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Abstract. This paper describes the system developed by the Language
and Reasoning Group of UAM for the Relevance Feedback track of INEX
2012. The presented system focuses on the problem of ranking documents
in accordance to their relevance. It is mainly based on the following hy-
potheses: (i) current IR machines are able to retrieve relevant documents
for most of general queries, but they can not generate a pertinent rank-
ing; and (ii) focused relevance feedback could provide more and better
elements for the ranking process than isolated query terms. Based on
these hypotheses, our participation at INEX 2012 aimed to demonstrate
that using some query-related relevance feedback it is possible to improve
the final ranking of the retrieved documents.

1 Introduction

Information Retrieval (IR) deals with the representation, storage, organization,
and access to information items1 [1]. Given some query, formulated in natural
language by a user, the IR system is suppose to retrieve and sort according to
their relevance degree documents satisfying user’s information needs [4].

The word relevant means that retrieved documents should be semantically
related to the user information need. Hence, one main problem of IR is determin-
ing which documents are, and which are not relevant. In practice this problem
is usually regarded as a ranking problem, whose goal is to define an ordered list
of documents such that documents similar to the query occur at the very first
positions.

Over the past years, IR Models, such as: Boolean, Vectorial, Probabilistic
and Language models have represented a document as a set of representative
keywords (i.e., index terms) and defined a ranking function (or retrieval function)
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1 Depending on the context, items may refer to text documents, images, audio or video
sequences.



to associate a relevance degree for each document with its respective query [1,
4]. In general, these models have shown to be quite effective over several tasks in
different evaluation forums (CLEF2 and TREC3). Nevertheless, these retrieval
systems still fail at retrieving most of the relevant documents to a given query
in the first positions. The latter is due to the fact that modelling user intentions
from queries is, in general, a highly subjective and difficult task, hence, post-
processing and ranking refinement strategies have been adopted [12–15].

Post-retrieval techniques aim at refining retrieval results by means of feature
re-weighting, query modification, document re-ranking and relevance feedback.
The common idea is to interact with the user in order to learn or to improve a
model of the underlying user’s information need. Acceptable results have been
obtained with such methods, however, they still have several limitations, includ-
ing: i) the need of extensive user interaction4; ii) multiple execution of retrieval
models; iii) the on-line construction of classification methods; iv) the lack of
contextual information in the post-retrieval processing, which may be helpful
for better modelling users’ information needs; and v) the computational cost
that involves processing the entire collection of documents each feedback itera-
tion.

Document re-ranking or ranking refinement in information retrieval has been
a widely research topic during the last fifthteen years. There are two main ap-
proaches for this task: i) indirect re-ranking via some query expansion strategy,
and ii) direct re-ranking on initial retrieved documents [15]. Normally, query
expansion strategies assume that top ranked documents are more likely to be
relevant, the terms contained within these documents can be used to augment
the original query and then a better ranking can be expected via a second re-
trieval process. In contrast, direct re-ranking strategies try to improve the rank-
ing of the initial set of retrieved documents by directly adjusting their positions
without the need of performing a second retrieval process, normally, this type
of strategy use the information contained within the retrieved documents (e.g.,
inter-document similarities) to generate a better ranking of them. The generated
output (i.e., a list of ranked documents) by any of this two strategies would be
of obvious benefit to users, for example, direct ranking refinement can be used to
improve automatic query expansion since a better ranking in the top retrieved
documents can be expected.

1.1 Our approach

Our participation at the INEX 2012 Relevance feedback track proposes using an
alternative post-retrieval technique that aims at improving the results provided

2 Cross Language Evaluation Forum (http://www.clef-campaign.org/).
3 Text Retrieval Conference (http://trec.nist.gov/).
4 It is worth mentioning that if available, user interaction should be included in post-
retrieval techniques as it is evident that information provided by the user is much
more reliable than that obtained by a fully automatic process. Hence, the goal of
post-processing techniques should be minimizing users’ interaction instead of com-
pletely eliminate it from the process.



by a document retrieval system and that overcomes some of the limitations of
current post-retrieval methods. Our work classifies as a direct document ranking
refinement strategy. In particular we face the problem of re-ranking5 a list of
documents retrieved by some information retrieval system. This problem is mo-
tivated by the availability of retrieval systems that present high-recall and low-
precision performance, which evidences that the corresponding retrieval system
is in fact able to retrieve many relevant documents but has severe difficulties to
generate a pertinent ranking of them. Hence, given a list of ranked documents,
the problem we approach consists of moving relevant documents to the first
positions and displacing irrelevant ones to the final positions in the list.

