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Abstract

This article describes the participation of the Image and Text Integration (ITI) group
from the United States National Library of Medicine (NLM) in the ImageCLEF 2009
medical retrieval track. Our methods encompass a variety of techniques relating to
document summarization and text- and content-based image retrieval. Our text-based
approach utilizes the Unified Medical Language System (UMLS) synonymy of con-
cepts identified in information requests and image-related text to retrieve semantically
relevant images. Our content-based approaches utilize similarity metrics based on com-
puted “visual concepts” to identify visually similar images. In this article we present an
overview of these approaches, discuss our experiences combining them into multimodal
retrieval strategies, and describe our submitted runs and results.

Categories and Subject Descriptors

H.3 [Information Storage and Retrieval]: H.3.1 Content Analysis and Indexing; H.3.3 Infor-
mation Search and Retrieval; H.3.7 Digital Libraries; I.4.8 [Image Processing and Computer
Vision]: Scene Analysis—Object Recognition

General Terms

Measurement, Performance, Experimentation
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1 Introduction

This article describes the participation of the Image and Text Integration (ITI) group from the
United States National Library of Medicine (NLM) in the ImageCLEF 2009 medical retrieval
track. This is our second year participating in ImageCLEFmed.

ImgeCLEFmed’09 [17] consists of two medical retrieval tasks. In the first task, a set of ad-hoc
information requests are given, and the goal is to retrieve the most relevant images pertaining to
each topic. In the second task, a set of case-based information requests are given, and the goal is
to retrieve the most relevant articles describing case studies pertaining to the topic case.



In the following sections, we describe our text-based approach (Section 2), which is suitable
for both retrieval tasks, and several content-based approaches (Section 3) to the ad-hoc retrieval
task. Our text-based approach relies on mapping information requests and image-related text to
concepts in the Unified Medical Language System (UMLS) [13] Metathesaurus, and our content-
based approaches analogously rely on mapping medical images to “visual concepts” using machine
learning techniques.

In Section 4, we suggest strategies for combining our text- and content-based approaches,
describe our submitted runs, and present their results. For the ad-hoc retrieval task, our best
run, a multimodal feedback approach, achieved a Mean Average Precision (MAP) of 0.38, and our
best automatic run, a text-based approach, achieved a MAP of 0.35. For the case-based retrieval
task our automatic text-based approach achieved a MAP of 0.34 and was ranked 1st among all
case-based run submissions.

2 Text-based Image Retrieval

In this section we describe our text-based approach to image retrieval. Effective text-based medical
image retrieval requires (1) a document representation that contains the most pertinent informa-
tion describing the content of the image and potential information needs and (2) a retrieval strategy
that is appropriate for the biomedical domain.

Our document representation consists of several automatically extracted search areas in addi-
tion to the image captions provided in the ImageCLEFmed’09 [17] collection. These fields include
the title of the article in which the image appears, the article’s abstract, a brief mention (one sen-
tence) of the image from the article’s full text, and the Medical Subject Headings (MeSH terms)
assigned to the article. MeSH is a controlled vocabulary created by NLM to index biomedical
articles. We provide a summary of each caption according to a structured representation of infor-
mation needs that are relevant to the principles of evidence-based practise [7]. This search area
includes automatically extracted fields relating to anatomy, diagnosis, population group, etc.

We use the Essie [12] search engine to index this collection of image documents and retrieve
relevant images. Essie was originally developed by NLM to support the online registry of clinical
research studies at ClinicalTrials.gov [15], and now it serves several other information retrieval
systems at NLM. Key features of Essie that make it particularly well-suited to the medical retrieval
track include its automatic expansion of query terms along synonymy relationships in the UMLS
Metathesaurus and its ability to weight term occurrences according the location of the document
in which they occur. For example, term occurrences in an image caption can be given a higher
weight than occurrences in the abstract of the article in which the image appears. Essie also
expands query terms to include morphological variants derived from the UMLS SPECIALIST
Lexicon instead of stemming.

