
Information Synthesis for Answer Validation

Rui Wang1 and Günter Neumann2

1 Saarland University

66123 Saarbrücken, Germany
rwang@coli.uni-sb.de

2 LT-Lab, DFKI
Stuhlsatzenhausweg 3, 66123 Saarbrücken, Germany

neumann@dfki.de

Abstract. This report is about our participation in the Answer Validation Exercise (AVE2008).
Our system casts the AVE task into a Recognizing Textual Entailment (RTE) problem and uses an
existing RTE system to validate answers. Additional information from named-entity (NE)
recognizer, question analysis component, and so on, is also considered as assistances to make the
final decision. In all, we have submitted two runs, one run for English and the other for German.
They have achieved f-measures of 0.64 and 0.61 respectively. Compared with our system last year,
which purely depends on the output of the RTE system, the extra information does show its
effectiveness.

Keywords: Answer Validation, Recognizing Textual Entailment, Information Synthesis

1 Introduction and Related Work

Answer Validation is an important step for Question Answering (QA) systems, which aims to validate the
answers extracted from natural language texts, and select the most proper answers for the final output.

Using Recognizing Textual Entailment (RTE-1 – Dagan et al., 2006; RTE-2 – Bar-Haim et al., 2006) to do
answer validation has shown a great success (Peñas et al., 2007). We also developed our own RTE system and
participated in AVE2007. The RTE system proposed a new sentence representation extracted from the
dependency structure, and utilized the Subsequence Kernel method (Bunescu and Mooney, 2006) to perform
machine learning. We have achieved fairly high results on both the RTE-2 data set (Wang and Neumann, 2007a)
and the RTE-3 data set (Wang and Neumann, 2007b), especially on Information Extraction (IE) and QA pairs.

However, on the AVE data sets, we still found much space for the improvement. Therefore, based on the
system we developed last year, our motivation this year is to see whether using extra information, e.g. named-
entity (NE) recognition, question analysis, etc., can make further improvement on the final results.

This report will start with a brief introduction of our RTE system and then followed by the whole AVE
system. The results of our two submission runs will be shown in section 4, and in the end, we will summarize
our work.

2 The RTE System

The RTE system (Wang and Neumann, 2007a; Wang and Neumann, 2007b) is developed for RTE-3 Challenge
(Giampiccolo et al., 2007). The system contains a main approach with two backup strategies. The main approach
extracts parts of the dependency structures to form a new representation, named Tree Skeleton, as the feature
space and then applies Subsequence Kernels to represent TSs and perform Machine Learning. The backup
strategies will deal with the T-H pairs which cannot be solved by the main approach. One backup strategy is
called Triple Matcher, as it calculates the overlapping ratio on top of the dependency structures in a triple
representation; the other is simply a Bag-of-Words (BoW) method, which calculates the overlapping ratio of
words in T and H.

The main approach starts with processing H, since it is usually textually shorter than T, and the dependency
structure also simpler. Tree skeletons are extracted based on the dependency structures derived by Minipar (Lin,
1998) for English and SMES (Neumann and Piskorski, 2002) for German. There are nouns in the lower part of
the parse tree, and they share a common parent node, which is (usually) a verb in the upper part. Since content
words usually convey most of the meaning of the sentence, we will mark the nouns as Topic Words and the verb

as the Root Node. Together with the dependency paths in between, they form a subtree of the original
dependency structure, which can be viewed as an extended version of Predicate-Argument Structure (Gildea and
Palmer, 2002). We call the subtree Tree Skeleton, the topic words Foot Nodes, and the dependency path from the
noun to the root node Spine. If there are two foot nodes, the corresponding spines will be the Left Spine and the
Right Spine.

On top of the tree skeleton of H, the tree skeleton of T can also be extracted. We assume that if the entailment
holds from T to H, at least, they will share the same topics. Since in practice, there are different expressions for
the same entity, we have applied some fuzzy matching techniques to correspond the topic words in T and H, like
initialism, partial matching, etc. Once we successfully identify the topic words in T, we trace up along the
dependency parse tree to find the lowest common parent node, which will be marked as the root node of the tree
skeleton of T1.