We propose a solution to the ranking refinement problem based on a Markov
Random Field (MRF) [5, 9, 6, 16] that aims at classifying the ranked documents
as relevant or irrelevant. Each document in the retrieved list is associated to a
binary random variable in the MRF (i.e., a node), the value of each random
variable indicates whether a document is considered relevant (when its value
is 1) or not (when its value is 0). The MRF considers several aspects: 1) the
information provided by the base information retrieval system, 2) similarities
among retrieved documents in the list, and 3) information obtained through
a relevance feedback process. Accordingly, we reduce the problem of ranking
refinement to that of minimizing an energy function that represents a trade-
off between document relevance and inter-document similarity. The information
provided by the information retrieval system is the base of our method, which
is further enriched with contextual and relevance feedback information.

Our motivation for considering context information is that relevant docu-
ments to a query will be similar to each other and to its respective query, to
some extent; whereas irrelevant documents will be different among them and
not as similar to the query as the relevant documents6. Relevance feedback in-
formation has two main purposes: i) to work as a seed generation mechanism for
propagating the relevancy/irrelevancy status of nodes (documents) in the MRF,
and ii) to denote the users’ search intention by working as example texts.

At this point it is important to mention that, traditionally a relevance feed-
back process takes as input a set of n documents (tentatively relevant) and
generates as output a set of k isolated terms (tentatively relevant to the query)
which are further employed for a query expansion process. For our purposes we
will employ all the information contained in the feedback (called example texts)
since by doing this we have showed [12–14] that it is possible to make a more ac-
curate approximation of the users’ search intention (i.e., to become into a more
explicit representation the implicit information contained in the query).

The proposed MRF does not require of multiple executions of IR models,
nor training classification methods, and it can work without user intervention;

5 Also known as the problem of Ranking Refinement.
6 Keep in mind that irrelevant documents will be similar to the query in some degree
since such documents were obtained by an IR system through that query in the first
place.



therefore, our MRF overcomes the main limitations of current post-processing
techniques.

1.2 Structure of the paper

The rest of the paper is organized as follows. Section 2 introduces the proposed
Markov Random Field for ranking refinement in document retrieval. Section 3
describes the experimental platform used to evaluate and compare our ranking
strategy. Section 4 presents the experimental results. Finally, section 5 depicts
our conclusions.

2 System Description

A general outline of the proposed method is given in Figure 1. Given a query,
the IR system retrieves from a given collection of documents a list of files sorted
according to a relevance criteria. From this list, some relevant documents are
selected based on a relevance feedback approach7. For each document in the
list, the textual features are extracted. The text contained in each document in
the list, the query given by the user, and a subset of information selected via
relevance feedback, are combined to produce a re-ordered list. This re-ranking
is obtained based on a Markov random field (MRF) model that separates the
relevant documents from irrelevant ones, generating a new list by positioning
the relevant documents first, and the others after. Next we give a brief review of
MRFs, and then we describe in detail each component of the proposed method.

2.1 Markov Random Fields

Markov Random Fields (MRF) are a type of undirected probabilistic graphical
models that aim at modelling dependencies among variables of the problem in
turn [5, 9, 6, 16]. MRFs have a long history within image processing and computer
vision [7]. They were first proposed for denoising digital images [5, 9, 6, 16] and
since then a large number of applications and extensions have been proposed.

