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Abstract. In this paper we present the common effort of Lear and XRCE for
the ImageCLEF Visual Concept Detection and Annotation Task. We first sought
to combine our individual state-of-the-art approaches: the Fisher vector image
representation, with the TagProp method for image auto-annotation. Our second
motivation was to investigate the annotation performance by using extra informa-
tion in the form of provided Flickr-tags.
The results show that using the Flickr-tags in combination with visual features im-
proves the results of any method using only visual features. Our winning system,
an early-fusion linear-SVM classifier, trained on visual and Flickr-tags features,
obtains 45.5% in mean Average Precision (mAP), almost a 5% absolute improve-
ment compared to the best visual-only system. Our best visual-only system ob-
tains 39.0% mAP, and is close to the best visual-only system. It is a late-fusion
linear-SVM classifier, trained on two types of visual features (SIFT and colour).
The performance of TagProp is close to our SVM classifiers.
The methods presented in this paper, are all scalable to large datasets and/or many
concepts. This is due to the fast FK framework for image representation, and due
to the classifiers. The linear SVM classifier has proven to scale well for large
datasets. The k-NN approach of TagProp, is interesting in this respect since it
requires only 2 parameters per concept.

Keywords: Image Classification, Auto Annotation, Multi-Modal, Linear SVM,
Fisher Vectors, TagProp

1 Introduction

In our participation to the ImageCLEF Visual Concept Detection and Annotation Task
(VCDT) we focused on two main aspects. First, we wanted to investigate the effect of
using the available modalities, visual (image) and textual (Flickr-tags), both at train and
test time. Our second goal was to compare some of our recent techniques that potentially
scale to large data sets with many concepts on the proposed task.

The VCDT is a multi-label classification challenge on the MIR Flickr dataset [5].
It aims at automatic annotation of 10, 000 test images with multiple concepts, learned
from 8, 000 train images. The 93 concepts include abstract categories (like Partylife),
the time of day (like day or night), persons (like no person visible, small or big group)
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and quality (like blurred or underexposed). For a complete overview of the challenge
see [12].

This year’s challenge allowed the use of ‘multi-modal approaches that consider vi-
sual information and/or Flickr user tags and/or EXIF information’. For all images in the
train and test set the original tag data of the Flickr users (further denoted as Flickr-tags)
was provided. The set of Flickr-tags contains over 53, 000 different tags, from which
we use a subset of most occurring tags. Also, for most of the photos the EXIF data was
provided, however in our experiments we did not use this information.

In Fig. 1 an image from the database is shown, together with the Flickr-tags and the
annotation concepts. We see that the tags and annotation concepts are quite complemen-
tary. While the Flickr-tags of an image corresponds to concepts which are not necessary
visually perceptible (e.g . Australia), the image annotation system is interested in the vi-
sual concepts (e.g . sky and clouds).

Although the objective of a user tagging his images is different from a (visual)
keyword based retrieval system, the Flickr-tags might offer useful information in the
annotation task. To analyse our first aspect we have used the Flickr-tags as textual rep-
resentation of an image, and conducted experiments with systems using either both
modalities, or using only the visual modality. The results (see Section 4) show that in-
deed the Flickr-tags are complementary to the visual information. All our systems using
both modalities outperform any of the visual only systems.

Concerning the second aspect, in spite of the fact that the task was relatively small
especially in the number of images, we tested methods that potentially scale to large
annotated data sets, e.g . up to hundreds of thousands of labelled images, and/or many
concepts. Hence, we used image representations and classifiers which are efficient both
in learning and in classifying. Efficiency includes (1) the cost of computing the repre-
sentations, (2) the cost of learning classifiers on these representations, and (3) the cost
of classifying a new image.

As our image representation we use the Improved Fisher vectors [13, 14], which are
based on the Fisher Kernel (FK) framework [6]. The Fisher vector extends the popular
bag-of-visual-words (BOV) histograms [2], by not only including word counts, but also

Flickr-tags
Boardwalk, Sunset, Wilsonsprom, Wilsonspromontory, Victo-
ria, Australia, 3kmseoftidalriver, Explore

Annotation-concepts
Landscape Nature, No Visual Season, Outdoor, Plants, Trees,
Sky, Clouds, Day, Neutral Illumination, No Blur, No Persons,
Overall Quality, Park Garden, Visual Arts, Natural

Fig. 1. Example image with Flickr user tags, and with the ground truth annotation concepts.
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additional information about the distribution of the descriptors. Due to the use of this
additional information the visual code book in a FK approach could be much smaller
than in the BOV approach. We use a code book of only 256 words, while a size of
several thousands is common in BOV approaches. Since the size of the visual code
book determines largely the computational cost for the descriptor, this makes the FK a
very fast descriptor.

