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Abstract. We describe our participation in the plant identification task
of ImageClef 2011. Our approach employs a variety of texture, shape as
well as color descriptors. Due to the morphometric properties of plants,
mathematical morphology has been advocated as the main methodology
for texture characterization, supported by a multitude of contour-based
shape and color features. We submitted a single run, where the focus
has been almost exclusively on scan and scan-like images, due primarily
to lack of time. Moreover, special care has been taken to obtain a fully
automatic system, operating only on image data. While our photo results
are low, we consider our submission successful, since besides being our
first attempt, our accuracy is the highest when considering the average
of the scan and scan-like results, upon which we had concentrated our
efforts.

Keywords: Plant identification, mathematical morphology, morpholog-
ical covariance, Fourier descriptors, Support Vector machines.

1 Introduction

The plant identification task in ImageCLEF 2011 consisted of labelling images
of plants that were captured by different means (scans, scan-like photos called
pseudo-scans and unrestricted photos). The details of the recognition task are
described in [6]. A content-based image retrieval (CBIR) system for plants would
be very useful for plant enthusiasts or botanists who would like to learn more
about a plant they encounter. The goal of the competition was to benchmark
state-of-the-art in this open problem where there are very few systems for iden-
tifying unconstrained whole or partial plant images [9, 13]. The existing research
in this area is concentrated on isolated leaf identification [4, 3, 10, 12, 15, 14].

Content-based plant identification problem faces many challenges such as
color, illumination, size variations that are also common in other CBIR problems,
as well as some specific problems such as the variations in the composition of the
leaves that makes the plant shape variable. In addition, one can see that color is
less identifying in the plant retrieval problem compared to many other retrieval
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Fig. 1. Color variations of “Eurasian Smoketree”.

problems, since most plants have green tones as their main color with subtle
differences. In the rare cases that color is discriminative for a certain plant, that
is when the plant has an unusual color, then it may be the case that the leaves
of that plant may also have other colors, due to individual plant or seasonal
variations (e.g. Gingko, Eurasian smoketree), as shown in Fig. 1. Another issue
with color in plant identification is due to the challenges posed by the color of
the flowers: a flowering plant should be matched despite differences in flower
colors.

While shape is quite discriminative in identifying isolated leafs, it is not
as useful in identifying full plant images, since the global shape of a plant is
affected from its leaf composition [9]. In that regard, isolated leaf identification
can be said to be a simpler problem compared to the unconstrained images of
full or partial plants. One method to address this problem could be to extract
an individual leaf image by segmenting the overall plant image. Texture on the
other hand seems to be a more robust and useful feature category for plant
identification, and is widely used in plant identification.

2 Overall architecture

Upon examination of the training images that were categorized according to the
capture type, we observed that the scanned and scan-like categories were similar
in difficulty and both seemed significantly easier compared to the photo category
that included a larger variation in scale. Due to shortage of time, we decided
to concentrate our efforts on the scan categories, while the photo category was
tackled during the last week – which was insufficient for such a difficult problem.

The final system is designed as two separate sub-systems, one for scan and
scan-like images and another one for photos. Since the meta-data included the
acquisition type, an input image is automatically sent to the correct subsystem.
The acquisition method was the only meta-data used in the overall system.

Based on our previous work on plant identification [9], we had some experi-
ence with the usefulness of different feature groups. For handling photographs,
which was the problem addressed in our previous work, we found that global
shape descriptors and many of the descriptors considered in the present work,
would not be useful if the photo consisted of an overlapping set of leaves, rather
than a single leaf. On the other hand for scan and scan-like categories, all three
main feature categories are useful: color, texture and shape.



Sabanci-Okan System at ImageClef 2011: Plant identification task 3

After experimenting with a large number of descriptors, we selected a 115-
dimensional feature vector for the scan/scan-like sub-system and its 91-dimensional
subset for the photo category. The features used in our system are explained in
Section 3. For training the system, we trained a classifier combination using
Support Vector Machines (SVMs), as explained in Section 4.

3 Feature extraction

As we are dealing with objects characterized mainly by their morphometric prop-
erties, whenever possible we attributed special preference to using morphological
solutions. Since mathematical morphology, a nonlinear image processing frame-
work, excels at shape based image analysis as well as at exploiting the spatial
relationships of pixels.

An additional motivation in this regard has been to test our recently con-
ceived morphological texture descriptors [1] in the context of a real-world appli-
cation. Although a rich variety of content descriptors has been investigated, we
present in this section primarily those that were included in the final system.