To construct queries for each information request, we map topics to the UMLS using the
MetaMap [1] tool and represent terms relating to image modality, clinical findings, and anatomy
with their preferred UMLS names. Thus, each query consists of the conjunction of a set of UMLS
concepts that are expanded by Essie during the retrieval process. For extracted modality terms
that cannot be mapped to the UMLS, we perform an automatic term expansion based on a list of
image modalities (originally created by the authors using RadLex1 as a starting point[6]) which
we expanded using the UMLS synonymy and manually augmented with missing terms (mostly
abbreviations) based on the authors’ experience creating the ITI modalities hierarchy.

2.1 Case-based Retrieval Task

Our retrieval strategy for the case-based retrieval task is identical to that of the ad-hoc task. How-
ever, since the retrieval unit of the case-based task is an entire article, to construct an appropriate
document representation we perform a simple union of all the search areas for each image in the

1http://radlex.org/viewer.

http://radlex.org/viewer.


article. That is, a case-based document consists of a title, abstract, MeSH terms, and the caption,
mention, and structured caption summary of each image contained in the article.

3 Content-based Image Retrieval

In content-based image retrieval (CBIR), access to information is performed at a perceptual level
based on automatically extracted low-level features (e.g., color, texture, shape, etc.) [19]. The
performance of a CBIR system depends on the underlying image representation, usually in the
form of a feature vector. Due to the limitations of the low-level features in CBIR and motivated
by a learning paradigm, we explore classification at both the global collection level and the local
individual image level in our submitted runs for ImageCLEFmed’09 [17]. In addition to the
off-line supervised learning approach, we incorporate users’ semantic perceptions interactively in
the retrieval loop based on relevance feedback (RF) information. The following sections describe
our feature representation schemes and the retrieval methods applied to the various visual and
multimodal submitted runs.

3.1 Image Feature Representation

To generate the feature vectors at different levels of abstraction, we extract both visual concept-
based feature based on a “bag of concepts” model comprising color and texture patches from local
image regions [21] and various low-level global features including color, edge, and texture.

3.1.1 Visual Concept-based Image Representation

In the ImageCLEFmed’09 collection [18], it is possible to identify specific local patches in images
that are perceptually and/or semantically distinguishable, such as homogeneous texture patterns
in grey level radiological images and varying color and texture structures in microscopic pathology
and dermoscopic images. The content of these local patches can be effectively modeled as “visual
concepts” [21] by using supervised learning based classification techniques such as the Support
Vector Machine (SVM).

For concept model generation, we utilize a voting-based multi-class SVM known as one-against-
one or pairwise coupling (PWC) [11]. In developing training samples for this SVM, only local
image patches that map to visual concept models are used. To accurately automatically segment
and unambiguously and consistently label image segments, a fixed-partition based approach is
used to divide the entire image space into an (r × r) grid of non-overlapping regions. Manual
selection is applied to limit such patches in the training set to those that have a majority of
their area (80%) covered by a single concept. In order to train the SVMs based on the local
concept categories, a set of L labels are assigned as C = {c1, · · · , ci, · · · , cL}, where each ci ∈ C
characterizes a local concept category. The training set of the local patches that comprise color
and texture moment-based features, is annotated manually with the concept labels in a mutually
exclusive way. Images in the data set are annotated with local concept labels by partitioning each
image Ij into an equivalent r × r grid of l region vectors as {x1j , · · · ,xkj , · · · ,xlj}, where each
xkj
∈ <d is a d-dimensional combined color and texture feature vector. For each xkj

, the local
concept category probabilities are determined by the prediction of the multi-class SVMs:

pikj = P (y = i | xkj ), 1 ≤ i ≤ L. (1)

The category label of xkj is determined by the maximum probability score. Thus, the entire image
is represented as a two-dimensional index linked to the concept labels assigned for each region.
Based on this encoding scheme, an image Ij can be represented as a vector in a local concept
space as

fConcept
j = [f1j , · · · , fij , · · · fLj ]T (2)

where each fij corresponds to the normalized frequency of a concept ci, 1 ≤ i ≤ L in image Ij .
The feature vector fConcept is viewed as a local concept distribution from a probabilistic viewpoint.