On the classifier part, we compare a per-keyword-trained linear Support-Vector-
Machine (SVM) [16] to TagProp, a k-NN classifier with learned neighbourhood weights
[4]. The training cost of a linear SVM is linear in the number of images [7, 15], therefore
they can be efficiently learned with large quantities of images [10]. The advantage of
the k-NN classifier is that it requires only 2 parameters per keyword, additional training
for a new keyword is therefore very fast. For both classifiers we have used the same
image and text representations, therefore we can fairly compare the results of the two
methods.

Note that these representations and methods have shown state-of-the-art perfor-
mances [4, 13, 14] on different tasks on several publicly available databases. However
they were not necessarily compared or combined. The ImageCLEF VCDT challenge
gave us a good opportunity to do this.

The rest of the paper is organized as follows. In Section 2 we describe the FK
framework and the recent improvements on Fisher vectors. In Section 3 we give an
overview of our TagProp method. Then in Section 4 we present in more detail the
experiments we did, the submitted runs and the obtained results. Finally, we conclude
the paper in Section 5.

2 Visual Features - the Improved Fisher vector

As image representation, we use the Improved Fisher vector [13, 14]. The Fisher vector
is an extension of the bag-of-visual-words (BOV) representation, instead of character-
izing an image with the number of occurrences of each visual word, it characterizes the
image with a gradient vector derived from a generative probabilistic model. The gradi-
ent of the log-likelihood describes the contribution of the parameters to the generation
process.

We assume that the local descriptors X = {xt, t = 1 . . . T} of an image are gener-
ated by a Gaussian mixture model (GMM) uλ with parameters λ. X can be described
by the gradient vector [6]:

GXλ =
1
T
∇λ log uλ(X). (1)

A natural kernel on these gradients is using the Fisher information matrix [6]:

K(X,Y ) = GXλ
′
F−1
λ GYλ , Fλ = Ex∼uλ

[∇λ log uλ(x)∇λ log uλ(x)′] . (2)

As Fλ is symmetric and positive definite, F−1
λ has a Cholesky decomposition F−1

λ =
L′λLλ. Therefore K(X,Y ) can be rewritten as a dot-product between normalized vec-
tors Gλ with: GXλ = LλG

X
λ . We will refer to GXλ as the Fisher vector of X .
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As generative model we use a GMM: uλ(x) =
∑M
i=1 wiui(x), with parameters

λ = {wi, µi, Σi, i = 1 . . .M}. Gaussian ui has mixture weight wi, mean vector µi,
and covariance matrix Σi. We assume diagonal covariance matrix Σi and denote the
variance vector by σ2

i . Let GXµ,i (resp. Gσ,i) be the normalized gradient vectors with re-
spect to the µi (resp. σi) of Gaussian i. The final gradient vector GXλ is the concatenation
of the GXµ,i and GXσ,i vectors for i = 1 . . .M , and is therefore 2MD-dimensional.

The Improved Fisher vector [14], takes the Fisher vector as described above and
adds L2 normalization and Power normalization, both described in details below.

2.1 L2 normalization

It has been shown that the Fisher vector approximately discards image-independent (i.e .
background) information [14]. However the vector depends on the proportion of image-
specific information w.r.t. to the proportion of background information. We use the L2
norm to cancel this effect.

According to the law of large numbers Eq. 1 can be approximated as: GXλ ≈
∇λ

∫
x
p(x) log uλ(x)dx. Assume that p is a mixture containing a background com-

ponent (uλ) and an image-specific component (with image-specific distribution q), and
let ω denote the mixing weight:

GXλ ≈ ω∇λ
∫
x

q(x) log uλ(x)dx+ (1− ω)∇λ
∫
x

uλ(x) log uλ(x)dx. (3)

Since the parameters λ are estimated with a Maximum Likelihood approach (i.e . to
maximizeEx∼uλ

log uλ(x)), the derivative of the background component approximates
zero. Consequently, the FV equals GXλ ≈ ω∇λ

∫
x
q(x) log uλ(x)dx, it focuses on the

image-specific content, but depends on the proportion of image specific component ω.
Therefore, two images containing the same object but at different scales will have

different signatures. To remove the dependence on ω, we L2-normalize the vector GXλ
or equivalently GXλ .

