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Abstract In this paper we present an approach to detect external plagiarism
based on textual similarity. This is an efficient and precise method that can be
applied over large sets of documents. The system that we have developed con-
tains a first phase of document selection that uses a variant of tf -idf applied over
the terms that appear in the two documents of the pair being compared. After
this is done, we apply a more complex and accurate function based on character
n-grams over the subset of documents resulting from the first step in order to ex-
tract the plagiarized passages, or matches. Once all matches for a given document
are extracted, we perform a greedy match merging operation to allow in-between
text in order to be compatible with certain levels of plagiarism obfuscation. In
our participation in the 2nd International Competition on Plagiarism Detection,
we achieved an overall score of 0.2222, ranking 11th out of 18 participants.

1 Introduction

External plagiarism analysis is a complex task that attempts to determine if a suspicious
document contains one or more appropriations of another text which belongs to a set
of source candidates. It can be a very expensive task if the number of documents to
compare against is large. This is the case for the corpora provided by the organizers of
the 1st and 2nd International Competitions on Plagiarism Detection [11,12], which we
have used as training and evaluation sets for our participation in the latter competition.
These corpora contain two sets of documents, namely suspicious and source. The first
of them contains those documents that may include one or more plagiarisms extracted
from documents from the second of these sets. In total, the corpora provided for this
competition contain several thousands of documents of both kinds.

Given the large amount of data to process, and the number of document comparisons
to perform, one of the main goals for the systems that participate in these competitions
is to be highly efficient. For this purpose, we decided to apply a lightweight document
similarity function that would be used as heuristic to determine if a given suspicious
and source documents are similar enough to hold a plagiarism relation. After a set
of candidate source documents is extracted, we apply a more expensive and accurate



function to detect the corresponding plagiarized fragments. This two-step architecture
is in line with the current state of the art systems.

The remainder of this paper is structured as follows. The next section will describe
the state of the art in external plagiarism analysis. The third will describe the methods
implemented in our system, while the fourth one contains the experimental results of
our approach. Finally, the fifth and last section presents our conclusions and proposes
future work based on our current research.

2 State of the art

Most of the research approaches in the field of external plagiarism analysis contain a
simple and efficient heuristic retrieval to reduce the number of source documents to
compare every suspicious text against, and a more complex and costly detailed analy-
sis that attempts to extract the exact position of the plagiarized fragment, if any [11].
As mentioned before, the system that we have developed is in line with this two-step
architecture.

2.1 Heuristic retrieval

Given the large amount of data to process, and the number of document comparisons
to perform, one of the main goals of the systems that participate in the previously men-
tioned competitions is to be highly efficient. Theoretically, every source document could
be the origin of a given plagiarism from a suspicious document, so we need to compare
all of them with each other. This has a squared complexity, assuming the number of
documents in both sets is of the same magnitude, and therefore presents performance
and scalability limitations. Because of this, performing a lightweight heuristic retrieval
that reduces the number of comparisons to perform is highly recommendable.

Some authors, like [6], create an inverted index of the corpus documents’ contents
in order to be able to retrieve efficiently a set of texts that contain a given n-gram. Other
authors, such as [3,5], decided to apply a document similarity function that would be
used as heuristic to determine if a given suspicious and source documents are similar
enough to hold a plagiarism relation.

On the other hand, some authors, like [5], implement a character-level n-gram com-
parison and apply a cosine similarity based on term frequency weights. With this ap-
proach they extract the 51 most similar source documents to the suspicious one being
analyzed. Other authors, such as [2,6], decided to implement a word-level n-gram com-
parison. The first of them, [2], keeps the 10 most similar using a custom distance func-
tion based on frequency weights, while the second, [6], keeps those source documents
that share at last 20 word-grams of length 5. Low granularity word n-grams, with a size
of 1, have been explored by [8], applying cosine similarity using frequency weights
to extract the two most similar partitions for every sentence in a document, using the
source documents’ sentences as centroid. Finally, [13] has applied the well-known doc-
ument fingerprinting approach described in [14] with 50 character chunks and overlap
of 30. The candidate source documents will be those that share at least one value with
the suspicious document’s fingerprint.



2.2 Detailed analysis

Regarding the detailed analysis, [5] extracts character-level n-grams, and later on per-
forms a computation of the distances of adjacent matches, joining them based on a
Monte Carlo optimization. Afterwards, they propose a refinement of the obtained sec-
tion pairs. [6] extracts matches of word n-grams of length 5, and applies a match merg-
ing heuristic to obtain larger matches. Then they extract the maximal size which share
at least 20 matches, including the first and the last n-gram of the matching sections, and
for which 2 adjacent matches are at most 49 not-matching n-grams apart. On the other
hand, [2] performs a greedy match merging if the distance of the matches is not too
high.