MRF modelling has appealing features for problems that involve the op-
timization of a configuration of variables that have interdependencies among
them. Accordingly, MRFs allow the incorporation of contextual information in
a principled way. MRFs rely on a strict probabilistic modelling, yet they allow
the incorporation of prior knowledge by means of potential functions. For those
reasons, in this paper we adopted an MRF model for refining the initial ranking
of a set of documents retrieved by some IR system. The rest of this sections
summarizes the formalism of MRFs.

An MRF is a set of random variables F = {f1, ..., fN} indexed by sites or
nodes where the following conditions hold:

P (fi) ≥ 0, ∀fi ∈ F (1)

7 In the context of the Relevance Feedback track from INEX, we were given as feedback
relevant passages instead of full documents though the Evaluation Platform.
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Fig. 1. Block diagram of the proposed ranking refinement method employed in the
INEX 2012

P (fi|fS−{i}) = P (fi|N (fi)) (2)

where N (fi) is the set of neighbours of fi according to the neighbouring system
N . Formula 1 is the so called positivity condition and avoids negative probability
values, whereas expression 2 states that the value of a random variable depends
only on the set of neighbours of that variable.

It has been shown that an MRF follows a Gibbs distribution [3], where a
Gibbs distribution of the possible configurations of F with respect to N has the
following form:

P (F ) = Z−1 × e−
1

T
E(F ) (3)

where Z is a normalization constant and the T is the so called temperature
parameter (a common choice is T = 1) and E(F ) is an energy function of the
following form:

E(F ) =
∑

c∈C

Vc(f) =
∑

{i}∈C1

V1(fi) +
∑

{i,j}∈C2

V2(fi, fj) + . . . (4)

where “. . . ” denotes possible potentials Vc defined over higher order neighbour-
hoods C3, C4. . . . , CK ; each Ci defines a neighbourhood system of order i between
the nodes of the MRF. Often the set F is considered the union of two subsets of
random variables X ∪ Y ; where X is the set of observed variables and Y is the
set of output variables, which state we would like to predict. Potentials Vc are
problem dependent and commonly learned from data.

One of the main problems in MRFs is that of selecting the most probable
configuration of F (i.e., an assignment of values to each variable fi of the field).
Such configuration is determined by the configuration of F that minimizes ex-
pression 4, for which a diversity of optimization techniques have been adopted
[5, 9, 6, 16].



2.2 Proposed Model

In our case we consider a MRF in which each node corresponds to a document
in the list. Each document is represented as a random variable with 2 possible
values: relevant and irrelevant. We consider a fully connected graph, such that
each node (document) is connected to all other nodes in the field; that is, we
defined a neighbourhood scheme in which each variable is adjacent to all the
others. Given that the number of documents in the list is relatively low (100,
300 and 1000 in the experiments), to consider a complete graph is not a problem
computationally, and allows us to consider the relations between all documents
in the list.

For representing the documents, and evaluating the internal and external
similarities, we consider all the words contained in each document (except stop-
words), it is worth mentioning that we did applied a stemming process to all
documents. To describe the documents we used a binary bag of words (BOW)
representation, in which each vector element represents a word from the col-
lection vocabulary; and the example texts are represented in the same manner.
The internal and external similarities are considered via the energy function
described next.

2.3 Energy Function

The energy function of the MRF combines two factors: the similarity between
the documents in the list (internal similarity); and external information obtained
from the original order and the similarity of each document with the provided
feedback (external similarity). The internal similarities correspond to the in-
teraction potentials and the external similarities to the observation potentials.
The proposed energy function takes into account both aspects and is defined as
follows:

E(F ) = λVc(f) + (1− λ)Va(f) (5)

Where Vc is the interaction potential and it considers the similarity between
random variable f and its neighbours, representing the support that neighboring
variables give to f . Va is the observation potential and represents the influence
of external information on variable f . The weight factor λ favours Vc (λ > 0),
Va (λ = 0), or both (λ = 0.5).