3.1 Texture Features

As far as scan and scan-like images are concerned, one can easily remark that
we are dealing with relatively low scale variations, that can be easily countered
with some form of normalization, while plant alignment is also not a major
issue. Consequently, scale invariance set aside, from a texture description point
of view, we require descriptors possessing a) a high discriminatory potential, b)
illumination invariance, and unless we apply some form of angle normalization,
then also c) rotation invariance.

When it comes to photos however, global texture characterization methods
are bound to fail, since besides requiring all kinds of invariances, the background
varies extremely in terms of complexity, thus presenting a considerable challenge.
Hence, in order to apply any global morphological texture operators, a successful
segmentation isolating the plant is necessary.

A set of novel morphological grayscale texture descriptors, possessing the
aforementioned qualities has been recently introduced [1], leading to the high-
est classification scores among grayscale approaches, with a variety of texture
benchmark collections, including Outex, CUReT and ALOT. They have been for-
mulated as extensions for morphological covariance, that equip it with rotation
and illumination invariance. Among them, we focused particularly on circular
covariance histograms (CCH) and rotation invariant points (RIT). In summary,
these two features achieve rotation invariance straightforwardly by replacing the
point pairs of standard morphological covariance, with a circular structuring
element (SE), possessing its center. Although any isotropic SE would suffice,
this particular shape has the advantage of preserving the principle of covariance,
consisting of comparing pixels at various distances.
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As to illumination invariance, they take advantage of the complete lattice
foundation of mathematical morphology. More precisely, morphological opera-
tors operate on pixel extrema, and not on their linear combinations. In other
words, even if in a set of pixels the overall intensity levels change, as long as
the relative order of pixels with respect to their intensity remains the same, the
morphological operator under consideration, be it erosion, dilation or a combi-
nation thereof, will be unaffected, and will still pick as extremum the same pixel,
albeit with a modified intensity value. That is why, conversely to granulometries
and covariance, where a Lebesgue measure is used in order to quantify the mor-
phological series, CCH and RIT rely on using directly the characteristic scale of
each pixel. While the entire input image is described by means of its histogram
of characteristic scales.

As to the difference of RIT from CCH, it is computed similarly, with the
exception of first decomposing the circular SE into anti-diametrical point triplets.
Thus there is an additional step of computing a label image, by means of a pixel
based fusion. In particular, a rotation invariant measure is used to this end
(e. g. minimum, maximum), upon all the intermediately filtered images by point
triplets of various orientations.

3.2 Color Features

Since the previously chosen texture descriptors have not yet been extended to
color data, it was decided to employ the parallel color texture description strat-
egy, where color is described independently from texture. Among the investigated
methods we can mention multi-resolution histograms based on morphological
scale-spaces [2], in both polar and perceptual color spaces, non-uniformly sub-
quantized saturation weighted LSH histograms, as well as color invariants and
color moments. Yet, following an experimental evaluation of these color descrip-
tors, only color moments have been included in the final system.

To explain, a color image corresponds to a function I defining RGB triplets
for image positions (x, y) : I : (x, y) 7→ (R(x, y), G(x, y), B(x, y)). By regarding
RGB triplets as data points coming from a distribution, it is possible to define
moments. Mindru et al. [11] have defined generalized color moments Mabc

pq :

Mabc
pq =

∫ ∫
xpyq[IR(x, y)]a[IG(x, y)]b[IB(x, y)]cdxdy (1)

Mabc
pq is referred to as a generalized color moment of order p+q and degree a+b+c.

This descriptor uses all generalized color moments up to the second degree and
the first order, which leads to nine possible combinations for the degree: M100

pq ,
M010
pq , M001

pq , M200
pq , M110

pq , M020
pq , M011

pq , M002
pq and M101

pq . These are combined
with three possible combinations for the order, Mabc

00 , Mabc
10 and Mabc

01 , which
makes a 27-dimensional feature vector, possessing additionally shift-invariance,
if the average is subtracted from all input channels.
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3.3 Shape Features

Undoubtedly, shape plays a major role in plant identification and a plethora of
shape descriptors, usually categorized as region- and contour-based, are available.
In our case we employed a variety of shape descriptors from both categories.

Fourier descriptors We used the Fourier descriptors that are widely used to
describe shape boundaries, as the main shape feature in our system. The Fourier
Transform coefficients of a discrete signal f(t) of length N is defined as:

Ck =
1
N

N−1∑
t=0

f(t)e−j2πtk/N k = 0, 1..., N − 1 (2)

In our case, f(t) is the 8-directional chaincode of the plant, N is the number of
points in the chaincode, and Ck is the k-th Fourier coefficient.