A more strict approach has been presented by [8], requiring exact sentence matches,
and afterwards applying a match merging approach by greedily joining consecutive
sentences. In this method, gaps are allowed if the respective sentences are similar to the
corresponding sentences in the other document. Finally, [13] requires an exact match of
document fingerprints, doing an extraction of the pairs of sections which are obtained
by enlarging matches and joining adjacent matches. Gaps are required to be below a
certain Levenshtein edit distance.

3 Methods

As mentioned before, the corpora that we want to use our system against contain several
thousands suspicious and source documents, where every suspicious may include pla-
giarisms of one or more source documents. If we were to compare all of them with each
other, we would have to do millions of document comparisons. Given that every docu-
ment can contain thousands or millions of characters, this set of comparisons becomes
intractable.

To make this problem computationally feasible, we must reduce by a large factor
the number of document comparisons to perform, by generating a subset of candidate
source documents for every suspicious text. After this subset has been computed, we
will be able to apply a more complex function that will detect the plagiarized fragments,
if any. This measure should be as independent as possible of the document sizes, given
that otherwise our system will not scale.

3.1 Document selection

As mentioned before, the first step would be to select a subset of candidate source
documents that will later on be compared against a given suspicious document. This
should reduce by a large factor the number of document comparisons to perform. To
generate this set we will have to loop through all source documents, and given that this
set is large, this operation needs to be efficient.

Our approach to solve this problem is to weight the words in every document and
then compare the weights of those terms that appear in both the suspicious and the
source documents being compared. The similarity score between the aforementioned
two documents will be the sum of the common term weights.



Similarity measure To measure the similarity between a suspicious and a source doc-
ument, we will use a variant of the term frequency inverse document frequency function
[15], or tf -idf , commonly used in information retrieval. It is applied over a term, ti, in
a given document, dj , and is defined as follows:

tf -idfi,j = tfi,j · idfi (1)

where the term frequency of ti in document dj , or tfi,j , is:

tfi,j =
ni,j∑

k

nk,j

(2)

being ni,j the number of occurrences of the considered term, ti, in document dj , and
the denominator is the sum of the number of occurrences of all terms in document dj .

Furthermore, the inverse document frequency of term ti, or idfi, is defined as:

idfi = log
(

|D|
|{d : ti ∈ d}|

)
(3)

where |D| is the number of documents in our corpus.
For our purpose this definition of tf -idf is not optimal. The tf value is normalized

by the length of a document to prevent longer documents from having a higher weight.
This makes sense in information retrieval applications such as search engines. However,
in our case it would be better to skip this normalization given that the more times a
word appears in a document, the higher likelihood it will have to contain a plagiarized
fragment, regardless of its size. This is because there will be more passages that are
similar and that therefore could be plagiarized. Therefore, tf in our case will be defined
as:

tfi,j = ni,j (4)

With regards to idf , given that in our case the number of documents in the corpus
is constant and we will only need the relative tf -idf value, not the absolute, we can
simplify this function by removing the |D| and the logarithm:

idfi =
1

|{d : ti ∈ d}|
(5)

Finally, the similarity score of two documents, being dj the suspicious and dk the
source one, will be defined as shown in the following equation:

simdj ,dk
=

∑
tw∈dj∩dk

(tfw,j · idfw,j) =
∑

tw∈dj∩dk

(
nw,j ·

1
|{d : tw ∈ d}|

)
(6)

where |d| represents the number of texts in the source documents corpus that contain a
term that appears in both the suspicious and the source documents.

Therefore, the similarity of two documents will be higher the more words they have
in common, and also the fewer documents those terms appear in.



Choosing the candidate source documents Now that the document similarity mea-
sure is defined, we describe the approach to compare suspicious and source documents.
As mentioned before, the similarity measure will be applied over those terms that ap-
pear in both the corresponding suspicious and source documents being compared. For
this purpose, we normalize and tokenize the contents of every document. This means
that we only keep alphanumerical symbols, and the rest are replaced by spaces. After
this process is done, we do a space-based tokenization to keep all tokens, filtering stop
words and calculating the tf -idf of all remaining terms.

When we compare two documents we will have two arrays with the tf -idf of the
terms in both of them, and will be able to calculate a similarity score as defined above.
Each of these scores will be stored in a dictionary data structure where the key will be
the corresponding term, and the value its tf -idf . Now comparing two documents is a
linear complexity task.

For every suspicious document we will perform a comparison with all source doc-
uments in our corpus, and keep those that have the highest similarity scores. If we
maintain a larger number of source documents we will have a higher recall for the next
phase, but also higher response time, and vice versa for lower number of source docu-
ments.