Vc is defined as:

Vc(f) =

{

Ȳ + (1− X̄) if f = irrelevant
X̄ + (1− Ȳ ) if f = relevant

(6)

Where Ȳ represents the average distance between variable f and its neigh-
bours with irrelevant value. X̄ represents the average distance between variable
f and its neighbors with relevant value. The distance metric used to measure
the similarity between variables is defined as: 1 − dice(f, g), where dice(f, g)



represents the Dice coefficient [8], and is defined as: dice(f, g) = 2|f∩g|
|f∪g| . Va is

defined as follows:

Va(f) =







(1− dist(f, e))× g(posinv(f)) iff = irrelevant

dist(f, e)× g(pos(f)) iff = relevant
(7)

The Va potential is obtained by combining two factors. The first indicates
how similar, dist(f, e), or different, 1−dist(f, e) is the f variable with the exam-
ple texts (e) (i.e., the information provided by the feedback). Where dist(f, e)
is defined as: 1 − dice(f, e). The second is a function that converts the posi-
tion in the list given by a base IR machine to a real value. The function used
g(x) = exp(x/100)/exp(5) [2]8. The function pos(f) returns the position of the
document f in the original list, posinv(f) returns the inverse position of the f
variable in this list.

Having described each potential, the proposed energy function is defined as:

E(F ) =







λȲ + (1 − X̄) + (1− λ)[1 − dist(f, e))× g(posinv(f)] iff = irrelevant

λX̄ + (1− Ȳ ) + (1− λ)dist(f, e)× g(pos(f)) iff = relevant
(8)

The initial configuration of the MRF is obtained by relevance feedback. That
is, the subset of documents that contain relevant passages selected via relevance
feedback are initialized as relevant, and all other documents as irrelevant. Then,
the MRF configuration of minimum energy (MAP) is obtained via stochastic
simulation using the ICM algorithm. At the end of this optimization process, each
variable (document) has a value of relevant or irrelevant. Based on these values,
a new re-ordered list is produced, by positioning first the relevant documents
according to the MRF, and then the not-relevant ones.

3 Experimental Setup

In this section we describe the experimental setup that we employed for the
proposed method during the INEX 2012 competition. A brief description of the
base IR system used is given as well as its configuration. Besides this, we describe
an additional ranking refinement strategy employed in our submitted runs, as
well as the documents collection and the evaluation measures.

3.1 Base IR System

As we have mentioned before, our ranking refinement strategy does not depend
on any particular IR system. However, in order to perform our experiments

8 The intuitive idea of this function is such that it first increases slowly so that the
top documents have a small potential, and then it increases exponentially to amplify
the potential for those documents in the bottom of the list.



we employed as base IR system the well known information retrieval system
LEMUR-INDRI. This system is part of the Lemur Project9 started in 2000 by
the Center for Intelligent Information Retrieval (CIIR) at the University of Mas-
sachusetts, Amherst, and the Language Technologies Institute (LTI) at Carnegie
Mellon University. Particularly the LEMUR-INDRI toolkit is a search engine
that provides state-of-the-art text search facilities, a rich structured query lan-
guage for different text collections, and is considered as a robust system capable
of producing comparable results to new IR schemes.

For all our experiments, the collections were indexed by this tool using a
probabilistic language model. For this purpose, collections were preprocessed
by applying stop word elimination as well as a stemming process. For our ex-
periments we employed a list of 571 stop words available in the CLEF site10.
Additionally, for the stemming process we employed the well known Porter al-
gorithm [10].

As baseline results we considered the performance obtained under this con-
figuration employing the LEMUR-INDRI search engine.

3.2 Query Expansion via Relevance Feedback

A query expansion via relevance feedback process is a controlled technique which
main goal is to reformulate a query. In other words, a relevance feedback strategy
is normally a previous step for a query expansion (QE) process. The basic idea is
to select a set of k words which are related to a set of documents that have been
previously retrieved and tagged as relevant by some user. Further, this words
are added to the original query [11]. In order to apply a relevance feedback
process it is necessary to perform a first search (i.e., a first retrieval process)
which generates an ordered list of documents. Afterwards, the user selects from
the first positioned documents those that he considers as relevant (i.e., the user
establishes the documents’ relevance). This relevance judgements that the user
just gave to the documents are employed to compute a new set of values that
indicate in a more accurate form the impact of each word in the original query11.