2.2 Power normalization

The Power normalization is motivated by an empirical observation: Fisher vectors be-
come sparser as the number of Gaussians increases. Because fewer descriptors xt are
assigned (with a significant probability) to each Gaussian, and the derivative of a Gaus-
sian without assigned descriptors is zero. Hence, the distribution of features in a given
dimension becomes more peaky around zero, as shown in Fig 2.

Linear classification requires a dot-product kernel, however the L2 distance is a
poor measure of similarity on sparse vectors. Therefore we “unsparsify” the vector z by
using:

f(z) = sign(z)|z|α, (4)

where 0 ≤ α ≤ 1 is a parameter of the normalization. The optimal value of α may vary
with the number M of Gaussians in the GMM. Earlier experiments have shown that
α = 0.5 is a reasonable value for 16 ≤ M ≤ 512, so this value is used throughout the
experiments. In Fig 2 the effect of this normalization is shown.
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Fig. 2. Distribution of the values in the first dimension of the L2-normalized Fisher vector. (a), (b)
and (c): resp. 16 Gaussians, 64 Gaussians and 256 Gaussians with no power normalization. (d):
256 Gaussians with power normalization (α = 0.5). Note the different scales. All the histograms
have been estimated on the 5,011 training images of the PASCAL VOC 2007 dataset.

When combining the power normalization and the L2 normalization, we apply the
power normalization first and then the L2 normalization. We note that this does not af-
fect the analysis of the previous section: the L2 normalization on the power-normalized
vectors sill removes the influence of the mixing coefficient ω.

2.3 Spatial Pyramids

Spatial pyramid matching was introduced by Lazebnik et al . to take into account the
rough geometry of a scene [9]. It consists in repeatedly subdividing an image and com-
puting histograms of local features at increasingly fine resolutions by pooling descriptor-
level statistics. We follow the splitting strategy adopted by the winning systems of PAS-
CAL VOC 2008 [3], and extract 8 Fisher vectors per image: one for the whole image,
three for the top, middle and bottom regions and four for each of the four quadrants.

In the case where Fisher vectors are extracted from sub-regions, the “peakiness”
effect will be even more exaggerated as fewer descriptors are pooled at a region-level
compared to the image-level. Hence, the power normalization is likely to be even more
beneficial in this case. When combining power normalization and L2 normalization
with spatial pyramids, we normalize each of the 8 Fisher vectors independently.

3 Image Annotation with TagProp

In this section we present TagProp [4, 17], our weighted nearest neighbour annotation
model. We assume that some visual similarity or distance measures between images are
given, abstracting away from their precise definition. We proceed by discussing how to
use rank based weights with multiple distances in Section 3.2 and we extend the model
by adding a per-word sigmoid function that can compensate for the different frequencies
of annotation terms in the database, in Section 3.3.

3.1 A Weighted Nearest Neighbour Model

In the following we use yiw ∈ {−1,+1} to denote whether concept w is relevant for
image i or not. The probability that concept w is relevant for image i, i.e. p(yiw = +1),
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is obtained by taking a weighted sum of the relevance values for w of neighbouring
training images j. Formally, we define:

p(yiw = +1) =
∑
j

πijp(yiw = +1|j), (5)

p(yiw = +1|j) =

{
1− ε for yjw = +1,
ε otherwise.

(6)

The πij denote the weight of training image j when predicting the annotation for image
i. To ensure proper distributions, we require that πij ≥ 0, and

∑
j πij = 1. The in-

troduction of ε is a technicality to avoid zero prediction probabilities when none of the
neighbours j have the correct relevance value. In practice we fix ε = 10−5, although
the exact value has little impact on performance.