According to the notion of total probability [9], an element fij can be defined as

fij =
l∑

kj=1

Pi|kj
Pk =

1
l

l∑
kj=1

Pi|kj
(3)

where Pk is the probability of a region selected from image Ij being the kjth region, which is 1/l,
and Pi|kj

is the conditional probability that the selected kjth region in Ij maps to the concept
ci. In the context of the concept vector f concept

j , the value of Pi|kj
is 1 if the region kj is mapped

to the ci concept, or 0 otherwise. Due to the crisp membership value, this feature representation
is sensitive to quantization errors. However, based on the probabilistic values of each region, an
image Ij is represented as fPVCV

j = [f̂1j
· · · f̂ij

· · · f̂Lj
]T, where

f̂ij
=

l∑
k=1

pikj
Pk =

1
l

l∑
k=1

pikj
; for i = 1, 2, · · · , L (4)

where pikj
is determined based on (1). In contrast to the simple concept vector f concept, this vector

representation considers not only the similarity of different region vectors from different concepts
but also the dissimilarity of those region vectors mapped to the same concepts.

3.1.2 Low Level Global Feature Representation

In addition to the visual concepts of local image patches, we extract the following global features:

• Color Feature: To represent the spatial structure of images, we utilize the Color Layout
Descriptor (CLD) of MPEG-7 [3]. The CLD represents the spatial layout of the images
in a compact form. It is obtained by applying the discrete cosine transformation (DCT)
on the 2D array of local representative colors in the YCbCr color space, where Y is the
luma component and Cb and Cr are the blue and red chroma components. Each channel is
represented by 8 bits and each of the 3 channels is averaged separately for the 8× 8 image
blocks. We extract a CLD with 10 Y , 3 Cb, and 3 Cr to form a 16-dimensional feature
vector.

Images may also be represented as Color Coherence Vector (CCV) [20], where a particular
color’s coherence is defined as the degree to which pixels of that color are members of large
similarly-colored regions. A CCV stores the number of coherent versus incoherent pixels
with each color. By separating coherent pixels from incoherent pixels, CCV’s provide finer
distinctions than color histograms.

• Edge Feature: To represent the global edge feature, the spatial distribution of edges are
utilized by the Edge Histogram Descriptor (EHD) [3]. The EHD represents local edge
distribution in an image by dividing the image into 4 × 4 sub-images and generating a
histogram from the edges present in each of these sub-images. Edges in the image are
categorized into five types—namely vertical, horizontal, 45◦ diagonal, 135◦ diagonal and
non-directional edges. Finally, a histogram with 16× 5 = 80 bins is obtained, corresponding
to a 80-dimensional feature vector.

In addition, a histogram of edge direction is constructed, where the edge information
contained in the images is processed and generated by using the Canny edge detection
algorithm (with σ = 1, Gaussian masks of size = 9, low threshold = 1, and high threshold
= 255). The corresponding edge directions are quantized into 72 bins of 5◦ each. Scale
invariance is achieved by normalizing the histograms with respect to the number of edge
points in the image.

• Texture Feature: We extract texture features from the grey level co-occurrence matrix
(GLCM) [10] of each image. In order to obtain efficient descriptors, the information con-
tained in GLCM is traditionally condensed into a few statistical features. Four GLCM’s
for four different orientations (horizontal 0◦,vertical 90◦, and two diagonals—45◦ and 135◦)



are obtained and normalized to the entries [0,1] by dividing each entry by total number of
pixels. Higher order features, such as energy, entropy, contrast, homogeneity and maximum
probability are measured based on averaging features in GLCMs to form a 20-dimensional
feature vector for an entire image.

• Average Grey Level Feature:
For different categories or within the same category, images in a collection may vary in

size and undergo translations. Resizing them into a thumbnail of a fixed size can reduce
the translational error and some of the noise due to the artifacts present in the images,
especially for images in medical domain. Hence, a feature extraction is performed from
the low-resolution scaled images where each image is converted to a gray-level image (one
channel only) and scaled down to the size 64 × 64 regardless of the original aspect ratio.
Next, the down-scaled image is partitioned further with a 16× 16 grid to form small blocks
of (4×4) pixels. The average gray value of each block is measured and concatenated to form
a 256-dimensional feature vector.