3.2 Passage selection

Once we have a small set of source documents to compare against for every suspicious
one, we can perform a more accurate and costly comparison between pairs of documents
in order to detect the plagiarized fragments, or passages, if any.

Match extraction The approach that we have implemented first normalizes the con-
tents of every document by keeping only alphanumerical characters, and removing
spaces and punctuation symbols. This last point is a difference with the normaliza-
tion mentioned before, and the reason for this is that we want our system to behave
correctly against certain cases of low obfuscation like word-breaking or concatenation.
Therefore, we use character-based n-grams over the normalized document contents. If
we used word-based n-grams instead, our passage selection algorithm wouldn’t behave
well with the aforementioned obfuscation cases.

After the text has been normalized, we try to find the largest common substring be-
tween suspicious and source documents, requiring a minimum length which will be the
n-gram size. Assuming that the suspicious document has n characters, and the source
one has m, the complexity of a brute force solution for this problem would be O(n ·m),
which is of the order of O(n2). This is too expensive and presents scalability limita-
tions, especially for large documents.

An optimization to this approach is to hash all overlapping n-grams of both the
suspicious and source documents, storing, for every n-gram, the positions where they
appear in the text. Once the n-grams of the source document being compared against
have been hashed, we will iterate through the contents of the suspicious document,
extract n-grams starting at every given offset, look them up in the hash of n-grams of
the aforementioned source document, and go directly to the positions where the given n-
gram appears, limiting unnecessary comparisons. From these points we will try to find



the largest common substring to both documents. A similar n-gram hashing technique
is described in [14].

In our system we wanted to choose an n-gram size that would maintain a passage’s
meaning, and that is also not too strict. Smaller n-grams have the problem that they
might match parts of a word and therefore the meaning would be lost. On the other
hand, longer n-grams don’t behave well when there is plagiarism obfuscation, so if the
plagiarized sentence has been somehow altered, they won’t work. In our experiments
we used an n-gram size of 30 characters.

Match merging The result of the match extraction step will be a set of identical sub-
strings that appear in both the suspicious and source documents. It would be beneficial
to make this comparison less restrictive by allowing additional words or characters to
appear in-between matches, so that our system works well on certain kinds of low level
obfuscations. This is common among plagiarism when the corresponding person intro-
duces additional words or rearranges part of the appropriated text. To overcome this
issue, we perform a match merging operation, which attempts to group matches, and
the text in-between, if they are close enough in both source and suspicious documents.

This is a greedy process that recursively attempts to merge matches if they satisfy
the following two heuristics:

– The length of the text in-between two matches, mi and mj , is smaller than the
length of mi plus the length of mj . This applies to the source and the suspicious
part of the matches.

– The length of the merged match cannot be longer or equal than twice the length of
mi plus the length of mj . This applies to the source and the suspicious part of the
matches.

These two heuristics are similar to those presented in [2,6], and they have been
obtained empirically.

In addition, at the end of the merging operation we will discard those matches that
contain less than 100 characters in either source or suspicious document, as the min-
imum plagiarism size for the corpus that we use is 50 words [11], and therefore we
believe that 100 characters is a safe lower limit.

4 Experimentation and results

We have performed two sets of experiments with our system. The first of them used an
annotated training corpora to tune it, and the second one used an unannotated corpora
in order to evaluate our approach.

The machine we used to carry out the experiments described in this section had 8
CPU cores, each of them running at a frequency of 2.53 GHz, and 16 GB of RAM.
To maximize the usage of this machine’s capabilities, we designed our system to be
multi-threaded as most of the methods presented in this paper are fully parallelizable.



4.1 Training

To tune our system to behave optimally, we used the external plagiarism corpora from
the 1st International Competition on Plagiarism Detection, given that it contained an-
notations. This corpora contains a source documents corpus composed of 14, 429 texts,
and a suspicious documents corpus composed of 14, 428 elements. Half of the suspi-
cious texts contain a plagiarism, which ranges between 0% and 100% of the correspond-
ing source document. In addition, the plagiarism length is evenly distributed between
50 and 5, 000 words.

The first aspect that we experimented with was trying to determine the optimal
number of documents to be selected, given that a larger number of elements would
lead to higher accuracy, but would affect performance negatively given that we would
have more documents to process. The opposite applies to smaller selected document
sets. Table 1 shows the results from this experiment using different set sizes, where
column Captured represents the number of plagiarisms that are contained within the set
of source documents, and Missed those that are not included in this set.

Table 1. Metrics using different selected document set sizes.