The parameters of the model control the weights πij . To estimate these parameters
we maximize the log-likelihood of predicting the correct annotations for training images
in a leave-one-out manner. Taking care to exclude each training image as a neighbour
of itself, i.e. by setting πii = 0, our objective is to maximize the log-likelihood:

L =
∑
i,w

ln p(yiw). (7)

3.2 Rank-based weighting

In our experiments we use rank-based TagProp, which has shown good performance on
the MIR Flickr database [17]. When using rank-based weights we set πij = γk if j is
the k-th nearest neighbour of i. This directly generalizes a simple K nearest neighbour
approach, where the K nearest neighbours receive an equal weight of 1/K. The data
log-likelihood (7) is concave in the parameters γk, and can be maximised using an EM-
algorithm or a projected-gradient algorithm. In our implementation we use the latter
because of its speed. To limit the computational cost of the learning algorithm we only
allow non-zero weights for the first K neighbours, typically K is in the order of 100
to 1000. The number of parameters of the model then equals K. By pre-computing the
K nearest neighbours of each training image the run-time of the learning algorithm is
O(NK) with N the number of training images.

In order to make use of several different distance measures between images we can
extend the model by introducing a weight for each combination of rank and distance
measure. For each distance measure d we define a weight πdij that is equal to γdk if
j is the k-th neighbour of i according to the d-th distance measure. The total weight
for an image j is then given by the sum of weights πij =

∑
d π

d
ij obtained using

different distance measures. Again we require all weights to be non-negative and to
sum to unity:

∑
j,d π

d
ij = 1. In this manner we effectively learn rank-based weights

per distance measure, and at the same time learn how much to rely on the rank-based
weights provided by each distance measure.

In the experiments we use a fixed K = 1000 independently from the number of
distance measures used. So the effective number of k-NN per distance measures varies.
E.g . when two distance measures are used, we take the 500 NN per distance measure.
An image might occur twice, as neighbour according to both distance measures.
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3.3 Word-specific Logistic Discriminants

The weighted nearest neighbour model introduced above tends to have relatively low
recall scores for rare annotation terms. This effect is easy to understand as in order to
receive a high probability for the presence of a term, it needs to be present among most
neighbours with a significant weight. This, however, is unlikely to be the case for rare
annotation terms.

To overcome this, we introduce word-specific logistic discriminant model that can
boost the probability for rare terms and possibly decrease it for frequent ones. The
logistic model uses weighted neighbour predictions by defining:

p(yiw = +1) = σ(αwxiw + βw), (8)

xiw =
∑
j

πij p(yiw = +1|j), (9)

where σ(z) = (1+exp(−z))−1 is the sigmoid function, and xiw is the weighted nearest
neighbour prediction for term w and image i c.f. Eq. 5. The word-specific models adds
two parameters per annotation term.

In practice we estimate the parameters {αw, βw} and πij in an alternating fash-
ion. For fixed πij the model is a logistic discriminant model, and the log-likelihood
is concave in {αw, βw}, and can be trained per term. In the other step we optimize
the parameters that control the weights πij using gradient descent. We observe rapid
convergence, typically after alternating the optimization three times.

4 ImageCLEF Experiments

In this section we describe the experiments for the VCDT. We evaluate the performance
of systems using the textual and visual modality and compare them to visual-only sys-
tems. Also, we investigate the performance of per-keyword-trained SVMs compared to
TagProp. See Table 1 for an overview of our submitted runs.

4.1 Dataset and Features

The dataset of this year’s ImageCLEF VCDT was the MIRFlickr dataset [5, 12]. In
contrast to last year, there were more concept classes (93) and the training set was
extended to 8, 000 images. Also, in the ‘multi-modal’ approach it was allowed to use
the provided textual ‘Flickr-tag’ information during both the training phase and test
phase.

Features We extract our low level visual features from 32 × 32 pixel patches on reg-
ular grids (every 16 pixels) at five scales. Besides using 128-D SIFT-like Orientation
Histograms (ORH) descriptors [11], we also use simple 96-D colour features (COL) in
the experiments. To obtain the latter, a patch is subdivided into 4 × 4 sub-regions (as
for the SIFT descriptor) and in each sub-region the mean and standard deviation for the
three R, G and B channels are computed. Both SIFT and colour features are reduced to
64 dimensions using Principal Component Analysis (PCA).
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Table 1. Overview of the submitted runs

Name Modality Nr Features Remark

SVM Mixed 7 Equally weighed late fusion
SVM Mixed 7 Equally weighed early fusion

SVM Visual 6 Equally weighed late fusion
SVM Visual 6 Equally weighed early fusion
SLR Visual 6 Equally weighed late fusion

TagProp Mixed 7
TagProp Mixed 3 Visual distance summed over three spatial layouts

TagProp Visual 6
TagProp Visual 2 Visual distance summed over three spatial layouts

In all our experiments, we use GMMs with M = 256 Gaussians to compute the
Fisher vectors (referred also to as FV in which follows). The GMMs are trained us-
ing the Maximum Likelihood (ML) criterion and a standard Expectation-Maximization
(EM) algorithm.

