
Dependency-Based Answer Validation for
German

Svitlana Babych∗, Alexander Henn#, Jan Pawellek#, and Sebastian Padó#

{pado,henn,pawellek}@cl.uni-heidelberg.de,

svitlana.babych@ims.uni-stuttgart.de

∗: Institut für Maschinelle Sprachverarbeitung, Universität Stuttgart
#: Institut für Computerlinguistik, Universität Heidelberg

Abstract. This article describes the Heidelberg contribution to the
CLEF 2011 QA4MRE task for German. We focus on the objective of
not using any external resources, building a system that represents ques-
tions, answers and texts as formulae in propositional logic derived from
dependency structure. Background knowledge is extracted from the back-
ground corpora using several knowledge extraction strategies. We answer
questions by attempting to infer answers from the test documents comple-
mented by background knowledge, with a distance measure as fall-back.
The main challenge is to specify the translation from dependency struc-
ture into a logical representation. For this step, we suggest different rule
sets and evaluate various configuration parameters that tune accuracy
and coverage. All of runs exceed a random baseline, but show different
coverage/accuracy profiles (accuracy up to 44%, coverage up to 65%).

Keywords: QA4MRE, German, machine reading, question answering,
logical inference, knowledge extraction

1 The CLEF 2011 QA4MRE task

The long-term goal of NLP is to build computer systems that can communicate
with humans. Arguably, an important part of this enterprise is the development of
semantic analysis components which allow systems to understand the information
contained in the text and reason with it. This task is often called machine
reading [15]. CLEF 2011 introduced a track on machine reading, phrasing it
as a multiple-choice question answering task [21] under the name of QA4MRE.
This represents a simplified version of full machine reading in the sense that
systems do not have to generate answers, but only have to discriminate among
a given set of possible answers (answer validation [18]). At the same time, the
QA4MRE task was designed in a way that emphasized the role of developing a
comprehensive understanding of a small text. Questions were drawn from three
domains (AIDS, Climate Change, and Music and Society). For each domain, there
was a small set of test documents supposed to contain the answer, and a very
large background collection of documents gathered from the web. Questions were
designed to involve considerable surface variation compared to the texts, and thus



2 Babych et al.

Question Was ist das Ziel von UNAIDS?
What is the goal of UNAIDS?

Answer Candidate 1 ein Abkommen mit dem Gesundheitsminister zu treffen
to come to an agreement with the minister of health

Answer Candidate 2 ein Konzert mit dem African Children’s Choir zu geben
to give a concert with the African Children’s Choir

Answer Candidate 3 zu verhindern, dass HIV-positive Frauen schwanger werden
to avoid that HIV-positive women become pregnant

Answer Candidate 4 UNAIDS’ Außenwirkung zu vergrößern
to increase publicity for UNAIDS

Answer Candidate 5 zu vermeiden, dass HIV von Müttern auf Kinder übertragen wird
(correct) to avoid that HIV is transmitted from mothers to children

Answer Sentence Die Botschaft, die UNAIDS derzeit in der Welt verbreitet, ist, dass
wir es schaffen wollen, die Übertragung des Virus von Mutter zu
Kind bis 2015 praktisch zu eliminieren.
The message that UNAIDS is currently spreading is that we want
to manage to virtually eliminate the transmission of the virus from
mother to child until 2015.

Table 1. An example question with answer candidates and the answer sentence

not to be answerable by simple lexical matching. Answer validation in this setting
can be seen as a textual inference task [8] with potentially complex inference
steps: An answer candidate answers a question if the statement obtainable by
substituting the answer into the question can be inferred from the text.

For the first (primary) of ten QA4MRE runs, the use of external resources like
WordNet or paraphrase resources was prohibited. This constraint emphasizes the
need for deeper analysis of the texts to (a) consolidate the semantic representations
of the test documents and (b) acquire additional knowledge from the background
collection. Table 1 shows an example question with its answer candidates and the
sentence providing the answer in the test document. The example demonstrates
the properties discussed above. None of the answer candidates are contained
literally in the answer. To build an inference chain from the text to the correct
answer candidate, systems need to acquire the knowledge that “having a goal”
has something to do with “wanting to”, that “avoiding” something can mean to
“eliminate” it; that “HIV” is a “virus”, and so forth.

