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Abstract. This paper describes the CEA LIST participation in the ImageCLEF
2011 Photo Annotation challenge. This year, our motivation was to investigate
the annotation performance by using provided Flickr-tags as additionnal infor-
mation. First, we present an overview of our local and global visual features used
in this work. Second, we present a new method, that we call ”Fuzzy-tfidf”, which
takes into account the uncertainty of user tags. Our textual descriptor is based on
semantic similarity between tags and visual concepts. To compute this similarity,
we used two distances: the first one is based on Wordnet ontology and the second
is based on social networks. We perform a late fusion to combine scores from
visual and textual modalities.
Our best model, a late fusion trained on global visual features and user tags,
obtains 38.3 % MAP, almost a 8 % MAP absolute improvement compared to
our best visual-only system. The results show that the combination of Flickr-tags
with visual features improves the results of the run using only visual features. It
corroborates the importance of taking into account the uncertainty of user tags
and the complementarity between visual and textual modalities.

1 Introduction

The ImageCLEF Photo Annotation Task [11] is a multi-label classification problem,
with 8.000 image for training, 10.000 for testing and 99 concepts to detect. The image
are extracted from the MIR Flickr dataset [6] and the Flickr user tags and/or EXIF
information are available for most photos.

In our participation to the ImageCLEF Photo Annotation Task, we focus on how
to use the tags associated to the images to enhance the annotation performance. We
propose three different models: visual only, textual only and multimodal models. The
last model takes the mean of the predicted score of the textual and visual classifiers.

This paper is organized as follows. In Section 2 we describe our local and global
visual features. In Section 3 we give an overview of our ”Fuzzy-tfidf” method which
uses user tags. Then in Section 4 we present in more detail the experiments we did, the
submitted runs and the obtained results. Finally, we conclude the paper in Section 5.

2 Visual features

We used two sets of descriptors, named fklsp and piria5 in the following.



2.1 Local descriptors (fklsp)

This set was based on a non parametric estimation of Fisher vector to agregate local
descriptors, as explained in detail in [1].

Fisher kernel, score and vector Let X = {xt, t = 1 . . . T} a set of vectors used to
describe an image (i.e a collection of local features). It can be seen as resulting from
a generative probability model with density f(X|θ). To derive a kernel function from
such a generative model, being able to exhibit discriminative properties as well, Jaakola
[8] proposed to use the gradient of the log-likelihood with respect to the parameters,
called the Fisher score:

UX(θ) = Oθ log f(X|θ) (1)

This transforms the variable length of the sample X into a fixed length vector that can
feed a classical learning machine. In the original work of [8] the Fisher information
matrix Fλ is suggested to normalize the vector:

Fλ = EX [Oθ log f(X|θ)Oθ log f(X|θ)T ] (2)

It then results into the Fisher vector:

GX(θ) = F
−1/2
λ Oθ log f(X|θ) (3)

Density estimation The traditional way of modeling a distribution density is to assume
a classical parametric model such as normal, gamma or Weibull. For instance in [12],
the vocabularies of visual words are represented with a Gaussian Mixture Models, for
which the parameters (weight, mean and variance of each Gaussian) are estimated by
maximum likelihood.

Alternatively, we can use a nonparametric estimate of the density, such as a his-
togram or a kernel-based method [17]. A histogram density estimation can be seen as
modeling the unknown log-density function by a piecewise constant function and esti-
mating the unknown coefficients by maximum likelihood. In this vein, Kooperberg [10]
proposed to model the log-density function by cubic spline, resulting into the so-called
logspline density estimation.

Let consider the space S consisting of the twice-continuously differentiable func-
tion fs (natural cubic splines), such that the restriction of fs to some intervals [t1, t2] . . .
[tK−1, tK ] is a cubic polynomial and linear at the extremities. Let 1, B1, . . . , Bp a set
of basis functions that span the space S. Given θ = (θ1, . . . , θp) ∈ Rp such that:∫ U

L

exp (θ1B1(y)+, . . . , θpBp(y)dy) <∞ (4)

We can thus consider the exponential family of distribution based on this basis function:

f(y, θ) = exp (θ1B1(y)+, . . . , θpBp(y)− C(θ)) (5)

Where C(θ)is a normalizing constant such that f(y, θ) is a density. As shown in [10], it
is possible to determine the maximum likelihood estimate of θ with a Newton-Raphson
method with step-halving.