We extracted visual features using three spatial layouts (1× 1, 2× 2, and 1× 3) as
described in Section 2.3. The dimensionality of each FV is M × (2 ∗ 64), since we take
the derivative w.r.t. to mean and (diagonal) covariance. For each layout the component
Fisher vectors were simply concatenated (e.g . 3 FVs in the 1× 3 layout).

In some of the experiments we also use textual information (here the Flickr-tags).
As textual representation for an image we use the binary absence/presence vector of
the 698 most common tags among the over 53.000 provided Flickr-tags. We required
each tag to be present in both the train-set and test-set, and for each tag to occur at least
25 times. This binary feature vector for each image i, is L2 normalized (denoted by
ti). The tag-similarity sTij between the tags of image i and image j is the dot-product:
sTij = ti · tj .

4.2 SVM Experiments

In these experiments we wanted to investigate on one hand the effect of using both
visual and textual modalities, and on the other hand the different fusion techniques
(early and late) in this context. Since we use the FV representation, with the corre-
sponding dot-product similarities, we use linear SVM’s for all experiments. In all our
experiments, we used the LIBSVM package [1] with C = 1 (some preliminary cross-
validation results have shown this is a reasonable choice for this task).

Late Fusion For the late fusion experiments we have learned for each concept a clas-
sifier per low level feature (FV-ORH, FV-COL) and per spatial-layout (1x1, 2x2, 1x3)
leading to 6 visual classifiers per concept. In additional, we trained a classifier per con-
cept on the textual features (ti). The scores of the Late Fusion SVM are obtained by



LEAR & XRCE participation to VCDT ImageCLEF 2010 9

averaging the scores of the individual classifiers with equal weights. For the mixed
modality we average over 7 scores, and for the visual-only over 6 scores.

We have also included a visual-only late fusion experiment using Linear Sparse
Logistic Regression (SLR) [8], instead of SVM. SLR is a logistic regression classifier
with a Laplacian prior. It uses the log-loss (instead of the hinge loss), and the proba-
bilistic output might be more interpretable. Nevertheless, on all the measurements the
corresponding SVM outperformed the SLR run (see Table 2).

Early Fusion For the early fusion experiments we have to concatenate the feature vec-
tors. Since we use the dot-product kernel Kd(i, j), concatenation of feature vectors is
equivalent to the Early Fusion kernel: KEF(i, j) =

∑
dKd(i, j). We learn one SVM

per concept using this kernel. We have experimented with visual-only (d = {1, . . . , 6})
and mixed modality (d = {1, . . . , 7}) classifiers.

Scoring Note that only the final scores (after either late or early fusion) were normalized
to be between 0 and 1, as required. We defined our confidence score as: x̄ = (x −
min(X))/(max(X) −min(X)). This normalization does not affect the ordering, and
therefore does not influence the per concept evaluation. The threshold for the binary
decision (for per image evaluation) was set to 0 on the original scoring function x.

4.3 TagProp Experiments

Concerning TagProp we wanted to investigate on one hand the performance improve-
ment by using the textual modality, and on the other hand the performance difference
between SVM and TagProp using the FV representation. Therefore we have used ex-
actly the same features, and distance measures, in these experiments as in the previous
section. We have followed the word-specific rank-based TagProp, as described in Sec-
tion 3. For all experiments we have used K = 1000, which is a good choice on this
dataset as shown in [17].

We have ran two different sets of experiments using TagProp, one with and one
without combining the spatial-layouts. When combining the different spatial-layouts
we sum over the kernels Kd(i, j) of the three spatial layouts to compute a single FV-
ORH and a single FV-COL kernel. This is equivalent to early fusion of the spatial layout
vectors. Using these combined visual kernels reduces the number of similarities used
in TagProp, therefore effectively more neighbours per similarity are used, which might
result in a better set of nearest neighbours. The 3rd (resp 7th) feature (see Table 1) is
the textual kernel based on ti. To obtain K = 1000 nearest neighbours from D differ-
ent similarity measures, we select from each similarity measure the Kd = ceil(K/D)
neighbours, and concatenate those into K = {K1, . . . ,KD}.