2 Strategy and Architecture

At the time of QA4MRE 2011, there was no full-fledged general-purpose textual
entailment system for German, only for the related task of question grading
[14]. We therefore approached question validation with a fairly simple system.
In the spirit of [9], we build mainly on dependency-based normalized syntactic
representations (predicate-argument relations) which abstract away from the
surface structure, complemented by inference rules encoding synonymy and hy-
ponymy knowledge acquired from the background collection. More specifically,



Dependency-Based Answer Validation for German 3

3. Inference Module

Test 
Documents

Questions and
Answers

Background
Collection

2. Semantic 
Relation Extraction

1. Syntactic Analysis and Normalization

Predicate-Argument Relations
Synonymy and

Hyponymy Relations

Fig. 1. Structure of the Heidelberg system for QA4MRE 2011

we assume that every relevant piece of knowledge can be expressed as a ternary
relation. This includes both syntagmatic relations from actual text, e.g., de-
pendency relations (Peter,subj,sleeps) and paradigmatic relations, i.e. type-level
semantic relations (natural gas,hypernym,energy source) and semantic relatedness
(book,relatedTo,story) acquired from the background corpus. We treat complex
structures (like dependency graphs) simply as sets of such binary relations, and
use the YAML file format as a universal exchange format among modules [3].

The overall structure of the system is shown in Figure 1. It consists of three
modules. In the first module, all types of language input (questions, answers,
test and background documents) are preprocessed, dependency-parsed, and
normalized, to meet the first need outlined in the introduction (consolidated
representation). The second module extracts semantic relations from the back-
ground document collection based on distributional similarity and shallow rules,
thus addressing the second need from the introduction (acquisition of additional
information). Finally, the third module attempts to infer each answer candidate,
combined with the question, from the test document.

3 Modules in Detail

3.1 Syntactic Analysis and Normalization

This module creates dependency-syntactic structures for the German input texts
(questions, answers, test and background documents). We first perform sentence
splitting with the regular expression-based tokenizer by Sebastian Nagel1 and
then run the MATE dependency parsing toolkit [4] which is among the best
available dependency parsers for German. After parsing, we perform a number of
normalization steps whose general motivation is to bring the dependency output

1 http://www.cis.uni-muenchen.de/~wastl/misc/



4 Babych et al.

Fig. 2. German sentence in perfective tense (auxiliary + participle): “Der Arzt hat eine
Operation durchgeführt The doctor has performed an operation”. Left: parser output.
Right: normalized version.

of the parser closer to our semantic intuitions, similar to [13]. Our goal is to make
the representations of answers and their supporting textual evidence more similar
to one another, abstracting away from surface variability. All normalization steps
are realized as dependency tree transformations.

Specifically, we deal with the four most frequent phenomena that we identified.
The first one is passive sentences, which we transform into an active representation,
including changing the edge labels. The second is prepositional phrases, where
we delete the preposition node and encode this information in the edge label.
The third one is coordinations, where we expand the second conjunct which
is by default only realized in a reduced form. These three phenomena can be
treated in German fairly similar to English [13]. However, our final phenomenon –
German verb complexes – is language-specific and warrants discussion. In English
declarative sentences, verb complexes with one finite and (at least) one infinite
verb – e.g., auxiliary + participle, or modal + infinitive – are, as a rule, realized
contiguously. In contrast, German main clauses must realize the finite verb
in second position and the infinite verb in clause-final position. The MATE
parser is trained on a version of the German TIGER treebank [6] converted into
dependencies. According to the TIGER annotation guidelines, sentence-initial
arguments are attached to the second-position verb, while all others are attached
to the clause-final verb. The left-hand side of figure 2 shows the dependency
tree for “Der Arzt hat eine Operation durchgeführt”, where the sentence-initial
subject (doctor) is attached to the finite auxiliary and the object (operation) to
the participle. Following our our semantic intuition, we move all arguments to
attach to the semantic head of the sentence (cf. the tree on the right-hand side).

