
 DFKI–LT at AVE 2007: Using Recognizing Textual Entailment for
Answer Validation

Rui Wang and Günter Neumann

LT-lab, DFKI
Stuhlsatzenhausweg 3, 66123 Saarbrücken, Germany

{wang.rui, neumann}@dfki.de

Abstract. This report is about our participation in the Answer Validation Exercise (AVE) 2007.
Our system utilizes a Recognizing Textual Entailment (RTE) system as a component to validate
answers. We first change the question and the answer into Hypothesis (H) and view the document
as Text (T), in order to cast the AVE task into a RTE problem. Then, we use our RTE system to
tell us whether the entailment relation holds between the documents (i.e. Ts) and question-answer
pairs (i.e. Hs). Finally, we adapt the results for the AVE task. In all, we have submitted two runs
and achieved f-measures of 0.46 and 0.55 respectively, which both outperform last year’s best
result for English. After detailed error analysis, we have found that both the recall and the
precision of our system could be improved in the future.

Keywords: Answer Validation, Recognizing Textual Entailment

1 Introduction and Related Work

Question Answering (QA) is an important task in Natural Language Processing (NLP), which aims to mine
answers to natural language questions from large corpora. Answer validation is to evaluate the answers obtained
by the former stages of a QA system and select the most proper answers for the final output.

A lot of research has been done on this topic. In recent years, a new trend is to use Recognizing Textual
Entailment (RTE-1 – Dagan et al., 2006; RTE-2 – Bar-Haim et al., 2006) to do answer validation, see the AVE
2006 Working Notes (Peñas et al., 2006). Most of the groups use lexical or syntactic overlapping as features for
machine learning; other groups derive the logic forms of natural language texts and perform proving.

We also developed our own RTE system, which proposed a new sentence representation extracted from the
dependency structure, and utilized the Subsequence Kernel method (Bunescu and Mooney, 2006) to perform
machine learning. We have achieved fairly high results on both the RTE-2 data set (Wang and Neumann, 2007a)
and the RTE-3 data set (Wang and Neumann, 2007b), especially on Information Extraction (IE) and QA pairs.
Therefore, one of our motivations is to improve answer validation by using RTE, and the other is to test our RTE
system in other NLP applications.

This report will start with introducing our AVE system, which consists of the preprocessing part, the RTE
component, and the post-processing part. Then, the results of our two submission runs will be shown, followed
by a discussion on error sources. In the end, we will summarize our work.

2 Our RTE-based AVE System

Our AVE system uses our RTE system (Tera – Textual Entailment Recognition for Application) as a core
component, and includes preprocessing and post-processing modules. The preprocessing module mainly adapts
questions, their corresponding answers, and supporting documents into Text(T)-Hypothesis(H) pairs, assisted by
some manually designed patterns. The post-processing module (i.e. the Answer Validation in Figure 1) will
validate each answer and select a most proper one based on the output of the RTE system. We will see the details
of each component in the coming sections.

2.1 Preprocessing

The given input of the AVE task is a list of questions, their corresponding answers and the documents containing
these answers. Usually, we need to validate several answers for each question. For instance, the question is,

In which country was Edouard Balladur born? (id=178)1
The QA system gives out several candidate answers to this question, as follows,

Frances (id=178_1)
12% jobless rate (id=178_3)
7 (id=178_5)
…

Each answer will have one supporting document where the answer comes from, like this,
Paris, Wednesday CONSERVATIVE Prime Minister Edouard Balladur, defeated in France's
presidential election, resigned today clearing the way for President-elect Jacques Chirac to
form his own new government. Balladur's move was a formality since outgoing President
Francois Mitterrand hands over power next week to Chirac, the conservative Paris mayor who
won last Sunday's run-off election... (parts) (id=178_1)
…

The assumption here is that if the answer is relevant to the question, the document which contains the answer
should entail the statement derived by combining the question and the answer. This section will mainly focus on
the combination of the question and the answer and in the next sections the RTE system and how to deal with the
output of the system will be described.