Signature derivation Each feature dimension xi (i ∈ [1 . . . D]) of a local descriptor
can be thought of as arising as a random sample from a distribution having a density hi

for a particular image and f i for a set of images. Modelling the log-density function by
a cubic spline and deriving the corresponding Fisher score lead to [1]:

∂L(Y, θ)
∂θij

∣∣∣∣∣
θi

j≈
bθi
j

= Ehi

[
Bij(y)

]
− Efi

[
Bij(y)

]
(6)

Where hi(.) is the density of the image descriptor and f i(.) the density class de-
scriptor (dimension i), this last being estimated from local descriptor extracted from
several learning images. The full gradient vector UY (θ) is a concatenation of these par-
tial derivatives with respect to all parameters. Its number of components is

∑D
i=1 p

i,
where pi is the number of non-constant polynomial of the basis of S for dimension i.

The equation (6) simply reflects the way a specific image (with density hi) differs
from the average world (i.e density f i), through a well chosen polynomial basis, at each
dimension. The average world

(
Efi

[
Bij(y)

])
can be seen as a codebook. If one uses

linear polynomials
(
Bij(y) = αjy

i
)
, equation (6) relates to the VLAD signature[9],

with an important difference since all vectors are used (i) during learning to estimate the
codeword (ii) during test to compute the signature, while (i) K-means uses the closest
vectors of a codeword (cluster center) to re-estimate it at each step (ii) VLAD uses only
nearest neighbours to compute the signature component (see eq. (1) in [9]).

In his seminal work, Jaakola [8] proposed to normalize the Fisher score by the
Fisher information matrix. In [12], it was noted that such an operation improved the
efficiency of the method in term of discrimination, by normalizing the dynamic range
of the different dimensions of the gradient vector. Although some normalisation of the
signature were proposed in [1], they were not used in this work.

Efficient implementation The set of basis functions 1, B1, . . . , Bp that span the space
S introduced in section 2.1, are defined according to intervals [ti, ti+1] (i ∈ [1 . . .K]),
where the ti are named knots. We fixed a given number of knots and placed them ac-
cording to statistic order of the learning data. Hence, at each dimension, the amount of
information is regularly distributed between knots. For low-level features such as those
presented in section 2.1, the knots are approximately placed according to a logarithmic
distribution.

Several choices are possible to defined the basis Bk. In this work, we used the
following basis, that is very efficient to implement:

B0(y) = 1 (not used)
B1(y) = y

Bk>1(y) =
{ |y−tk|+y−tk

2 for y < tk+1

0 for y > tk+1

(7)

Such an implementation is equivalent to compute only (y−tk) on the interval [tk, tk+1]
since the polynomial is null elsewhere and y > tk on the interval. Moreover, we used a
binary weighting scheme, that does not consider the value of |y−tk| in the computation



but only its existence. In other word, one can only count +1 each time a pixel activity
y is between tk and tk+1. Such a binary weighting scheme is commonly used in the
design of BOV, in particular when the codebook is large [18].

Independent low level features According to theory, the signature derivation requires
to use independent low-level features, such that the image description density could be
expressed as a factorial code. Such features can be obtained with Independent Compo-
nent Analysis (ICA) [4, 7] that is a class of methods that aims at revealing statistically
independent latent variables of observed data. In comparison, the well-known Principal
Component Analysis (PCA) would reveal uncorrelated sources, i.e with null moments
up to the order two only. In its simplest form, ICA defines a generative model which
consider multivariate data X as a linear mixtures of some unknown sources S, and the
mixture A is also unknown. Under the assumption that the sources are mutually inde-
pendent and at most one is Gaussian, [4] showed that it is possible to solve this ill-posed
problem. For this one must compute a separating matrix w that lead to an estimate Y of
the sources:

Y = WX = WAS (8)

Many algorithms were proposed to achieve such an estimation, that are well reviewed in
[7]. These authors proposed the fast-ICA algorithm that searches for sources that have a
maximal nongaussianity. When applied to natural image patches of fixed size (e.g ∆ =
16×16 = 256), ICA results into a generative model composed of localized and oriented
basis functions [7]. Its inverse, the separating matrix, is composed of independent filters
w1, . . . , wD (size ∆) that can be used as feature extractors, giving a new representation
with mutually independent dimensions. The number of filters (D) extracted by ICA
is less or equal to the input data dimension (∆). This can be reduced using a PCA
previously to the ICA. The responses of the D filters to some pixels (p1, . . . , pT ) of an
image I(.) are thus independent realizations of the D-dimensional random vector Y .
As a consequence, the density can be factorized as expected:

hica (I(pt)) =
D∏
i=1

hiica (I(py)) =
D∏
i=1

wi ∗ I(pt) (9)

Where ∗ is the convolution product. These independent low-level features can be further
used according to the method presented into section 2.1.