3.2 Knowledge Extraction from the Background Collection

We decided to concentrate on extracting two types of inference rules from
the background corpus, namely hyponymy and synonymy. These two relations



Dependency-Based Answer Validation for German 5

Regular Expression Pattern hypernym RE group

(\S+)/N. wie/\S+ zum/\S+ Beispiel/\S+ (\S+)/N. 1
(\S+)/N. ist/\S+ eine?/\S+ (\S+)/N. 2
(\S+)/N. wie/\S+ etwa/\S+ (\S+)/N. 1
(\S+)/N. einschließlich/\S+ (\S+)/N. 1
(\S+)/N. und/\S+ andere/\S+ (\S+)/N. 2
(\S+)/N. oder/\S+ andere/\S+ (\S+)/N. 2

Table 2. The patterns used to extract hyponymy relations. The patterns assume that
each word is followed by a slash and its part of speech, such as Energie/NN – energy/N.

Similarity Measure Threshold Similarity Measure Threshold
Cosine distance 0.8 Dice coefficient 0.7
GCM 0.7 Hindle 300.0
Jaccard 0.7 Lin 0.7

Balanced Average Precision 0.6

Table 3. Thresholds for similarity measures.

frequently contribute to bridging the “lexical gap” between answer candidates
and textual evidence, and can be acquired using well-established methods.

The first approach we followed was the extraction of hypernym-hyponym pairs
with so-called Hearst Patterns [11]. Their adaptation to German [10] consists
of six regular expression patterns (listed in table 2) which we applied to the
background corpora. Our second approach to knowledge extraction was based
on vector space models [20]. Given the large size of the background corpus, we
constructed dependency-based vectors to take advantage of their better ability
to identify close semantic similarity when sparsity is not an issue [16]. To limit
computation time and memory consumption, all words occurring at least 50
times in one of our task’s background corpora have been included as target words
in the vector space. To extract synonyms from the spaces, we used a range of
symmetrical similarity measures to compute vector similarity, including Cosine,
Dice, GCM, Hindle, Jaccard, and Lin, and added all pairs above some threshold,
optimized for recall, to a database of inference rules (cf. Table 3).

In contrast to synonymy, hyponymy is an asymmetrical relationship which
should therefore not be amenable to extraction with symmetrical similarity
measures. We therefore identified hypernymy using the asymmetrical Balanced
Average Precision similarity measure [12]. This measure judges the relevance
of the broader term’s features for the narrower term (based on feature ranks)
and penalizes short (e.g., vague) vectors. Again, we added pairs above a certain
threshold (Table 3) to a database of inference rules.

3.3 Inference

We take the classical “logical inference” approach to deciding whether an answer
follows from the text [5]. We represent the answer candidate C, the test document



6 Babych et al.

T , and the background knowledge base B (i.e., our inference rules), as logical
formulae and test the validity of the following formula:

(T ∧ B) ` C (1)

The main problem is how to represent T and C in logical terms. In an ideal world,
we would obtain a complete representation of the sentence meaning as provided by
a full syntax-semantics interface. However, wide-coverage translation of natural
language into logics is still essentially an open research problem. Additionally,
if T and A are represented by strong logical representations, then we need an
equally strong background knowledge base B which can, for example, license
paraphrastic variation between T and C (invent X → be the first to think of X ).
This problem has been approached e.g. by acquiring meaning postulates from
WordNet [19], but in the absence of manually vetted knowledge sources, as we
assume, Formula (1) will be valid for only a small fraction of all cases [5].

We address this problem by deriving weaker representations of the linguistic
structures that essentially encode their dependency relations in propositional
logic, experimenting with different parameters in the process. We take advantage
of the fact that we have to solve only a multiple-choice task by searching for
construction methods in which exactly one of the answers can be proved: if
no answer can be proved, the representation is too strong; if more than one
answer can be proved, it is too weak. The names of the binary parameters of this
process are marked in boldface and will be used in the next chapter to explain
the evaluation results.