After some generalizations, we merge the two tree skeletons by 1) excluding the longest common prefixes for
left spines and 2) excluding the longest common suffixes for right spines. Finally, we will get the dissimilarity of
the two tree skeletons and we call it Spine Differences, i.e. Left Spine Difference (LSD) and Right Spine
Difference (RSD). Then, since all the remaining symbols are POS tags and (generalized) dependency relation
tags, they altogether form a Closed-Class Symbol (CCS) set. The spine difference is thus a sequence of CCSs. To
represent it, we have utilized a Subsequence Kernel and a Collocation Kernel (Wang and Neumann, 2007a).

We have also considered the comparison between root nodes and their adjacent dependency relations. We
have observed that some adjacent dependency relations of the root node (e.g. <SUBJ>or <OBJ>) can play
important roles in predicting the entailment relationship. For instance, the verb “sell” has a direction of the action
from the subject to the object. In addition, the verb “sell” and “buy” convey totally different semantics.
Therefore, we assign them two extra simple kernels named Verb Consistence (VC) and Verb Relation
Consistence (VRC). The former indicates whether two root nodes have a similar meaning, and the latter
indicates whether the relations are contradictive (e.g. <SUBJ> and <OBJ> are contradictive).

Finally, the main approach is assisted by two backup strategies: one is called the Triple Similarity and the
other is called the BoW Similarity. Chief requirements for the backup strategy are robustness and simplicity.
Accordingly, we construct a similarity function, which operates on two triple (dependency structure represented
in the form of <head, relation, modifier>) sets and determines how many triples of H are contained in T. The
core assumption here is that the higher the number of matching triple elements, the more similar both sets are,
and the more likely it is that T entails H. The function uses an approximate matching function. Different cases
(i.e. ignoring either the parent node or the child node, or the relation between nodes) might provide different
indications for the similarity of T and H. We then sum them up using different weights and divide the result by
the cardinality of H for normalization. The BoW similarity score is calculated by dividing the number of
overlapping words between T and H by the total number of words in H after a simple tokenization according to
the space between words.

1 The Root Node of T is not necessary to be a verb, instead, it could be a noun, a preposition, or even a dependency relation.

3 The AVE System

Fig. 1. Our AVE system uses the RTE system (Tera – Textual Entailment Recognition for Application) as a core component.
The preprocessing module mainly adapts questions, their corresponding answers, and supporting documents into Text (T)-
Hypothesis (H) pairs, assisted by some manually designed patterns. The post-processing module (i.e. the Answer Validation
in the picture) will validate each answer and select a most proper one based on the output of the RTE system. The new
modules added are the NE Recognition and Question Analysis. Thus, we will have extra information like NEs in the answers,
Expected Answer Types (EATs), etc.

3.1 Preprocessing and Post-processing

Since the input of the AVE task is a list of questions, their corresponding answers and the documents containing
these answers, we need to adapt them into T-H pairs for the RTE system. For instance, the question is,

How many "Superside" world championships did Steve Webster win between 1987 and 2004?
(id=87)2

The QA system gives out several candidate answers to this question, as follows,
ten (id=87_1)
24 (id=87_2)
…

Each answer will have one supporting document where the answer comes from, like this,
The most successful sidecar racer in Superside has been Steve Webster MBE, who has won ten
world championships between 1987 and 2004. (id=87_1)

The assumption here is that if the answer is relevant to the question, the document which contains the answer
should entail the statement derived by combining the question and the answer. This section will mainly focus on
the combination of the question and the answer and in the next sections the RTE system and how to deal with the
output of the system will be described.

In order to combine the question and the answer into a statement, we need some language patterns. Normally,
we have different types of questions, such as Who-questions asking about persons, What-questions asking about
definitions, etc. Therefore, we manually construct some language patterns for the input questions. For the
example given above (id=87), we will apply the following pattern,

Steve Webster won <Answer> "Superside" world championships between 1987 and 2004.
(id=87)

Consequently, we substitute the <Answer> by each candidate answer to form Hs – hypotheses. Since the
supporting documents are naturally the Ts – texts, the T-H pairs are built up accordingly,

Id: 87_1
Entailment: Unknown
Text: The most successful sidecar racer in Superside has been Steve Webster MBE, who has
won ten world championships between 1987 and 2004.
Hypothesis: Steve Webster won ten "Superside" world championships between 1987 and 2004.