As an alternative solution, we performed some experiments applying a QE
process. For this, every time some feedback was given, we selected the k most
frequent/less frequent words for its addition to the original query in order to
perform a new retrieval process. Among the disadvantages of QE is the compu-
tational cost implied, since it is necessary to perform a second retrieval process.
Besides this, relevance feedback strategies have shown to be sensitive to the qual-
ity of the added words, since adding an irrelevant word could be very harmful
for the IR system

9 http://www.lemurproject.org
10 Cross Language Evaluation Forum (http://www.clef-campaign.org/).
11 When the relevant documents are identified by some automatic process, it is assumed

that documents placed at the top positions of the list are in fact relevant, and the
new set of words that will be added to the query are automatically selected; this
type of feedback is known as blind relevance feedback.



3.3 Data set

In the framework of the INEX 2012 Relevance Feedback track we were pro-
vided with the Wikipedia XML Corpus as the test collection. This collection
was created from the October 8, 2008 dump of the English Wikipedia articles,
and contains 2,666,190 articles, which represent more that than 50 GiB of disk
space.

3.4 Evaluation

The evaluation of results was carried out using a measure that has demon-
strated its pertinence to compare IR systems, namely, the Mean Average Preci-
sion (MAP). MAP is defined as follows:

MAP =
1

|Q|

|Q|
∑

i=1

(∑m

r=1 Pi(r) × reli(r)

n

)

Where Pi(r) is the precision at the first r documents, reli(r) is a binary function
which indicates if document at position r is relevant or not for the query i; n
is the total number of relevant documents for the query i, m is the number of
relevant documents retrieved and Q is the set of all queries.

Intuitively, this measure indicates how well the system puts into the first
positions relevant documents. It is worth pointing out that since our IR system
was configured to retrieve 1000 documents per query, MAP values are measured
at 1000 documents.

On the other hand, P@N is defined as the percentage of retrieved relevant
items at the first N positions of the result list. Finally R − Prec is defined as
the precision at R-th position in the ranking of results for a query that has R
relevant documents.

3.5 Experiments definition

The use-case of the INEX 2012 relevance feedback track is as follows: assume a
single user searching with a particular query in an information retrieval system
that supports relevance feedback. The user highlights relevant passages of text
in returned documents (if any) and provides this feedback to the information
retrieval system. The IR system re-ranks the remainder of the unseen results list
in order to provide more relevant results to the user.

Accordingly, we conducted a series of experiments with the following objec-
tives: i) to test the results of the proposed method compared with the traditional
re-ranking strategies, ii) to evaluate the sensitivity of the method to the model
parameters.

We defined 10 different configurations, which are described below:

– BASE-IND: represents the experiment performed using just the INDRI IR
machine. For this experiment, if some feedback is provided, the feedback is
ignored and the next retrieved document is showed.



– BASE-IND-QE20tMF: this experiment was performed using a QE strategy
as re-ranking method. Once an initial documents list is provided by INDRI,
the system keep delivering documents until some feedback is provided. If
some feedback occurs, our systems reformulates the original query adding
the 20 most frequent terms contained in the feedback passages and applies
a new retrieval process. The new retrieved documents list is then showed to
the user. This procedure is repeated every time some feedback occurs.

– BASE-IND-QE20tLF: this configuration works in a similar form to the pre-
vious experiment, although the only difference is that we reformulate the
original query by adding the 20 less frequent terms.

– BASE-IND-QE20tMFandLF: this configuration works in a similar form to
the previous experiment, although the only difference is that we reformulate
the original query by adding the 20 most frequent and the 20 less frequent
terms.