Turning test documents into propositional formulae T . Our goal is to
translate dependency structures into propositional logical formulae. The first,
optional, step is to prune the dependency structures by removing nodes with no
semantic content (option DropPOS). If this option is selected, we remove all leaf
nodes with the parts of speech ART (article) and APPR (prepositions2) as well
as PWAT, PWAV, PWS (question words – see below for details). The next step is
to decide on the shape of the literals. We developed four different rulesets which
we will demonstrate on the example of the node “durchführen/perform” from
the right-hand side of Figure 2 and its two outgoing edges (SB to “Arzt/doctor”
and OA to “Operation/operation”).

– The Unary ruleset builds a literal for each dependency edge that consists
only of the head and the dependent. For the above-mentioned edges, we
obtain perform(doctor) and perform(operation).

– The LabeledUnary ruleset builds a literal for each dependency edge like
Unary, but also includes the edge label. For the example: SB(perform,doctor)
and OA(perform,operation).

– The Binary ruleset builds a literal for each pair of dependency edges with the
same head without taking edges into account: perform(doctor,operation).

2 Note that prepositions should have been re-encoded as edge labels during the preceding
syntactic normalization.



Dependency-Based Answer Validation for German 7

– The Unrestricted ruleset turns each dependency subtree of depth one (i.e.,
each head with all of its dependents) into one n-ary literal. For the current
example, the result is identical to the output of Binary.

The logical representation of a test document is the conjunction of all its literals.
Several rulesets are activated, which leads to a certain amount of redundancy.

Turning a question-answer pair into a propositional formula C. In
QA4MRE, answers are usually not complete propositions, but only words or
short phrases. Such answers must be combined with the questions in order to
obtain a complete representation of the proposition conveyed by the answer
candidate, such as “Is it the goal of UNAIDS to increase publicity for itself” for
answer candidate 4 in Table 1. We therefore translate the linguistic realizations
of question and answer candidates into propositional logic as detailed above, and
combine them into a single formula in a way that is influenced by two parameters.

The first parameter is WhSubstitution (question word substitution) con-
cerns the handling of single-word answers. If this option is true, then we simply
replace the interrogative pronoun (“who”/”what”) in the question with the answer
word. If it is false, then we attempt to reconstruct a logical representation, i.e., a
literal, for the answer. Recall that our literals must correspond to dependency
edges. We therefore search in the dependency representation of the test document
for the most frequent head which had the answer word as its argument. As an
example, assume that the test document mentioned medicine being an academic
discipline. If the question concerns somebody’s occupation, and the answer is
“medicine”, we then obtain as representation for this answer candidate the literal
discipline(medicine), corresponding to the more detailed multi-word answer
candidate “the discipline of medicine”. We also construct answers by searching
for heads which had hyponyms and synonyms of the answer as their argument.
Additionally we also construct an answer by combining the answer word with
the question’s head (which in general leads to very similar results as question
word substitution).

The second parameter is ANDonly which decides how the literals of question
and answer candidate are combined into the formula C. If ANDonly is true, C is
the conjunction of all literals of answers in the answer candidate, a representation
that is optimized for precision. If ANDonly is false, representations for the answer
and question are first formed as disjunctions over the respective literals, and
then combined by conjunction. This formulae is not very precise (since it is
valid as soon as one literal of question and answer each is valid), but it may be
informative enough for a multiple-choice selection task (cf. the discussion above).

Proving validity and the role of background knowledge. Finally, we use
the theorem prover CVC3 [2] to test the validity of the resulting formulae.3

3 CVC3 is in fact a solver for predicate logic, even though currently all of our formulae
are in propositional logic. We use CVC3 for future compatibility to allow, for example,
the formulation of PL1 inference rules for predicates with valency mappings.