These T-H pairs can be the input for any generic RTE systems. In practice, after applying our RTE system, if
the T-H pairs are covered by our main approach, we will directly use the answers; if not, we will use a threshold

2 The “id” comes from AVE 2008 test data, i.e. “AVE2008-annotated-test-EN.xml”.

to decide the answer based on the two similarity scores. Therefore, every T-H pair has a triple similarity score
and a BoW similarity score, and for some of the T-H pairs, we directly know whether the entailment holds. The
post-processing is straightforward, the “YES” entailment cases will be validated answers and the “NO”
entailment cases will be rejected answers. In addition, the selected answers (i.e. the best answers) will naturally
be the pairs covered by our main approach or (if not,) with the highest similarity scores.

3.2 Additional Components

The RTE system is used as a core component of the AVE system. Based on the error analysis of last year’s
results, this year we use additional components to filter out noisy candidates. Therefore, two extra components
are added to the architecture, the NE recognizer and the question analyzer. For NE recognition, we use
StanfordNER (Finkel et al., 2005) for English and SPPC (Neumann and Piskorski, 2002) for German; and for
question analysis, we use the SMES system (Neumann and Piskorski, 2002). The detailed workflow is as follows,

1. Annotate NEs in H, store them in an NE list; if the answer is an NE, store the NE type as A’_Type;
2. Analyze the question and obtain expected answer type, store it as A_Type;
3. Synthesize all the information, i.e. NE list, A_Type, A’_Type, BoW similarity, Triple similarity, etc.
As for the example mentioned above (id=87), the additional information will be,

NE list: Steve Webster (person), 1987 (date), 2004 (date);
A_Type: Number
A’_Type: Number

Then, heuristic rules are straightforward to be applied, e.g. checking the consistence between
A_Type and A’_Type, checking whether all (or how many of) the NEs also appear in the documents,
etc. All these results together with the outputs of the RTE system will be synthesized to make the final
decision.

4 Results

We have submitted two runs for this year’s AVE tasks, one for English and one for German. In the following, we
will first show the table of the results and then present an error analysis.

Table 1. Results of our submissions compared with last year’s

Submission
Runs Recall Precision F-measure Estimated QA

Performance
QA

Accuracy
100% VALIDATED (EN) 1 0.08 0.14 N/A N/A
50%VALIDATED (EN) 0.5 0.08 0.13 N/A N/A
Perfect Selection (EN) N/A N/A N/A 0.56 0.34
Best QA System (EN) N/A N/A N/A 0.21 0.21

dfki07-run1 (EN) 0.62 0.37 0.46 N/A 0.16
dfki07-run2 (EN) 0.71 0.44 0.55 N/A 0.21
dfki08run1 (EN) 0.78 0.54 0.64 0.34 0.24

100% VALIDATED(DE) 1 0.12 0.21 N/A N/A
50% VALIDATED (DE) 0.5 0.12 0.19 N/A N/A

Perfect Selection (DE) N/A N/A N/A 0.77 0.52
Best QA System (DE) N/A N/A N/A 0.38 0.38

dfki08run1 (DE) 0.71 0.54 0.61 0.52 0.43

In the table, we notice that both for English and German, our validation system outperforms the best QA

systems, which suggests the necessity of the validation step. Although there is a gap between the system
performance and the perfect selection, the results are quite satisfactory. If we compare this year’s results with
last year’s, the additional information does improve the results significantly.

Comparing the recall and precision, for both languages, the latter is worse. Therefore, we did some error
analysis to see whether there is still some space for improvements. An interesting example in the English data is
as follows,

Question: What is the name of the best known piece by Jeremiah Clarke? (id=0011)
Answer: a rondo (id=0011_7)
Document: The most famous piece known by that name, however, is a composition by
Jeremiah Clarke, properly a rondo for keyboard named Prince of Denmark's March.