• Other Features: We extract two additional features using the Lucene image retrieval
(LIRE) library [14] including the Color Edge Direction Descriptor (CEDD) and the Fuzzy
Color Texture Histogram (FCTH). CEDD incorporates color and texture information into
one single histogram and requires low computational power compared to MPEG-7 descrip-
tors. To extract texture information, CEDD uses a fuzzy version of the five digital filters
proposed by the MPEG-7 EHD, which forms 6 texture areas [4]. This descriptor is appropri-
ate for retrieving images even in cases with deformation, noise and smoothing. In contrast,
FCTH uses the high frequency bands of the Haar Wavelet Transform in a fuzzy system to
form 8 texture areas [5].

3.2 Fusion-based Image Similarity Matching

It is difficult to find a unique representation to compare images accurately for all types of queries.
Feature descriptors at different levels of image representation are in diverse forms and are often
complementary in nature. Data fusion, or multiple-evidence combination, describes a range of
techniques where multiple pieces of information are combined to achieve improvements in retrieval
effectiveness [8]. CBIR also adopts some of the ideas from data fusion, where the most commonly
used approach is a linear combination of similarity matching scores of different features with pre-
determined weights. In this framework, the similarity between a query image Iq and target image
Ij is described as

Sim(Iq, Ij) =
∑
F

ωF SimF (Iq, Ij) (5)

where F ∈ {Concept,EHD,CLD,CCV,CEDD,FCTH, etc.} and ωF are the weights within the
different image representations. We now present several linear combination schemes including
ones based on the online category prediction of a query image and on relevance feedback.

3.2.1 Category-Specific Similarity Fusion

In this approach, the category of a query image at a global level is determined based on the SVM
learning on a training set of 5000 images of 32 manually assigned and mutually exclusive categories
from the ImageCLEFmed’05-07 collections [16]. Images are classified into three levels of detail as
shown in Figure 1. For the SVM training, the radial basis function (RBF) is used and a 10-fold
cross-validation is conducted to find the best tunable parameters C and γ of the RBF kernel. Only
the best performing features are used in SVM classification. Our SVM implementation is based
on the LIBSVM package [2].

Based on the online categorization of a query image, precomputed category-specific feature
weights (e.g., ωF ) are subsequently utilized in the linear similarity matching function. Based
on this scheme, for example, a color feature will have more weight for microscopic pathology



Figure 1: Classification structure of the training set.

and dermatology images, whereas edge- and texture-related features will have more weight for
radiographs.

In addition, to find the optimal weights we consider the 10-fold cross validation accuracy of
each feature. The accuracies are based on SVM classification of the images in the training set
of 5000 images. The weights are normalized based on the accuracies of the features subject to
0 ≤ ωF ≤ 1 and

∑
ωF = 1 for F ∈ {Concept,EHD,CLD,CCV,CEDD,FCTH, etc.}.

3.2.2 Image Similarity Fusion Based on Relevance Feedback (RF)

We used a feedback-based similarity fusion technique, where feature weights are updated at each
iteration by considering both the precision and the rank order of relevant images in individual
result lists. As a result, the final rank-based retrieval is obtained through an adaptive and linear
weighted combination of overall similarity, fusing individual level similarities.

In this approach, to update the feature weights (e.g., ωF ), we first perform similarity matching
based on equal weighting of each feature. After this initial retrieval, a relevance judgement is
manually provided for the top K returned images. We then measure the effectiveness of the top
K images as