2.2 Global descriptors (piria5)

We concatenated five descriptors to form a single global descriptor of size 1341:

– A descriptor that is itself the concatenation of a Local Edge Pattern (LEP) descriptor
(derived from [3]) and a color histogram, with a global normalisation on the 576
dimensions.

– A compact histogram that count how many pixels are 4-connected according to
their colors [14].

– A classic color histogram of size 64.



– A RGB color histogram of size 125.
– A HSV color histogram.

The first descriptor (LEP) gives a piece of information on the texture of the image
and the second a weak one on the spatial organisation of the pixels. All other descriptors
mainly give information on the colors present in the image.

3 Textual features

To improve visual concept annotation, image associated tags can be used. The key idea
is to project the tags in the visual concept space. Each tag will be associated with one or
more concepts according to their semantic similarities. In this manner, the concept voted
by several tags is then considered appropriate to describe the content of the image. For
example in Fig. 1, ”strawberry, sugar, spoon, frutella, fresa” will be associated with the
visual concept ”food” which will be relevant to this image. To compute the similarity

Tags :

strawberry
macro
sugar
long
exposure
red
gold
yummy
spoon
frutilla
fresa
magical
happy accident

Fig. 1. An example of image with its associated tags.

between user tags and visual concepts, we use two different distances. The first one is
based on Wordnet ontology and the second is based on social networks.

3.1 Semantic similarity

Wordnet-based similarity First, we rely on the Wu-Palmer measure [19], which pro-
vides a similarity function for two given concepts, defined by how closely they are
related in the hierarchy, i.e., their structural relations as shown in Fig. 2.

The conceptual similarity between two concepts C1 et C2 is given by:

ConSim(C1, C2) =
2 ∗N3

N1 +N2 + 2 ∗N3
(10)



Fig. 2. The concept similarity measure.

Where C3 is the least common superconcept of C1 and C2. N1, N2 and N3 represent
respectively the number of nodes on the path fromC1 toC3, fromC2 toC3 and fromC3

toRoot. This measure is based on WordNet structure [5]. This can be seen as a semantic
network where each node represents a concept of the real world. Each node consists of a
set of synonyms that represent the same concept, this set is called synset. These synsets
are connected by arcs that describe relations between concepts. This measure is defined
between two synsets s1 and s2 by:

simwup(s1, s2) =
2 ∗ depth(lcs(s1, s2))
depth(s1) + depth(s2)

(11)

where lcs(s1, s2) denotes the least common subsumer (most specific ancestor node) of
the two synsets s1 and s2 in a WordNet taxonomy, and depth(s) is the length of the
path from s to the taxonomy Root. Since a word can belong to more than one synset
in WordNet that is, it can have more than one conceptual meaning. We opt to determine
the similarity between tags and concepts as the maximum similarity between all their
synsets. Let syns(t) denotes the set of synsets that contain the tag t, we define the
similarity between a tag tk and a concept Ci as:

simWordnet(tk, Ci) = max{simwup(sk, si)|(sk, si) ∈ syns(tk)Xsyns(Ci)} (12)

Flickr-based similarity Second, we rely on the work of Popescu et al. [13] to define
a semantic measure between tags and visual concepts according to their social related-
ness. Given two terms T and Q, their social relatedness is defined as follows:

SocRel(T,Q) = users(Q,T ) ∗ 1
log(pre(T ))

(13)

where users(Q,T ) is the number of distinct users which associate tag T to a query
Q; and pre(T ) is the number of distinct users from a prefetched subset of Flickr users



that have tagged photos with tag T . The model obtained from Flickr for a tag tk can be
expressed by:

MFlickr(tk) = ∪Nx=1(weight(Tx), Tx) (14)

where N is the number of retained Flickr socially related tags and weight(Tx) is the
social normalized social weight of Tx using relation (13). In this context, we define a
semantic similarity between a tag tk and a visual concept Ci as:

simFlickr(tk, Ci) =
dot(tk, Ci)

norm(tk) ∗ norm(Ci)
(15)

where dot(., .) represents the scalar product and norm(.) the vector norm.