The output of TagProp is a probability value, therefore we use it directly as the
confidence score. For the binary decision scores we use a threshold of .5.

4.4 Analysis of the Results

Performance evaluation To determine the quality of the annotations five measures were
used, three for the evaluation per concept and two for the evaluation per photo. For the
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Table 2. Overview of the performance of the different submissions. For reference we have in-
cluded the best scoring (according to mAP) results of several competitors.

Run Modality mAP EER AUC F-ex OS

SVM Early Fusion V&T 45.5 23.9 82.9 65.5 65.6
SVM Late Fusion V&T 43.7 24.3 82.6 62.4 63.7
TagProp CVD D3 V&T 43.7 24.5 82.4 60.1 41.1
TagProp D7 V&T 43.5 24.6 82.1 60.2 41.1

UvA MKL Mixed Mixed V 40.7 24.4 82.6 68.0 59.1

SVM Late Fusion V 39.0 25.8 80.9 62.7 63.8
SVM Early Fusion V 38.9 26.3 80.5 63.9 64.5
SLR Late Fusion V 37.1 26.1 80.6 60.0 58.2
TagProp CVD D2 V 36.4 27.3 79.3 58.0 38.5
TagProp D6 V 36.2 27.5 78.7 58.2 38.7

HHI S-IQ V 34.9 28.6 78.2 62.8 63.6
IJS run1 V 33.4 28.1 78.8 59.6 59.5
MEIJI text and visual words V&T 32.6 35.9 63.7 57.2 36.6
CNRS Mean Score 50 V&T 29.6 35.2 70.2 35.1 39.1

evaluation per concept the mean Average Precision (mAP), the equal-error-rate (EER),
and the area-under the curve (AUC) are used, using the confidence scores. For the eval-
uation per photo the example-based F-Measure (F-ex) and the Ontology Score with
Flickr Context Similarity cost map (OS) are used, which uses the binary annotation
scores. More details on these measures can be found in [12].

Overview of Results In Table 2 we list the performance of our submitted runs and
the highest scoring competitors, sorted on the mAP value. In Fig. 3 we show individual
concept-based comparison of different algorithms, see also the caption for more details.
From these results we can deduce that:

– All our approaches using visual and tag features outperform any of the visual-only
approach. The performance is increased in the order of 5− 8% in mAP.

– While early fusion outperforms late fusion when we use the textual feature, there is
no clear winner for the visual-only classifiers. The reason might be that the textual
information is more complementary, while there is more redundancy between the
different visual features.

– Combining the spatial-layout features into a single similarity (used in TagProp)
gives slightly better results. This might be due to the fact that effectively more
neighbours per similarity measure are used.

– While linear-SVM classifiers outperform TagProp, the performance is quite similar,
especially for the mixed modality approach. The latter might be due to the weights
TagProp learns for the two modalities, while the SVM uses an equal weighting.
This conclusion confirms the observations made in [17] using a different set of
features.
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Fig. 3. Comparisons of different submissions, in each figure the AP of each concept is plotted.
Plot (a) shows the performance of the best scoring SVM classifier (V&T) versus the visual only
SVM. Plot (b) and (c) compares the early version late fusion SVM’s. Plot (d) and (e) compares
TagProp versus the early fusion SVM’s. Plot (f) shows the performance of the best visual sub-
mission (UvA-MKL) versus our best visual only SVM.

– Finally, the performance of our best visual-only classifier is close to the best scoring
visual-only UvA-MKL classifier, and we are using a fast image representation with
linear-SVMs.

5 Conclusions

Our goal for the ImageCLEF VCDT 2010 challenge was to take advantage of the avail-
able textual information. The experiments have shown that all our methods combining
visual and textual modalities outperform the best visual only classifiers. Our best scor-
ing classifier obtains 45.5 % in mAP, about 5% higher than the best visual-only system.

Besides we have compared two different approaches, linear SVM classifiers versus
TagProp (a k-NN classifier). The results show that the SVM approach is superior to
TagProp, but TagProp is able to compete. We believe that both these methods allow
for learning from datasets with large number of images and/or concepts. Linear-SVMs
have proven to scale to very large quantities images. TagProp is especially interesting
for cases with many concepts and partially labelled datasets.
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