E =
∑K

i=1 Rank(i)
K/2

× P (K) (6)

where Rank(i) = 0 if the image in rank position i is not relevant and Rank(i) = (K− i)/(K− 1)
for relevant images. Hence, the function Rank(i) is monotonically decreasing from one (if the
image at rank position one is relevant) down to zero (e.g., for a relevant image at rank position
K). On the other hand, P (K) = RK/K is the precision at the top K, where Rk is the number of
relevant images in the top K retrieved results. Hence, equation (6) is basically the product of two
factors: rank order and precision. The rank order factor takes into account the position in the
retrieval set of the relevant images, whereas the precision is a measure of the retrieval accuracy,
regardless of the position. Generally, the rank order factor is heavily biased for the position in
the ranked list over the total number of relevant images, and the precision value ignores the rank
order of the images. To balance both criteria, we use a performance measure that is the product
of the rank order factor and precision. If there is more overlap between the relevant images of
a particular retrieval set and the one provided through feedback, the performance score will be
higher. Both terms on the right side of equation (6) will be one if all the top K returned images
are considered relevant. The raw performance scores obtained by the above procedure are then
normalized by the total score as Ê = ω̂F to generate the updated feature weights respectively.
For the next iteration of retrieval with the same query, these modified weights are utilized for the
similarity matching function by

Sim(Iq, Ij) =
∑
F

ω̂F SimF (Iq, Ij) (7)

This weight updating process might be continued as long as relevance judgements are available or
until no changes are noticed due to the system convergence.



4 Submitted Runs and Results

This section provides descriptions and retrieval results of our submitted textual and visual runs
as well as our attempts at integrating the text-based and CBIR-based approaches.

4.1 Ad-hoc Retrieval Task

We submitted the following 9 runs for the 25 ad-hoc topics [17]:

1. ceb essie2 automatic: This is a textual run utilizing the approach described in Section 2.
Based on our previous experience with the ImageCLEFmed’08 [18] collection, we weighted
the caption and title search areas more heavily than the other areas.

2. cbir fusion category: This is a visual run based on the category-specific similarity fusion
approach described in Section 3.2.1. For this run, we selected only one query image for
each topic and considered all features for similarity fusion as described in Section 3.1.
For each query, the category was determined based on SVM trained on 5000 images from
ImageCLEFmed’05-07 collections [16]. The individual preassigned feature weights were se-
lected based on the category-specific rules and utilized in the linear combination of similarity
matching functions.

3. cbir fusion merge: This is a visual run similar to the above (cbir fusion category), but in-
stead of only considering one image for each topic, we considered every query image for each
topic and generated separate ranked lists for each retrieval result. For each topic, we took
the top 500 retrieved images corresponding to each query image and merged them into a
single ranked list for the topic.

4. cbir fusion cv merge: This is a visual run similar to the above (cbir fusion merge), but
instead of utilizing category-specific rules for feature weights, we found the optimal weights
by considering the normalized cross validation accuracies of each feature as described in
Section 3.2.1. We merged the top 500 retrieved images for each query image into a single
ranked list as before.

5. multimodal text qe cbir: This is a mixed run that combines the approaches described in ceb
essie2 interactive and cbir fusion category. For each topic, we first performed the textual
search. We then manually selected 3–5 of the highest ranked retrieved images as relevant.
Finally, we computed the mean vector of these retrieved images and used it as the query for
the visual search.

6. multimodal text rerank: This is a mixed run that combines the approaches described in ceb
essie2 interactive and cbir fusion category. For each topic, we first performed the textual
search and then re-ranked the retrieved images based on the scores of the visual search.

7. ceb interactive with pad: This is a mixed run that interactively combines all of the above
approaches (1–6) in a text-based relevance feedback approach. For each topic, we manually
selected relevant images from the top ten retrieved images of each of the above approaches.
We then selected additional query terms from the document representation of the relevant
images (described in Section 2), and used this expanded query as the input to the textual
search described in ceb essie2 automatic. We ranked these additional retrieved images below
the ones manually selected as relevant.

8. text manual cbir rf: This is a mixed run similar to the approach described in multimodal
text qe cbir. However, instead of manually choosing 3–5 images from the textual retrieval
results, we automatically selected the top 5 images from ceb interactive with pad. We com-
puted the mean vector of these images and used it as the input query to the approach
described in in cbir fusion category.