– RRMRF-xxxD-Lxx: these experiments represent the runs that employed our
proposed markov random field as re-ranking strategy. The first three x’s
represent the number of documents that were used to construct the field,
whereas the second x’s represent the lambda (λ) parameter value. This con-
figuration works as follows: once we have retrieved an initial list of documents
using INDRI, our system keeps delivering documents until some feedback is
provided. If some feedback occurs, our proposed method constructs a vir-
tual example text (e) employing all the information contained in the feedback
and marks as relevant those documents that provided the feedback. After
the iteration process we show to the user the next relevant document. This
process repeats every time some feedback is provided.

4 Results

Table 1 shows the evaluation results from all the submitted runs by our team. It is
important to mention that the INEX 2012 Relevance Feedback track employed
a new methodology for submitting results. During this campaign, participant
teams were provided with an Evaluation Platform (EP) that worked as an online
tool for providing the queries as well as for providing the feedback (if any) for
every document showed to the EP. A total of 50 queries were processed, hence,
Table 1 shows the average results obtained across the 50 queries.

Notice that even when the baseline configuration does not obtained a very
high performance, obtained results are among the best performances. Remember
that the baseline method means that we are using only the output produced by
the INDRI IR machine. Therefore, obtained results indicate that INDRI was
not able to retrieve a significant number of relevant documents, resulting in low
recall levels.

A preliminary analysis indicate us that the configuration of our IR machine
was not the most adequate for the type of queries that we processed. Most of
the queries consisted on a set of general terms that do not necessarily represent
a query formulated in natural language. We believe that using a boolean or a



Experiment MAP R-Prec P@5 Recall

BASE-IND 0.1015 18.28% 45.60% 25.93%

BASE-IND-QE20tMF 0.0775 13.96% 39.60% 21.25%
BASE-IND-QE20tLF 0.0395 7.18% 30.80% 5.61%
BASE-IND-QE20tMFandLF 0.0728 13.64% 39.20% 20.03%
RRMRF-100D-L0.3 0.0940 16.12% 44.80% 16.40%
RRMRF-100D-L0.5 0.0946 15.95% 45.20% 16.40%
RRMRF-300D-L0.3 0.1002 17.69% 45.20% 22.76%
RRMRF-300D-L0.5 0.1004 18.05% 46.00% 22.76%
RRMRF-1000D-L0.3 0.1015 18.24% 45.60% 25.93%

RRMRF-1000D-L0.5 0.1015 18.24% 45.60% 25.93%

Table 1. Official Evaluation results obtained in the framework of the INEX 2012
Relevance Feedback track

vectorial model instead of a probabilistic one could provide better results in
terms of the recall measure.

As can be observed, results obtained by the configurations that employed
a query expansion strategy as re-ranking mechanism obtained the worst set of
results. This indicate that terms considered during the query reformulation were
somehow irrelevant even when they were provided by an user.

Finally, notice that our proposed method it is able to provide a better rank-
ing when using 300 documents and lambda 0.5, since it provides better results
at the first five positions of the final list (P@5). In general, we can observe
that using few documents and a high value of lambda our method is able to
produce acceptable results (almost similar to those obtained when using 1000
documents). however, the main limitation of our system was the INDRI initial
bad performance (low recall values). It is important to mention, as established
in [14], the proposed Markov random field depends on having high recall levels.

5 Conclusions

This paper proposed a method for improving the ranking of a list of retrieved
documents by a IR system. Based on a relevance feedback approach, the pro-
posed method integrates the similarity between the documents in the list (inter-
nal similarity); and external information obtained from the original order, the
query and the provided feedback (external similarty), via a MRF to separate
the relevant and irrelevant documents in the original list.

Experiments were conducted in the framework of the INEX 2012 Relevance
Feedback track. For our experiments we avoid using any specialized external
resources, since we were interested in evaluating the pertinence of the method
employing only textual (document’s words) features. Results showed that consid-
ering few documents and providing more importance to the internal similarities
among documents, the proposed method is able to reach an acceptable perfor-
mance. An initial analysis indicates that for this collection, it is necessary to



employ as IR method a traditional boolean or vectorial model in order to im-
prove the recall levels of the IR machine, which is an important condition for
the proposed method to work properly.
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