The coefficients computed on the chaincode is invariant to translation since
the chaincode is invariant to translation. Rotation invariance is achieved by using
only the magnitude of the coefficients and ignoring the phase information. Scale
invariance is achieved by dividing all the coefficients by the magnitude of the
DC component. We used the first 50 coefficients to obtain a fixed-length feature
and to eliminate the noise in the leaf contour.

Width length/volume factor: These two descriptors are slight variations of
the leaf width factor (LWF) introduced by Hossain and Amin [8]. Specifically,
given an isolated leaf image (f), their method consists in dividing it into n strips,
perpendicular to its major axis (Fig. 2). For the final n-dimensional feature, they
compute the length of each strip (li), divided by the length of the entire leaf (l):

LWFn = {li/l}1≤i≤n (3)

Fig. 2. Example of leaf decomposition [8].

We derived two new features from this. The Width length factor normalizes the
lengths of each strip by the maximum width of the leaf. This is necessary as we
normalize the length of each leaf into a fixed size during preprocessing, leaving
the width as variable. The second derived feature is obtained by integrating into
LWF the grayscale variations of each strip (fi), thus obtaining Width volume
factor (WVF). Specifically, we employ the ratio of volumes (i. e. sum of pixel
values) instead of lengths:

WV Fn = {Vol(fi)/Vol(f)}1≤i≤n (4)
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Convexity: This mono-dimensional feature aims to describe the overall contour
smoothness of its binary input, which is assumed to be consisting of a single
connected component. To explain, after isolating and binarizing the plant image,
we compute its convex hull (CH) and then trivially derive its convexity:

Convexity(f) =
Area(CH(f))−Area(f)

Area(f)
(5)

Basic shape statistics: This descriptor (BSS) on the other hand, operates on
the contour profile of its binary input. Specifically, we start by computing the
center of mass of a given binary plant image (f), assumed to be consisting of a
single connected component. Then we obtain its morphological internal gradient,
computed by means of 3× 3 square SE:

gi(f) = f − ε(f) (6)

Next, we calculate the Euclidean distances from the aforementioned center to
each of the border pixels, which leads to a discrete series S(f); in case of rotation
of the input image, S(f) is only shifted horizontally. Thus the final feature is
obtained by means of 4 simple statistical measures on S:

BSS(f) = {max(S(f)),min(S(f)),med(S(f)), var(S(f))} (7)

using its maximum (max), minimum (min), median (med) and variance (var).
And since they are horizontally translation invariant w.r.t S(f), they lead to a
simple yet effective and rotation invariant description.

Border Covariance: Similarly to basic shape statistics, border covariance
(BK) also operates on the contour profile S(f) of its binary input, under the
same assumptions. This time however, instead of computing simple statistical
measures, we aim to capture contour regularity. To this end we employ mor-
phological covariance, along with a horizontal pair of points. In other words, we
treat the contour profile as a mono-dimensional texture.

We modified the standard morphological covariance operator so as to employ
openings and closings instead of erosions, in order to capture respectively both
bright details on dark background, as well as dark details on bright background:

BKn
T (f) =

{
Vol(TP2,v

(S(f))
Vol(S(f))

}
v

(8)

where T denotes the morphological operator (either an opening γ or a closing
φ), Vol the sum of pixel values of f and P2,v a pair of points separated by a
vector v. Moreover, it should be noted that since we use a horizontal pair of
points (i. e. translation invariant w.r.t the contour profile), the resulting feature
is thus rotation invariant.
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4 Classification

Scan and Scan-like Images

Mainly due to the collaboration of two universities, we trained two separate
classifiers using two different sets of features. For the first classifier (Classifier1),
we used a 67-dimensional shape feature consisting of the 50 Fourier descrip-
tors, the width length factor, eccentricity and solidity. For the second classifier
(Classifier2), we used a 115-dimensional feature consisting of all the contour, tex-
ture and shape features described in Section 3, excluding the Fourier descriptors.
For both classifiers, we used an SVM using the radial basis function kernel.

The outputs of these classifiers are distances of the test instance to each
plant class. We then trained a third classifier to learn how to combine these two
classifiers at score level. Hence, the feature vector used in training the combiner
is of length 2×K, where K is the number of classes in the problem.

In the final stage of classification the most probable 5 classes are selected and
a multi-class SVM is trained specifically for those classes for disambiguation.
This was done because we found it beneficial to train classifiers that would learn
to distinguish similar classes (e.g. different kinds of maples which are very similar
amongs themselves, compared to the other plants). While the original idea was
to train one such classifier according to the number of lobes in the leaves, the
difficulty in assessing this information and the remaining complexity of this task
led us to train a new classifier on the fly, using only the training instances
from the 5 most probable classes and all of the 182 (=115+67) features. We
use the outcome of this stage as the final classification decision. Cross-validation
accuracies obtained for each classifier using the training data set are summarized
in Table 1.