File Name ID Mode Type Recall MAP P@5

ITI 26 8 1244841659565.txt ceb interactive with pad Mixed Feedback 0.65 0.38 0.74
ITI 26 8 1243447590820.txt ceb essie2 automatic Textual Automatic 0.66 0.35 0.65
ITI 26 8 1244811028909.txt multimodal text rerank Mixed Automatic 0.66 0.27 0.49
ITI 26 8 1244842970604.txt text manual cbir rf Mixed Feedback 0.21 0.04 0.28
ITI 26 8 1244811851777.txt multimodal text qe cbir Mixed Manual 0.19 0.04 0.27
ITI 26 8 1244813032166.txt cbir fusion cv merge Visual Automatic 0.12 0.01 0.09
ITI 26 8 1244813305029.txt cbir fusion merge Visual Automatic 0.12 0.01 0.08
ITI 26 8 1244846828228.txt cbir rf Visual Feedback 0.13 0.01 0.06
ITI 26 8 1244812535094.txt cbir fusion category Visual Automatic 0.13 0.01 0.06

Table 1: Results of the 9 Submitted Runs for the Ad-hoc Task

File Name ID Mode Type Recall MAP P@5

ITI 26 8 1243520633864.txt ceb cases essie2 automatic Textual Automatic 0.78 0.34 0.32

Table 2: Results of the Submitted Run for the Case-based Task

9. cbir rf: This is a visual feedback approach based on cbir fusion category. We manually se-
lected 5 highly ranked images from the visual retrieval results as relevant. We then computed
the mean vector of these retrieved images and used it as the query for another iteration of
the visual search.

Table 1 presents the results of our submitted runs for the ad-hoc topics. ceb interactive with pad,
a multimodal relevance feedback approach, achieved the highest precision (MAP = 0.38) of our
submitted runs. This run was ranked 1st among all submitted multimodal approaches and 1st
among all feedback approaches, although its MAP is lower than some automatic runs submitted
by other participating groups. The noticeable increase in Precision at 5 retrieved images (P@5)
of ceb interactive with pad is inherent in its retrieval strategy—the highest ranked images were
manually selected from the top 10 retrieved images from 6 other approaches. ceb essie2 automatic
(MAP = 0.35) ranked 14th among automatic textual runs (ITI the 5th ranked group). cbir fusion
merge (MAP = 0.01) ranked 1st among submitted visual runs although this result is likely not
statistically significant. Finally, among multimodal automatic approaches, multimodal text rerank
(MAP = 0.27) ranked 8th (ITI the 4th ranked group).

For our three best runs, we evaluated the statistical significance of the increase in precision
using the two-sided Wilcoxon signed rank test. At the 0.05 significance level, the differences
in precision between ceb interactive with pad and ceb cases essie2 automatic and between ceb
cases essie2 automatic and multimodal text rerank are not significant (p = 0.059 and p = 0.057,
respectively), which is consistent with the null hypothesis of having the same mean. However, ceb
interactive with pad significantly improves the precision of multimodal text rerank (p < 0.001).

4.2 Case-based Retrieval Task

We submitted the following run for the 5 case-based topics [17]:

1. ceb cases essie2 automatic: This is a textual run based on the approach described in Section
2. We weighted the caption, title and anatomy search areas heavier than the other areas and
favored articles indexed with MeSH terms indicative of case studies or clinical trials. Ex-
amples of such terms include “Case Reports,” “Case-Control Studies” and “Cross-Sectional
Studies” among several others.

Table 2 presents the retrieval results of our submitted case-based run. ceb cases essie2 automatic
achieved a MAP of 0.34 and was ranked 1st among all case-based submissions. sinai TA cbt
(MAP = 0.26) was ranked 2nd.



5 Conclusion

This article describes the retrieval strategies of the ITI group for the ImageCLEF 2009 medical
retrieval track. For the ad-hoc task, we submitted 9 runs that include various combinations of our
text- and content-based approaches in different retrieval scenarios. We submitted one automatic
textual run for the case-based task. Many of our submitted runs were successful—most notably
our case-based run, which was ranked 1st among all case-based run submissions.

Our results indicate that content-based approaches to image retrieval are not yet advanced
enough to achieve the precision of text-based approaches, and in many cases can reduce the
precision of text-based approaches when combined in a multimodal automatic scheme. However,
precision can be improved by combining text- and content-based approaches in relevance feedback
retrieval scenarios.
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