3.2 Textual descriptors

Term weighting is a key method in the context of text classification. As in the vector
space model introduced by Salton et al. [16] to represent text document, we represent
the visual concepts as a vector of weights (wi,1, ..., wi,j , ..., wi,|C|). In our case, the
weight wi,j for a considered concept Ci in a document dj is obtained by the product of
tfi,j and idfi. The term frequency characterizes the frequency of a concept in the given
image and it is calculated as follows:

tfi,j =
ni,j∑
k nk,j

(16)

where ni,j is the number of occurrences of the considered concept Ci in document dj
and the denominator is the sum of number of occurrences of all visual concepts in the
document. The inverse document frequency is a measure of the general importance of
the visual concept and it is given by:

idfi = log(
|D|

|j : Ci ∈ dj |
) (17)

where |D| is the total number of images in the corpus and |j : Ci ∈ dj | is the number of
images where the concept Ci appears. In this manner, we should perform a hard assign-
ment to determine the presence or the absence of a concept (1 or 0). Or the semantic
similarity between tags and a visual concept is not equal. Moreover, users usually do
not use the same visual concepts to tag their photos. Then, it is more appropriate to
proceed on a soft assignment in which a tag is matched to a visual concept with some
confidence value. This confidence value represents the uncertainty of the presence of
a visual concept. Ideally, if the user use the same visual concept to tag his photo, this
value is equal to 1. Else, it is a value between 1 and 0 depending on how similar they
are.

In this context, we propose a new version of tfidf , that we call ”Fuzzy-tfidf”. In
this method, instead of hard assignment of a concept to a given tag, we add a confidence
score. This score is the semantic similarity between a tag tk and a concept Ci using for-
mulas (12) or ccc. In this way, we take into account the ammount of similarity between
tags and visual concepts. Let sk,i denotes the conceptual similarity between a tag tk



and visual concept Ci. T represents the set of tags in document dj . C and D represent
respectively the set of visual concepts and documents in the dataset. The fuzzy term
frequency is obtained by:

fuzzy − tfi,j =
∑
k∈T sk,i∑

i∈C
∑
k∈T sk,i

(18)

The Fuzzy inverse document frequency is computed as follows:

fuzzy − idfi = log(
|D|∑

j∈D

P
k∈T sk,i

ni,j

) (19)

where ni,j is the number of occurrences of the considered concept Ci in document dj .
The fuzzy − tfidf is obtained by the product of the obove two frequencies. In case
sk,i is equal to 1, we found the same formula as the classic tfidf . In this method, we
consider only concepts that are similar to the considered tag in a neighborhood. This
neighborhood is deterimed by cross-validation.

4 Experiments

4.1 Dataset
We evaluated our annotation methods on the MIR Flickr dataset [6] containing 8.000
images for training and 10.000 for testing belonging to 99 concept classes. This year
a special focus is laid to the detection of sentiment concepts (funny, scary, unpleasant,
active, happy ...). Fig. 3 shows samples of images taken from the ImageCLEF 2011
Photo Annotation Task Dataset with their annotated concepts.

4.2 Submitted runs
We submitted five runs to the campaign, allowing relevant comparison between the
methods:

CEALIST text Fsb use only the textual feature computed according to the method
presented in section 3.2. In this run, we use the Wordnet-based semantic similarity and
we use the Fuzzy-tfidf to compute the textual descriptor. Two terms are considered
semantically similar if their simWordnet is upper than a threshold α obtained by cross
validation. In our experiments, this threshold is fixed to 0.8. The Fast Shared Boosting
algorithm [2] is applied for classification.

CEALIST piria5 FsbRdsa use only global visual descriptors presented in section
2.2. It is the concatenation of five descriptors of color and texture.

CEALIST piria5 FsbRdsa text is a multimodal run where a late fusion process
is performed. Scores of the late fusion are obtained by averaging the scores of the two
previous runs. Both visual and textual scores are normalized before fusion.

CEALIST piria5 FsbRdsa text2 is our best run and it is also a multimodal one. It
is a late fusion of the visual scores of the second run and the textual scores of the same
method as the first run but this time using Flickr-based similarity.

CEALIST fklsp FsbRdsa text2 is a multimodal run where a late fusion process
is performed between a visual classifier based on local visual descriptors presented in
section 2.1 and the same textual classifier used in the previous run.