8 Babych et al.

Run ID 1 2 3 4 5 6 7 8 9

Unary T T T T T T T T T
LabeledUnary T T T F F F F F T
Binary T T T T T T T F T
Unrestricted T T T T T T T F T
WhSubstitution F F F F T F F T T
ANDonly F F F F F T T F F
AllKnowledgeAtOnce T T F F F F F F F
Threshold F F F F F F T F F
DropPOS T T T T T T T F T
RankUnprovable F F F F F F F F T

Table 4. Submitted runs and their features

As discussed above, the basis of our approach is to attempt to prove the five
formulae in parallel for a growing body of background knowledge B, i.e., synonymy
and hyponymy relations. Specifically, we divide the relations generated by the
knowledge extraction component (Section 3.2) into five categories according
to decreasing semantic similarity. In other words, we first attempt to prove
the answer candidates when taking only fairly certain background knowledge
into account, and if this is not possible, we proceed to less certain background
knowledge. As soon as at least one of the answers can be proved, we stop. This
process is skipped by setting the option AllKnowledgeAtOnce, which adds
the complete body of background knowledge at once.

At the end of this process, we can have different outcomes. If none of the
answers can be proved, we do not make a prediction. If exactly one answer can be
proved, we return this answer. If more than one answer can be proved, we require
a tie-breaker to choose among these candidates. For this end, we score each
derivation based on the similarity scores of the background knowledge that was
employed, effectively interpreting similarity scores as confidence values. Questions
where more than one answer receives exactly the same score must however still
be left unanswered. We also experimented with the option Threshold which
introduced a fixed threshold that answer scores had to exceed.

Finally, we experimented with a fallback mode called RankUnprovable
where answers C that could not be proved (and were thus normally discarded)
were included in the output of the system. The decision between these answers
was made based on a simple distance metric that quantifies the “closeness” of
answer candidates to test documents.

4 Evaluation

We submitted a total of nine runs, as permitted by the QA4MRE guidelines.
Preprocessing and knowledge extraction were held constant across runs; we only
varied the parameters of the inference step described in Section 3.3, as shown in
Table 4. We originally planned to vary only one parameter at a time to observe



Dependency-Based Answer Validation for German 9

Run ID # Correct (c) # Answered (a) Accuracy (c/a) Coverage (a/120) C@1

1 9 27 0.33 0.23 0.13
2 19 62 0.30 0.52 0.23
3 18 63 0.29 0.53 0.22
4 15 57 0.26 0.48 0.18
5 13 56 0.23 0.47 0.17
6 13 33 0.39 0.28 0.19
7 11 25 0.44 0.21 0.16
8 14 50 0.28 0.42 0.18
9 22 82 0.27 0.68 0.24

Table 5. Results for runs (120 questions). Best result for each statistic in boldface.

the impact of parameters, but had to deviate from this idea to sample a larger
part of the parameter space. Consequently, we decided to use a quantitative
approach to analyze the influence of run parameter on run performance.

We analyzed our runs with a logistic regression model which have previously
been used successfully to explain the influence of features in data [7]. We used
the runs’ properties (cf. Table 4) as predictors x, and the run performance as
the response variable y to be predicted. Logistic regression models have the form

p(y = 1) =
1

1 + e−z
with z =

∑
i

βixi (2)

where p is the probability of the response variable taking some value and βi the
coefficient assigned to predictor xi. Model estimation sets the parameters β to
maximize the likelihood of the data. In the current setup, we are interested in
analyzing the predictor weights: for each predictor xi, we can test the hypothesis
that it significantly contributes to predicting the response.

We first attempted to fit a model to the official evaluation metric of QA4MRE
2011, namely C@1. However, we failed to find any significant predictors. While
the fact that we have relatively few runs can definitely play a role, we attribute
this failure to the property of C@1 to combine coverage and accuracy into a single
figure of merit [17]. We found that we were more successful by investigating the
influence of our predictors for coverage and accuracy separately (cf. Table 5).