In order to combine the question and the answer into a statement, we need some language patterns. Normally,
we have different types of questions, such as Who-questions asking about persons, What-questions asking about
definitions, etc. Therefore, we manually construct some language patterns for the input questions. For the
example given above (id=178), we will apply the following pattern,

Edouard Balladur was born in <Answer>. (id=178)
Consequently, we substitute the “<Answer>” by each candidate answer to form Hs – hypotheses. Since the

supporting documents are naturally the Ts – texts, the T-H pairs are built up accordingly,
Id: 178_1
Entailment: Unknown
Text: Paris, Wednesday CONSERVATIVE Prime Minister Edouard Balladur, defeated in
France's presidential election, resigned today clearing the way for President-elect Jacques
Chirac to form his own new government… (parts)

1 All the examples in this report come from AVE 2007 test data, i.e. “AVE2007-annotated-test-EN.xml”.

Figure 1 Architecture of our AVE system

Hypothesis: Edouard Balladur was born in Frances.
These T-H pairs can be the input for any the generic RTE system.

2.2 The RTE Component

The RTE component is based on the RTE system we have used for RTE-3 Challenge (Giampiccolo et al., 2007).
The system contains a main approach with two backup strategies. The main approach extracts parts of the
dependency structures to form a new representation, named Tree Skeleton, as the feature space and then applies
Subsequence Kernels to represent TSs and perform Machine Learning. The backup strategies will deal with the
T-H pairs which cannot be solved by the main approach. One backup strategy is called Triple Matcher, as it
calculates the overlapping ratio on top of the dependency structures in a triple representation; the other is simply
a Bag-of-Words (BoW) method, which calculates the overlapping ratio of words in T and H. We will begin with
the main approach and briefly introduce the backup strategies at the end of this section.

If we take a broad view of the RTE task, in essence, we are asked to tell whether a particular relationship (i.e.
entailment) holds between two text fragments. Notice that this kind of relationship is one-directional, which is
from T to H. Generally, people start with T, do some processing, and then check whether H is reachable.
However, we did it in the opposite direction, based on the observations: 1) H is the target we want to verify,
which leads us to identify the relevant parts of T; and 2) H (i.e. a question and one of its candidate answers) is
usually textually shorter than T (i.e. a document or a snippet). The T-H pair (id=178_1) is just an example of
this. All the information we need in T is the part in bold of the first sentence.

Now the remaining problems are: 1) How do we identify the relevant parts of T based on H? 2) How do we
combine them? 3) How do we represent them? The three steps of the main approach are aiming to solve these
problems: extracting tree skeletons to obtain the most relevant parts, merging them to define the feature space,
and applying subsequence kernels to represent the features and perform the machine learning procedure.

Tree Skeleton Extraction
Since tree skeletons are extracted based on the dependency structures, we need to use some dependency

parsers to obtain the dependency parse trees. We have used Minipar (Lin, 1998). The following Figure 2 shows
the output given the previous H as the input sentence. As well as H is usually textually shorter than T, the
dependency structure of H is also simpler. From Figure 2, we can easily identify the structure of the whole
sentence: There are two nouns in the lower part of the parse tree, and they share a common parent node, which is
a verb in the upper part. Since content words usually convey most of the meaning of the sentence, we will mark
the two nouns as Topic Words and the verb as the Root Node. Together with the dependency paths in between,
they form a subtree of the original dependency structure, which can be viewed as an extended version of
Predicate-Argument Structure (Gildea and Palmer, 2002). We call the subtree Tree Skeleton, the topic words
Foot Nodes, and the dependency path from the noun to the root node Spine. If there are two foot nodes, the
corresponding spines will be the Left Spine and the Right Spine.