Size Recall Captured Missed
1 0.3260 23, 970 49, 552
5 0.6875 50, 547 22, 975
10 0.7781 57, 206 16, 316
20 0.8282 60, 893 12, 629
30 0.8479 62, 340 11, 182
40 0.8595 63, 189 10, 333
50 0.8698 63, 947 9, 575
60 0.8760 64, 403 9, 119
70 0.8820 64, 843 8, 679
80 0.8869 65, 205 8, 317
90 0.8905 65, 473 8, 049
100 0.8941 65, 734 7, 788

Given the values shown in the previous table, we decided to use a number of doc-
uments of 10, since we believe it is the best trade-off between amount of texts and
recall. After this step, we executed the passage selection, obtaining the following re-
sults: overall = 0.3902, f -score = 0.5665, precision = 0.6873, recall = 0.4819,
and granularity = 1.7354. If we had participated in the 1st International Competition
on Plagiarism Detection, our system would have ranked 4th out of 11 participants, as
shown in Table 2. As we can see in this table, the strongest aspect of our system is
its precision, where it ranks the third among all participants. On the other hand, recall
and granularity were not as good, but still within the top half. The reason why recall is
lower is in part due to the fact that we chose 10 source documents per suspicious text
to evaluate, giving a maximum coverage value of 77.81%, as shown in Table 1. Apart
from this, and since our method is purely textual, we miss plagiarisms that are not writ-



ten in similar ways. Finally, documents that are translated will also lower our recall. On
the other hand, granularity would have been lower if we had been more aggressive at
merging matches, although then precision might have suffered.

Table 2. Comparison of our system against the ones that participated in the 1st International
Competition on Plagiarism Detection.

Rank Overall F-score Precision Recall Granularity Participant
1 0.6957 0.6976 0.7418 0.6585 1.0038 [5]
2 0.6093 0.6192 0.5573 0.6967 1.0228 [6]
3 0.6041 0.6491 0.6727 0.6272 1.1060 [2]
4 0.3902 0.5665 0.6873 0.4819 1.7354 This work
5 0.3045 0.5286 0.6689 0.4370 2.3317 [9]
6 0.1885 0.4603 0.6051 0.3714 4.4354 [8]
7 0.1422 0.6190 0.7473 0.5284 19.4327 [13]
8 0.0649 0.1736 0.6552 0.1001 5.3966 [10]
9 0.0264 0.0265 0.0136 0.4586 1.0068 [16]
10 0.0187 0.0553 0.0290 0.6048 6.7780 [7]
11 0.0117 0.0226 0.3684 0.0116 2.8256 [1]

This experiment took around 8 hours to process in the computer previously de-
scribed.

4.2 Evaluation

Our system was evaluated against the corpora provided for the 2nd International Com-
petition on Plagiarism Detection, using the parameters obtained with the training set.
These corpora are of the same nature as the ones used to train our system, but with the
inclusion of additional novel cases of plagiarism [12]. In addition, they contain a larger
number of documents. Concretely, they are composed of 11, 148 source and 15, 925
suspicious documents.

Our system obtained the following results after being applied over the aforemen-
tioned corpora: overall = 0.2222, f -score = 0.3762, precision = 0.9308, recall =
0.2357, and granularity = 2.2332. As we can see in these values, the recall value was
considerably lower to that shown in the training section. We believe this is due to the
addition of novel cases of plagiarism in the corpus provided for the 2nd International
Competition on Plagiarism Detection, as our system was tuned to work for the cases
present in the corpora of the 1st International Competition on Plagiarism Detection.
This same reason made precision higher as well as granularity. The resulting overall
score is considerably lower in the evaluation phase of the experimentation compared
to the training because our system is not able to detect the new plagiarism cases intro-
duced in the corpora used for the former. In the end, our system ranked 11th out of 18
participants.

This experiment took around 9 hours to process in the computer previously de-
scribed.



5 Conclusions and future work

In this paper we have presented an efficient and scalable approach to detect external pla-
giarisms based on textual similarity comparisons. This has proven to work fairly well as
our system’s performance has been among the best of the approaches that participated
in the 1st International Competition on Plagiarism Detection. In the second edition,
however, results were considerably worse because our system has the disadvantage that
it will only behave well for levels of plagiarism obfuscation that are not high, although
given the size of the corpora we worked with, applying more complex techniques, such
as semantic or syntactic analysis, doesn’t seem feasible due to performance constraints.
Because of this reason, our system works well with low or medium levels of plagia-
rism obfuscation, but not with high levels or when the plagiarized document has been
translated into a different language.

As future work we would like to focus on smaller corpora in order to be able to
apply more complex techniques such as the usage of semantic and syntactic knowledge.
For instance, we could use textual entailment recognition techniques, such as the ones
presented in [4], to detect plagiarisms that have a high level of obfuscation because
they have been rewritten using a different word order or equivalent terms. Furthermore
we would also like to apply document language recognition techniques and automatic
translators to overcome the problem with translated plagiarized documents.
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