4.1 Predicting coverage

Column 5 in Table 5 (Coverage) shows the coverage figures for our different runs.
We see that the runs fall into three groups: relatively high coverage (run 9, 68%),
medium coverage (runs 2-5 and 8, 40-55%), and low coverage (runs 1, 6, and
7, < 30%). The model with which we analysed these coverage figures revealed
two significant predictors with a negative influence on coverage when set to true,
namely ANDonly and AllKnowledgeAtOnce. There was also one highly significant
predictor with a positive influence on coverage, namely RankUnprovable.



10 Babych et al.

runs        1,6,7         2-5, 8         9 coverage (%)

0              22              48            68                  100

always
covered 

ANDonly
false

RankUnprovable
true

never
covered

runs          5 1-4,8,9  6,7 accuracy (%)

0              23  30      44                                    100

always
correct 

Wh
subst

never
correct

ANDonly

Fig. 3. Question classes according to coverage (left) and accuracy (right)

These results tie in well with our intuition about the inference approach that
we use. Our model does does not make a prediction if one of two complementary
situations take place: (a) none of the answers can be inferred, or (b) there
are two or more answers with the same score among which we cannot decide.
Since ANDonly means that the answer candidate C is a pure conjunction of the
question and answer literals, setting it to true results in more cases of type (a).
Conversely, RankUnprovable attempts to answer also questions where none of
the answers is provable as a whole, reducing the number of (a) cases. Finally, if
AllKnowledgeAtOnce is true, more ties occur, thus more cases of type (b).

To gain a better qualitative understanding of these cases, we make the
simplifying, but largely warranted, assumption that our runs coincide on the
questions that they can and cannot cover. This gives rise to four classes of
questions with respect to coverage, shown on the left-hand side of Figure 3. Class
1 consists of questions that are always covered, even in an ANDonly setting. An
example4 is question 1-1-3, What country is Nelson Mandela from?.

Class 2 consists of questions where the conjunction of answer and question
cannot be inferred. An example is question 2-7-10, What could happen if the
amount of CO2 in the atmosphere is not reduced?. This question, paired with
the correct answer, results in a fairly complex formula for C, with more than ten
literals. If not all literals are connected by conjunctions (ANDonly), if cannot be
proved, but it can if ANDonly is set to false.

Class 3 coverts cases that cannot be decided by the prover, but can be decided
by the distance metric when RankUnprovable is true. An example is 2-3-5, What
could be a consequence of the reduction of arctic ice?. We cannot prove this
question together with any answer because the question contains a description of
a causal relation, “a consequence of”, which is not expressed in the same way in
the test document. The distance metric can, however, make a prediction.

Finally, there are questions (Class 4) which none of our runs covered, such as
1-1-5, What is Annie Lennox’ profession? The correct answer would be musician.
However, none of the answers can be proved, which means that runs 1 to 8
abstain from answering. Run 9 attempts to apply the distance metric, but runs
into a distance tie between the answers musician and dancer both of which are
equally close to the test document. A further contributing factor for this question
was that the parser returned an incorrect analysis of the question, which directly
led to an inappropriate representation for C.

4 For convenience, we present all examples in English. The IDs that we provide have
the shape [TopicID]-[DocID]-[QuestionID].



Dependency-Based Answer Validation for German 11

4.2 Predicting accuracy

The fourth column in Table 5 lists accuracy figures for the different runs, where
accuracy is computed as the ratio of correctly answered questions to answered
questions. Again, we see three groups, although the overall accuracy is quite
low, and the groups are much closer together. One run has very low accuracy
(run 5 at 23%), most runs show middling accuracy (runs 1-4, 8, 9) and two
runs have fair accuracy (runs 6 and 7, the best run, with 44% accuracy). In
terms of accuracy, all of our runs beat a random baseline (at 20%). Due to the
fact that the accuracy figures are clustered together more closely, our logistic
regression model yielded only one predictor with significant (positive) impact
on accuracy, namely ANDonly. As discussed above, ANDonly leads to stronger
answer representations which reduce the risk for false positives. Thus, ANDonly
is a true precision/recall trade-off: activating it yields higher-precision runs,
deactivating it higher-recall runs. Another factor which is not significant in the
regression but which we consider important to explain the performance of run 5
is WhSubstitution (question word substitution). The heuristic we employed to
deal with single-word answers for interrogative pronouns (cf. Section 3.3) yielded
only mixed results: too frequently, the occurrences of the answer candidate in
the test document that form the basis for its interpretation were not related to
the question.