On top of the tree skeleton of H, the tree skeleton of T can also be extracted. We assume that if the entailment
holds from T to H, at least, they will share the same topics. Since in practice, there are different expressions for
the same entity, we have applied some fuzzy matching techniques to correspond the topic words in T and H, like

Figure 2 Dependency Structure and Tree Skeleton

initialism, partial matching, etc. Once we successfully identify the topic words in T, we trace up along the
dependency parse tree to find the lowest common parent node, which will be marked as the root node of the tree
skeleton of T2.

Notice that the prerequisite for performing this method is: topic words are identified and corresponded
between T and H. Furthermore, if there are only two topic words, the whole tree skeleton can be viewed as a
sequence of words and dependency relation tags in a flat structure. This is important because sequence structures
are much less complex than the tree structures, which will greatly reduce the computational complexity. In
practice, 37% of the RTE-2 test data (Wang and Neumann, 2007a) and 36% of the RTE-3 test data (Wang and
Neumann, 2007b) meet these requirements and consequently can be dealt with by the main approach.

Spine Generalization and Merging
Before moving on, some generalizations are necessary in order to avoid the scarcity of features in the data.

Several steps will be performed: 1) We will collapse some of the dependency relation tags from the parsers to
more generalized names, e.g., collapsing <OBJ2> and <DESC> to <OBJ>; 2) we will group together all nodes
that have relation labels like <CONJ> or <NN>, since they are assumed to refer to the same entity or belong to
one class of entities sharing some common characteristics; 3) lemmas are removed except for the topic words.
Finally, we will get the generalized tree skeleton as follows (# is a separator to mark the root node),

Edouard_Balladur:N <SUBJ> #born:A# <MOD> PREP <PCOMP-N> Frances:N
We will do the same on the tree skeleton of T, and then merge the two tree skeletons by 1) excluding the

longest common prefixes for left spines and 2) excluding the longest common suffixes for right spines. Finally,
we will get the dissimilarity of the two tree skeletons and we call it Spine Differences, i.e. Left Spine Difference
(LSD) and Right Spine Difference (RSD), like the following (## is to separate the parts from T and H, and null
means an empty string),

LSD: <OBJ> ## <SUBJ>
RSD: N ## (null)

Subsequence Kernels Application
After the spine generalization and merging, now all the remaining symbols are POS tags and (generalized)

dependency relation tags. They altogether form a Closed-Class Symbol (CCS) set. The spine difference is thus a
sequence of CCSs. To represent it, we have utilized a Subsequence Kernel and a Collocation Kernel. The
definitions of the two kernels are as below,

, , , ,
| |

,
| |

, , , , · ,
| || |

whereby T and H refers to all spine differences from T and H, and |T| and |H| represent the cardinalities. The
function KCCS(CCS,CCS’) checks whether its arguments are equal.

As well as these two kernels, we have also considered the comparison between root nodes and their adjacent
dependency relations. We have observed that some adjacent dependency relations of the root node (e.g. <SUBJ>
or <OBJ>) can play important roles in predicting the entailment relationship. For instance, the verb “sell” has a
direction of the action from the subject to the object. In addition, the verb “sell” and “buy” convey totally
different semantics. Therefore, we assign them two extra simple kernels named Verb Consistence (VC) and Verb
Relation Consistence (VRC). The former indicates whether two root nodes have a similar meaning, and the latter
indicates whether the relations are contradictive (e.g. <SUBJ> and <OBJ> are contradictive).

On top of all these four kernels, we have used a composite kernel to combine them linearly with different
weights,

where γ and δ are learned from the training corpus, and α=β=1.
Backup Strategies
As well as the main approach, we have two backup strategies as well: one is called the Triple Similarity and

the other is called the BoW Similarity.
Dependency structures can be represented in a form of a triple set, which expresses the local dependency

relations. A triple is of the form <node1, relation, node2>, where node1 represents the head, node2 the modifier,
and relation the dependency relation. Thus, each dependency parse tree consists of a set of such triples.

Chief requirements for the backup strategy are robustness and simplicity. Accordingly, we construct a
similarity function, which operates on two triple sets and determines how many triples of H are contained in T.