Our system wrongly validated this answer, because “a rondo” is not the name of that music work. In fact,
what we need here is a special proper name recognizer which can differentiate whether the noun is a name for a
music work.

In the German data, other kinds of errors occur. For instance,
Question: Wer war Russlands Verteidigungsminister 1994? (id=00203)
Answer: Pawel Gratschow (id=0020_6)
Document: Wie der russische Verteidigungsminister Pawel Gratschow am Mittwoch in Tiflis
weiter bekanntgab, will Rußland insgesamt fünf Militärstützpunkte in den Kaukasus-
Republiken Georgien, Armenien und Aserbaidschan einrichten. 1994-02-02

The key problem here is that the year “1994” in the document might not be the year when the event happened,
but the year of the report. This asks us to further synthesize the information we have, i.e. NE annotation and
dependency parsing, to make better use of them.

5 Conclusion and Future Work

To sum up, in this paper, we described our participation of AVE 2008. Based on the experience of last year’s
participation, apart from the RTE core system, we add two extra components, NE recognizer and question
analyzer, to further improve the results. The strategy is quite successful according to the comparison of system
performances.

However, the problem has not been fully solved. Due to the noisy web data, filtering some documents in the
preprocessing step could be even more effective than working on the post-processing phase. Another direction
considered by us is to take a closer look at the different performances between different languages.

References

1. Bar-Haim, R., Dagan, I., Dolan, B., Ferro, L., Giampiccolo, D., Magnini, B. and Szpektor, I. 2006. The Second PASCAL
Recognising Textual Entailment Challenge. In Proceedings of the Second PASCAL Challenges Workshop on
Recognising Textual Entailment, Venice, Italy.

2. Bunescu, R. and Mooney, R. 2006. Subsequence Kernels for Relation Extraction. In Advances in Neural Information
Processing Systems 18. MIT Press.

3. Dagan, I., Glickman, O., and Magnini, B. 2006. The PASCAL Recognising Textual Entailment Challenge. In Quiñonero-
Candela et al., editors, MLCW 2005, LNAI Volume 3944, pages 177-190. Springer-Verlag.

4. Jenny Rose Finkel, Trond Grenager, and Christopher Manning. 2005. Incorporating Non-local Information into
Information Extraction Systems by Gibbs Sampling. Proceedings of the 43nd Annual Meeting of the Association for
Computational Linguistics (ACL 2005), pp. 363-370.

5. Giampiccolo, D., Magnini, B., Dagan, I., and Dolan, B. 2007. The Third PASCAL Recognizing Textual Entailment
Challenge. In Proceedings of the Workshop on Textual Entailment and Paraphrasing, pages 1–9, Prague, June 2007.

6. Gildea, D. and Palmer, M. 2002. The Necessity of Parsing for Predicate Argument Recognition. In Proceedings of the
40th Meeting of the Association for Computational Linguistics (ACL 2002):239-246, Philadelphia, PA.

7. Lin, D. 1998. Dependency-based Evaluation of MINIPAR. In Workshop on the Evaluation of Parsing Systems.
8. Neumann, G. and Piskorski, J. 2002. A Shallow Text Processing Core Engine. Journal of Computational Intelligence,

Volume 18, Number 3, 2002, pages 451-476.
9. Anselmo Peñas, Álvaro Rodrigo, Felisa Verdejo. 2007. Overview of the Answer Validation Exercise 2007. In the CLEF

2007 Working Notes.
10. Wang, R. and Neumann, G. 2007a. Recognizing Textual Entailment Using a Subsequence Kernel Method. In Proc. of

AAAI 2007.
11. Wang, R. and Neumann, G. 2007b. Recognizing Textual Entailment Using Sentence Similarity based on Dependency

Tree Skeletons. In Proceedings of the Workshop on Textual Entailment and Paraphrasing, pages 36–41, Prague, June
2007.

12. Wang, R. and Neumann, G. 2007c. DFKI–LT at AVE 2007: Using Recognizing Textual Entailment for Answer
Validation. In online proceedings of CLEF 2007 Working Notes, ISBN: 2-912335-31-0, September 2007, Budapest,
Hungary.

3 This “id” comes from “AVE2008-annotated-test-DE.xml”.