In sum, we can distinguish again, though at the risk of oversimplification,
four groups of questions, shown on the right-hand side of Figure 3: (1), those that
are answered correctly by all runs; (2), those where question word substitution
leads to wrong answers; (3), those that can be answered correctly if ANDonly is
true; and (4), those that no run manages to answer correctly.

An interesting example of group (3) is question 1-3-10, Who wrote ’People do
stupid things - that’s what spreads HIV’?, with the correct answer 1: Elizabeth
Pisani. Two other answer candidates show a lot of overlap with the correct answer
(a friend of Elizabeth Pisani’s and Elizabeth Pisani’s brother). If ANDonly is
false, and consequently not the complete answer has to be proved, some of the
runs mistakenly return one of the two confounds as the correct answer.

An analysis of the group (4) errors made by run 7, our highest-accuracy run,
highlights the limitations of our current system architecture. One important
limitation is the fact that we consider literals (i.e., individual dependency edges)
largely in isolation. This makes our system vulnerable to questions where (parts
of) answers are already contained in the test document. For example, one of
the answer candidates for question 2-5-4, Why are there more wildfires now?, is
Global warming, a term which occurs in the test document several times. Since
for why-questions, we in effect try to prove a conjunction of question and answer,
we check whether the test document contains There are more wildfires and Global
warming. This is the case, and we return Global warming as the (incorrect)
answer – the correct answer would have been Less water.

A second frequent problem is the inadequacy of our background knowledge
extraction. For example, question 2-5-2 is Where is the third largest ice mass in
the world?, with the correct answer candidate being Asia. The test document



12 Babych et al.

mentions only the Himalaya (mountains). If we had had access to the meronymy
(or location) relation the Himalaya is a part of (or located in) Asia, we would
have been able to prove this answer, but we did not attempt to extract meroynym
relations. Consequently, our systems attempted to prove increasingly weaker
versions of the answers and ended up with incorrect answers. More generally
speaking, the problem is that our current system has a very impoverished notion
of background knowledge. Even within the covered relation (hyponymy), coverage
is far from perfect. Outside hyponymy, a large number of relevant semantic
relations are excluded both at the lexical level (e.g., meronymy or entailment
relations between verbs) and at the lexico-syntactic level (paraphrases), all of
which can play an important role in entailment [1].

5 Conclusions

In our contribution to the CLEF 2011 QA4MRE task, we focussed on answer
validation completely without the use of any external knowledge resources, merely
extracting some background knowledge from the provided background corpora.
Our approach was fairly straightforward and consisted in a fairly direct translation
of dependency trees into proposional logic formulae, with each edge contributing
one literal. Several parameters determine the strength of the resulting formulae.
We implemented a back-off proving setup where we proceeded from stronger to
weaker logical representations until we were able to prove at least one of the
answers. Cases of ties are resolved by a simple distance metric.

We were happy to find that our best runs showed accuracies of around 40%;
however there is a clear inverse relation between coverage and accuracy, with the
best runs showing the lowest coverage. This clearly shows that improvements
are necessary with respect to both the precision and the recall of our approach,
and our data analysis has yielded a number of clear directions for improvements.
As for recall, we mainly need to improve the knowledge acquisition techniques
with which we extract background knowledge from large corpora and scale them
up to a larger set of semantic relations, notably paraphrase. With regard to
precision, we feel that we need to improve the handling of different question
types and go beyond simply matching the linguistic material in the question
with the test document. In particular for causal questions, our current approach
is much too restricted. More generally, we would like to generalize our current
text normalization step into a more sophisticated syntax-semantics interface that
maps input texts onto “more semantic” knowledge representation structures.