2 The Root Node of T is not necessary to be a verb, instead, it could be a noun, a preposition, or even a dependency relation.

The core assumption here is that the higher the number of matching triple elements, the more similar both sets
are, and the more likely it is that T entails H. The function uses an approximate matching function. Different
cases (i.e. ignoring either the parent node or the child node, or the relation between nodes) might provide
different indications for the similarity of T and H. In all cases, a successful match between two nodes means that
they have the same lemma and POS. We then sum them up using different weights and divide the result by the
cardinality of H for normalization. The different weights learned from the corpus indicate that the “amount of
missing linguistic information” affect entailment decisions differently.

The BoW similarity score is calculated by dividing the number of overlapping words between T and H by the
total number of words in H after a simple tokenization according to the space between words.

2.3 Post-processing

The RTE component has given us several things: 1) for some of the T-H pairs, we directly know whether the
entailment holds; 2) every T-H pair has a triple similarity score; 3) every T-H pair has a BoW similarity score. If
the T-H pairs are covered by our main approach, we will directly use the answers; if not, we will use a threshold
to decide the answer based on the two similarity scores. In practice, the threshold is learned from the training
corpus and the two similarity scores are used in different submission runs.

For the adaption back to the AVE task, the “YES” entailment cases will be validated answers and the “NO”
entailment cases will be rejected answers. In addition, the selected answers (i.e. the best answers) will naturally
be the pairs covered by our main approach or (if not,) with the highest similarity scores.

3 Results and Error Analysis

The AVE task this year asks the system to judge whether an answer extracted from a document is a valid answer
to the given question. The result can be either "VALIDATED" or "REJECTED", which mean it's a valid answer
or not respectively. Furthermore, among all the "VALIDATED" answers to each question, one best answer will
be marked as "SELECTED", but if there is no "VALIDATED" answers, there will be no "SELECTED" answer,
either.

The AVE training data contains 200 questions, 1121 answers and 1121 supporting documents, among which
there are 130 validated answers and 991 rejected answers. The AVE testing data contains 67 questions, 202
answers and supporting documents, among which there are 21 validated answers, 174 rejected answers, and 7
unknown answers according to the gold standard.

We have submitted two runs. Both of the two runs we have used the main approach and one backup strategy.
The difference is that in the first run, the BoW similarity score is the backup, while in the second run, the triple
similarity score is taken. Our machine learning process is performed by using the classifier SMO from the
WEKA toolkit (Witten and Frank, 1999). In the following, we will first show the table of the results and then
present an error analysis.

Submission Runs Recall Precision F-measure QA Accuracy
dfki07-run1.txt 0.62 0.37 0.46 0.16
dfki07-run2.txt 0.71 0.44 0.55 0.21

Table 1 Results of our two runs

Though the absolute scores are not very promising, they are still better than all the results for English from
last year. The second run outperforms the first run in all respects, which shows advantages of the triple similarity
score. The gold standard does not contain the “SELECTED” answers, thus, we will not discuss the QA accuracy
for now. Instead, the error analysis will focus on the loss of recall and precision.

As for recall, among all the errors, half of them belong to one type. For questions like “What is the occupation
of Kiri Te Kanawa?” we have used the pattern “The occupation of Kiri Te Kanawa is <Answer>”, which has
caused problems, because “occupation” usually does not appear in the documents. Instead, a pattern like “Kiri Te
Kanawa is <Answer>” might be much better. Some other errors are from the noise of web documents, on which
the dependency parser could not work very well. A truly difficult example is the following one,

Question: Which American President masterminded the Camp David Agreement? (id=160)
Answer: Jimmy Carter. (id=160_2)
Document: United States President Jimmy Carter invited both Sadat and Begin to a summit at
Camp David to negotiate a final peace.

Not only the lexical semantics of “mastermind” and “negotiate” are necessary, but also some world
knowledge like the name of an agreement is usually the place where people subscribe it.