Indoor
Macro
no_person
Musical_instrument
Happy
Active

Outdoor
Day
Macro
Fancy
Aesthetic_Impression
Body_part
Work
Painting
Natural
Cute
Male
Melancholic

Neutral_illumination
no_blur
Small_group
Body_part
Visual_arts
Painting
Natural
Female
Male
Adult
Scary

Portrait
Neutral_illumination
Partly_blurred
no_person
Animals
Visual_arts
Natural
Cute
Dog
Funny

Fig. 3. Samples of images taken from the ImageCLEF 2011 Photo Annotation Task Dataset with
their annotated concepts.

4.3 Analysis of the Results

Performance evaluation To determine the quality of the annotations five measures
were used, three for the evaluation per concept and two for the evaluation per photo. For
the concept based evaluation the mean Average Precision (MAP), the equal-error-rate
(EER), and the area-under the curve (AUC) are used, using the confidence scores. For
the example based evaluation, F-measure (F-ex) [15] and Semantic R-Precision (SR-
Precision) are used. The SR-Precision is a novel performance measure derived from the
example-based R-Precision measure. In contrast to R-Precision, it considers the Flickr
Tag Similarity measure to determine the semantic relatedness of misclassified concepts.
Overview of Results In Table 1, we list the performance of our submitted runs.

Run Modality MAP EER AUC F-ex SR-Pr
1: CEALIST text Fsb T 0.292 0.356 0.684 0.478 0.675
2: CEALIST piria5 FsbRdsa V 0.300 0.290 0.774 0.503 0.700
3: CEALIST piria5 FsbRdsa text V& T 0.372 0.259 0.808 0.497 0.704
4: CEALIST piria5 FsbRdsa text2 V& T 0.383 0.250 0.819 0.508 0.710
5: CEALIST fklsp FsbRdsa text2 V& T 0.347 0.283 0.784 0.484 0.693

Table 1. Overview of the different submissions.



We can notice that the use of user tags improves significantly the results (≈ 8 %
MAP). The textual run (run 1) based on WordNet gave the same MAP as our best visual
only run (run 2). We tested also run 1 with the Flickr-based similarity and it gaves 0.31
MAP. Fig. 4 and 5 show the Average Precision (AP) of our best ImageCLEF run
through different classes.
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Fig. 4. The Average Precision per concept.
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5 Conclusion

Our goal for the ImageCLEF 2011 Photo Annotation challenge was to take advantage
of the available user tags as additional information. Results have shown that all our
methods combining visual and textual modalities outperform our visual only classiers.
Our best scoring classier obtains 38.3 % in MAP,≈ 8 % higher than our best visual-only
system.
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9. Jégou, H., Douze, M., Schmid, C., Pérez, P.: Aggregating local descriptors into a compact
image representation. In: CVPR. San Francisco, USA (june 2010)

10. Kooperberg, C., Stone, C.J.: Logspline density estimation for censored data. Journal of Com-
putational and Graphical Statistics 1, 301–328 (1997)

11. Nowak, S., Nagel, K., Liebetrau, J.: The clef 2011 photo annotation and concept-based re-
trieval tasks. In: CLEF 2011 working notes (2011)

12. Perronnin, F., Dance, C.R.: Fisher kernels on visual vocabularies for image categorization.
In: CVPR. pp. 1–8 (2007)

13. Popescu, A., Grefenstette, G.: Social media driven image retrieval. In: Proceedings of the 1st
ACM International Conference on Multimedia Retrieval. pp. 33:1–33:8. ICMR ’11, ACM,
New York, NY, USA (2011)

14. R. O. Stehling, M. A. Nascimento, A.X.F.: A compact and efficient image retrieval approach
based on border/interior pixel classification. In: Proceedings of the eleventh international
conference on Information and knowledge management. pp. 102–109. McLean, Virginia,
USA (2002)



15. van Rijsbergen, C.J.: Information Retrieval. Butterworths, London, 2 edn. (1979)
16. Salton, G., Wong, A., Yang, C.S.: A vector space model for automatic indexing. Commun.

ACM 18(11), 613–620 (November 1975)
17. Silverman, B.W.: Density estimation for statistics and data analysis. Chapman and Hall

(1986)
18. Sivic, J., Zisserman, A.: Video google: A text retrieval approach to object matching in videos.

In: ICCV. pp. 1470–1477 vol.2 (April 2003)
19. Wu, Z., Palmer, M.: Verb semantics and lexical selection. In: 32nd. An-

nual Meeting of the Association for Computational Linguistics. pp. 133
–138. New Mexico State University, Las Cruces, New Mexico (1994),
http://citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.1.14.1869