Table 1. Cross-validation accuracies of each classifier used for the scan and scan-like
categories.

Stage Accuracy (%)

Classifier1 using only shape features 71.46
Classifier2 using all features (except Fourier descriptors) 89.69
Classifier combination 90.10
After resolving ambiguities 93.64

Photographs

As far as photos are concerned, due to time constraints, neither their feature
extraction nor their classification received the attention they deserved. Since
shape features were not used, we trained only a single SVM classifier, using a
91-dimensional feature vector. For this classifier, default parameters (cost = 25,
first degree polynomial kernel) of the Weka SVM software [7] and the Sequential
Minimal Optimization (SMO) algorithm were used.
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5 Experimental design

In this section we describe the implementational choices that have been made,
as well as the experiments that have been carried out, while designing & op-
timizing our plant identification system. The majority of experimentations has
been realized using Weka (v.3.6.4) [7]. In all stages of our experiments and in the
results given in throughout this paper, we used cross-validation on the training
data and measured the average accuracy obtained across images, rather than
the average user-based accuracy used in the competition.

For practical reasons, we chose to first optimize our descriptor combination,
then the preprocessing scheme, followed finally by the classification step. Given
their visual similarity, we handled scan and scan-like images identically, while
treating photos separately. Special care has been taken to obtain a fully auto-
matic system.

For the sake of simplicity, and in order to minimize the number of vari-
ables, initial feature selection experiments have been carried out with a nearest
neighbour (1NN) classifier along with the χ2-distance, while subsequently we
switched to Support Vector Machines (SVM). Whenever necessary, conversion
to grayscale has been realized using the weighted combination of RGB channels,
as 0.299×R+ 0.587×G+ 0.114×B, while binarization has been achieved using
Otsu’s threshold.

5.1 Feature Selection

Preliminary experimentation with various features has been realized by handling
shape, color and texture descriptors separately, in an effort to determine the most
suitable among them for the problem under consideration. After this step, we
experimented with their combination and parameterization.

Scan and scan-like images: At this stage a relatively simple preprocessing
step was realized, consisting of first extracting the bounding rectangle of the
plant, followed by scale normalization resulting in a fixed height of 600 pixels.
This was applied to all 71 classes containing a total of 3066 scan and scan-like
images. Then a series of cross-validation experiments took place, in an effort to
determine the most suitable descriptors for distinguishing among these classes.
The results are shown in Table 2, along with their arguments.

The accuracy scores have been obtained by dividing the available data ran-
domly into train (1444 samples) and test (1622 samples) sets, using the aforemen-
tioned classification settings. Interestingly, one can observe that texture exhibits
the highest discriminatory potential, followed by color and shape.

In addition to measuring the individual discriminatory potential of each fea-
ture, we experimented with many of their combinations. The resulting scores are
given in Table 3, where we present the classification accuracies obtained with
various combinations of feature sets.
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Table 2. The descriptors used for scan and scan-like images along with their accuracies.

ID Descriptor Applied in Size Accuracy (%)

1 CCHγ,12,#1 + CCHφ,12,#1 Grayscale 12+12 72.32
2 RITγ,12,min + RITφ,12,min Grayscale 12+12 53.45
3 WV F11 Grayscale 11 44.94
4 Convexity Binary 1 7.89
5 BSS Binary 4 37.30
6 BKn

γ + BKn
φ Binary 12+12 21.33

7 Color moments RGB 27 49.94

Total 115

Table 3. Accuracies (%) for the combinations of the descriptors given in Table 2, for
scan and scan-like data.

Descriptors 1NN SVM/SMO

1,3 79.59 80.27
1,2,3 85.02 86.93

1,2,3,4 85.45 87.11
1,2,3,4,5 87.36 89.15

1,2,3,4,5,6 88.59 90.20
1,2,3,4,5,6,7 88.41 90.57

Photographs: Conversely to scan and scan-like images, the main challenge
presented by photos lies in isolating the plant from its often very complicated
background. Due mainly to lack of time, we hardly had any chance of construct-
ing an optimized feature set for this image category, as done for the other images.
Instead, we transferred almost directly our descriptor choices for scan and scan-
like data, with no additional preprocessing whatsoever. Nonetheless, one of the
very few experiments with photos that has been carried out, consisted of simply
testing the combination of the features given in Table 2, with the end of adapting
them to the new content.