References

1. Bar-Haim, R., Szpektor, I., Glickman, O.: Definition and analysis of intermediate
entailment levels. In: Proceedings of the ACL Workshop on Empirical Modeling of
Semantic Equivalence and Entailment. pp. 55–60. Ann Arbor, MI (2005)

2. Barrett, C., Tinelli, C.: CVC3. In: Proceedings of CAV. Lecture Notes in Computer
Science, vol. 4590, pp. 298–302. Springer-Verlag (2007), berlin, Germany



Dependency-Based Answer Validation for German 13

3. Ben-Kiki, O., Evans, C.: Yaml ain’t markup language specification, version 1.2.
http://www.yaml.org/spec/1.2/spec.html (2009)

4. Bohnet, B.: Top accuracy and fast dependency parsing is not a contradiction. In:
Proceedings of COLING. pp. 89–97. Beijing, China (2010)

5. Bos, J., Markert, K.: Recognising textual entailment with logical inference. In:
Proceedings of EMNLP. pp. 628–635. Vancouver, BC (2005)

6. Brants, S., Dipper, S., Hansen, S., Lezius, W., Smith, G.: The TIGER treebank.
In: Proceedings of the Workshop on Treebanks and Linguistic Theories. Sozopol,
Bulgaria (2002)

7. Bresnan, J., Cueni, A., Nikitina, T., Baayen, H.: Predicting the dative alternation.
In: Cognitive Foundations of Interpretation, pp. 69–94. Royal Netherlands Academy
of Science (2007)

8. Dagan, I., Glickman, O., Magnini, B.: The PASCAL recognising textual entailment
challenge. In: Machine Learning Challenges, Lecture Notes in Computer Science,
vol. 3944, pp. 177–190. Springer (2006)

9. Dolan, W.B., Richardson, S.D., Vanderwende, L.: MindNet: acquiring and structur-
ing semantic information from text. Tech. rep., Microsoft Research (1998)

10. Granitzer, M., Augustin, A., Kienreich, W., Sabol, V.: Taxonomy extraction from
german encyclopedic texts. Tech. rep., Graz University of Technology (2009)

11. Hearst, M.A.: Automatic acquisition of hyponyms from large text corpora. In:
Proceedings of COLING. Nantes, France (1992)

12. Kotlerman, L., Dagan, I., Szpektor, I., Zhitomirsky-Geffet, M.: Directional distri-
butional similarity for lexical inference. Nat. Lang. Eng. 16(4), 359–389 (2010)

13. de Marneffe, M.C., Manning, C.D.: The Stanford typed dependencies representation.
In: Proceedings of the COLING Workshop on Cross-Framework and Cross-Domain
Parser Evaluation. pp. 1–8. Manchester, UK (2008)

14. Meurers, D., Ziai, R., Ott, N., Kopp, J.: Evaluating answers to reading comprehen-
sion questions in context: Results for German and the role of information structure.
In: Proceedings of the EMNLP TextInfer 2011 Workshop on Textual Entailment.
pp. 1–9. Edinburgh, Scotland, UK (2011)

15. Norvig, P.: Inference in text understanding. In: Proceedings of AAAI. pp. 561–565.
Seattle, WA (1987)

16. Padó, S., Lapata, M.: Dependency-based construction of semantic space models.
Computational Linguistics 33(2), 161–199 (2007)

17. Peñas, A., Rodrigo, A.: A simple measure to assess non-response. In: Proceedings
of ACL/HLT. pp. 1415–1424. Portland, OR (2011)

18. Peñas, A., Rodrigo, Á., Sama, V., Verdejo, F.: Testing the reasoning for question
answering validation. Journal of Logic and Computation 18, 459–474 (2008)

19. Tatu, M., Moldovan, D.: A semantic approach to recognizing textual entailment.
In: Proceedings of EMNLP. pp. 371–378. Vancouver, BC (2005)

20. Turney, P.D., Pantel, P.: From frequency to meaning: Vector space models of
semantics. Journal of Artificial Intelligence Research 37, 141–188 (2010)

21. Vanderwende, L.: Answering and questioning for machine reading. In: Proceedings
of the AAAI Spring Symposium. Stanford, CA (2007)