The precision of our two runs are rather poor. After taking a closer look at the errors, we have found that most
of the errors also belong to one type. In those answer-document pairs (e.g. id=119_2, id=125_1, id=133_1, etc.),
the answers are usually very long, which consist of a large part of the documents. Some extreme cases (e.g.
id=112_2, id=172_2, etc.), the answers are very long and exactly the same as the documents. Due to the
characteristics of our method (i.e. using RTE for AVE), these answers will get high similarity scores, which are
wrongly validated. Errors from the parser will also cause problems. For example,

Question: Who is Thom Rotella? (id=106)
Answer: Grant Geissman. (id=106_3)
Document: As founder of Positive Music Records, Navarro is responsible for launching and
furthering the recording careers of saxophonists Bob Militello and Brandon Fields, guitarists
Grant Geissman, Thom Rotella and Pat Kelley, and keyboardists Gregg Karukas and Marcus
Johnson.

Some other errors like trivial answers (e.g. “one”) could be avoided by adding some rules. As a whole, more
fine-grained classification of answers could be helpful to improve the system.

4 Conclusion and Future Work

In conclusion, we have described our participation of AVE 2007. The work presented is utilizing our RTE
system to validate answers from QA systems. One the one hand, it is an effective way to improve the answer
validation task; on the other hand, it is also a promising application for our developed RTE system. The results
have shown the advantages of our method.

After error analysis, the possible future directions are: 1) preprocessing the documents to clean the noisy web
data; 2) improving the patterns or learning them automatically; 3) utilizing question analysis tools to acquire
more useful information.

Acknowledgement

This work presented here was partially supported by a research grant from the German Federal Ministry of
Education, Science, Research and Technology (BMBF) to the DFKI project HyLap (FKZ: 01 IW F02) and by
the EU-funded project QALL-ME (FP6 IST-033860).

References

1. Bar-Haim, R., Dagan, I., Dolan, B., Ferro, L., Giampiccolo, D., Magnini, B. and Szpektor, I. 2006. The Second PASCAL
Recognising Textual Entailment Challenge. In Proceedings of the Second PASCAL Challenges Workshop on
Recognising Textual Entailment, Venice, Italy.

2. Bunescu, R. and Mooney, R. 2006. Subsequence Kernels for Relation Extraction. In Advances in Neural Information
Processing Systems 18. MIT Press.

3. Dagan, I., Glickman, O., and Magnini, B. 2006. The PASCAL Recognising Textual Entailment Challenge. In Quiñonero-
Candela et al., editors, MLCW 2005, LNAI Volume 3944, pages 177-190. Springer-Verlag.

4. Giampiccolo, D., Magnini, B., Dagan, I., and Dolan, B. 2007. The Third PASCAL Recognizing Textual Entailment
Challenge. In Proceedings of the Workshop on Textual Entailment and Paraphrasing, pages 1–9, Prague, June 2007.

5. Gildea, D. and Palmer, M. 2002. The Necessity of Parsing for Predicate Argument Recognition. In Proceedings of the
40th Meeting of the Association for Computational Linguistics (ACL 2002):239-246, Philadelphia, PA.

6. Lin, D. 1998. Dependency-based Evaluation of MINIPAR. In Workshop on the Evaluation of Parsing Systems.
7. Peñas, A., Rodrigo, Á., Sama, V., and Verdejo, F. 2006. Overview of the Answer Validation Exercise 2006. In the AVE

2006 Working Notes.
8. Wang, R. and Neumann, G. 2007a. Recognizing Textual Entailment Using a Subsequence Kernel Method. In Proc. of

AAAI 2007.
9. Wang, R. and Neumann, G. 2007b. Recognizing Textual Entailment Using Sentence Similarity based on Dependency

Tree Skeletons. In Proceedings of the Workshop on Textual Entailment and Paraphrasing, pages 36–41, Prague, June
2007.

10. Witten, I. H. and Frank, E. Weka: Practical Machine Learning Tools and Techniques with Java Implementations. Morgan
Kaufmann, 1999.

