-modal Information 
Retrieval, Seventh Workshop of the Cross-Language Evaluation Forum, CLEF 2006, LNCS  
2006,Alicante, Spain, to appear. 

11. Müller H, Clough P, et al, Evaluation Axes for Medical Image Retrieval Systems - The ImageCLEF 
Experience, ACM Int. Conf. on Multimedia, Singapore, November 2005. 

12. Florea F, Müller H, Rogozan A, Geissbühler A, Darmoni S. Medical image categorization with 
MedIC and MedGIFT. Medical Informatics Europe (MIE 2006). 

13. Smith L, Rindflesch T, Wilbur W, MedPost: a part-of-speech tagger for biomedical text 
Bioinformatics 20(14), 2004. 

14. Oliva, A, Torralba, A, Modeling the shape of the scene: a holistic representation of the spatial 
envelope, Int. J. Computer Vision, 42(3): 145-175, 2001 

15. Nabney IT, Netlab: Algorithms for Pattern Recognition. 2004, London, England: Springer-Verlag 
16. Lowe DG, Distinctive image features from scale-invariant keypoints, Int. J. of Computer Vision, 

60(2) :91-110, 2004 
 