In particular, we joined the scan and scan-like images with photos, thus
obtaining a total of 3996 samples, and divided them equally and randomly into
training and test sets. The classification accuracies are provided in Table 4. Con-
sidering the background complexity of photos, contour-based shape descriptors
suffered a significant performance loss; which was expected, since they rely heav-
ily on correct border extraction. Border covariance in particular has been unable
to contribute any longer, so it has been removed from the set of descriptors used
to characterize photos. Consequently the length of the feature vector used with
photos is 115− 24 = 91. In summary, the addition of photographs has decreased
the overall classification performance considerably, with shape descriptors being
affected the most.

5.2 Preprocessing

Having determined a set of features for describing the plant collection, we focused
on optimizing the preprocessing stage, in order to further improve performance.
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Table 4. Cross-validation accuracies (%) for the combinations of the descriptors of
Table 2 with all images, using 1NN and SMO classifiers.

Descriptors 1NN SMO

1,3 70.23 71.03
1,2,3 74.62 74.98

1,2,3,4 75.59 76.77
1,2,3,4,5 77.02 78.67

1,2,3,4,5,6 75.01 76.44
1,2,3,4,5,7 79.57 81.51

Besides the already applied scale normalization, we considered illumination nor-
malization as well, through histogram equalization as proposed in Ref. [5]. How-
ever this did not contribute in any substantial way, probably due to the fact
that our primary descriptors are already illumination invariant. Moreover, the
removal of the leaf petiole has also been tackled, with the end of obtaining a
more accurate plant border for contour-based shape descriptors, but unfortu-
nately its effect has been negligible, probably due to the partial success of the
removal procedure.

Furthermore, although most of our operators are rotation invariant, WVF
and color moments are not. That is why, we chose to apply an additional step,
that would align the plant vertically along its major axis. However, the small
gains were hindered by mistakes in the angle estimate; thus this normalization
did not improve our classification rates. Consequently, as far as scan and scan-
like images are concerned their preprocessing consists of extracting the bounding
rectangle of a given plant image, followed by its scale normalization to a fixed
height of 600 pixels.

Photographs on the other hand, given their content variation, should bene-
fit from a background removal step. Due to time constraints, we experimented
with relatively simple and automatic hue based background removal; but it did
not contribute significantly to classification performance, and therefore were not
included in the final system’s operation. In short, photographs were not prepro-
cessed in any way.

5.3 Classifier Optimization

Having determined the descriptors and preprocessing operations for each sub-
problem (scan and photo), we optimized the parameters of the classifiers. For
the two base classifiers used in scan/scan-like categories, the cost and spread
parameters (C and γ) of the SVM are learned using 5-fold cross validation and
grid search. As for the combiner, we first divided the training set into half. Then,
we trained the two classifiers with their optimum parameters on the first half
and used the second half to produce distances. In the next step, we found the op-
timum parameters for the combiner using 5-fold cross validation and grid search
on the parameters using the produced distances. Furthermore, as we analyzed
the errors of the system on training data, we decided to add a final classifier
which is trained with only the closely scoring (top-5 classes) classes’ instances,
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as explained in Section 4. For the single classifier used in photos, we used the
default SVM parameters due to shortness of time.

6 Results and discussion

According to the official results (Table 5) our run achieved 6th place in overall
classification, 2nd place with scan type images, 6th place with scan-like images
and 16th place with photographs. However, we did achieve the best score when
considering the average of the scan and scan-like results, upon which we had
concentrated our efforts.

Nevertheless, although the placements came as no surprise, the scores on the
other hand have been lower than our expectations, especially when compared
with the values obtained during our cross-validation tests with the training data
(Tables 3 and 4). As a matter of fact, there is a very significant drop of approxi-
mately 40% overall. This important difference may be due to several factors, one
of which is overfitting of the classifiers. Our descriptor optimization stage may
have very well led to excessively powerful features capable of distinguishing the
training data quite effectively, yet when faced with the test dataset, containing
distinct plants of the same genus, the same features failed to generalize their
performance. Furthermore, the scoring function is no longer the average accu-
racy across images, but instead the average accuracy obtained per user; and of
course there is always the possibility of implementation errors.

In conclusion, given that this is our first participation, we consider our at-
tempt satisfactory and even successful, in the sense that we accomplished our
main goal; which consisted of identifying effectively the plants in scan and scan-
like images. All the same, our score is far from being perfect. Future work in
this category will include testing non-morphological descriptors, in an attempt
to harness the advantages of both non-linear and linear image analysis method-
ologies. As far as photographs are concerned, our main focus will be on the
preprocessing stage, with the end goal of isolating the plant effectively from its
background, so as to be able to employ the same optimized features as with the
other image types.
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