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Abstract. In this work, we summarize the results of our first participa-
tion in the plant identification task.

Unlike other contributors, we present a rather untypical approach, which
does not rely on classification techniques. In contrast, logical combina-
tions of low-level features expressed in a query language are used to
assess a document’s similarity to a species. Similar to ImageCLEF 2011,
DBIS’ approach is based on the commuting quantum query language
(CQQL). CQQL was proposed by the workgroup to combine similar-
ity predicates as found in information retrieval and relational predicates
common in databases. In order to combine both predicate types, CQQL
utilizes the mathematical formalisms of quantum mechanics and logic
eventually forming a probabilistic logic.

To test the utility of our query language, three different automatic ap-
proaches are discussed. First, a query by example approach towards plant
identification is presented. Second, the approach is combined with a k-
medoid technique to exploit relationships within the top-k results. To
conclude with, the aforementioned techniques are compared with the
utilization of the k-medoid method alone.

With respect to the non-existent experience with the task, the results of
the discussed approach are fairly decent but leave room for improvement
being outlined as future work.
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1 Introduction

In this paper we present the results of the Database and Information Systems
Group’s (DBIS) participation in the plant identification task that was organized
within ImageCLEF 2012. Because it is our first try with the Pl@ntLeaves data
set, our main objective was to gain experience with the data set and to investi-
gate future directions of research. Unlike other contributors, we present a rather
untypical approach, which does not rely on classification techniques. In contrast,
logical combinations of low-level features expressed in a query language are used
to assess a document’s similarity to a species.

Similar to ImageCLEF 2011 [15], DBIS’ approach is based on the commuting
quantum query language (CQQL) [8]. CQQL was proposed by the workgroup



to combine similarity predicates as found in information retrieval (IR) and rela-
tional predicates common in databases (DB). In order to combine both predicate
types, CQQL utilizes the mathematical formalisms of quantum mechanics and
logic eventually forming a probabilistic logic [5]. For the sake of brevity, the the-
ory of CQQL is not covered in this paper. Instead, its relation to probabilistic
and other quantum mechanics-derived IR models is covered in [16], while [9]
discriminates it from fuzzy logic [11].

The core idea of the presented approach can be summarized as follows. Based
on different document representations, e.g. color-based low-level features or ac-
companying metadata such as GPS information, a logical CQQL query is formu-
lated, e.g. to define the species’ characteristics. Based on the CQQL evaluation
rules describes in prior work [8] and summarized in Section 2, the query is trans-
formed into an arithmetic formula which is then used to calculate the similarity
between the documents in the data set.

1.1 Plant identification Task

The plant identification task is part of ImageCLEF for the second time. It is
focused on tree species identification based on leaf images. In comparison to
the last year’s challenge there are some novelties. The number of species has
been increased from 70 to 126. Furthermore the main objective changed from
pure classification to a plant species retrieval task. In the following section we
describe the basic characteristics of the data and their identification as far as it
is needed for the understanding of this paper. The complete description of the
plant identification task 2012 be found in [2].

Training and Test Data The plant identification task is based on the Pl@Qnt-
Leaves data set [6], which is divided into training and test data. The train-
ing subset was built by including the training and test subsets of last year’s
Pl@ntLeaves data set, and by randomly selecting 2/3 of the individual plants
[3]. The complete data set contains 11,572 pictures, 126 tree species mainly from
the French Mediterranean area, subdivided into 3 different kinds of pictures:
scans, scan-like photos and natural photos [3]. The distribution of training and
test data of the Pl@ntLeaves data set is shown in Table 1.

Table 1. Distribution of the Pl@ntLeaves data set

‘ Scan ‘ Scan-like Photograph‘ >

Train data 4,870 1,819 1,733| 8,422
Test data 1,760 907 483| 3,150
Complete data set 6,630 2,726 2,216(11,572

Identification and evaluation The goal of this task is to identify the tree
species, whose leaf is depicted on a given test image. In consequence, for each



test image, a prediction should be made for each of the 126 plant species. For
the scope of the task, a prediction is a score between 0 and 1 expressing the
confidence that a given sample images belongs to a given species.

To evaluate the prediction quality, the task organizers calculated a score
which is related to the rank of the correct species in the result list. Thereby a
mean value is built per author and per plant which is in the collection. An author
is a person which helped to built up the Pl@ntLeaves collection. The score is
defined in the following formula [3]:

2%

U : number of users (who have at least one image in the test data)

P, : number of individual plants observed by the u-th user

N,,p : number of pictures taken from the p-th plant observed by the u-th user
Su,p.n : Classification score (1 or 0) for the n-th picture taken from the p-th plant
observed by the u-th user
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2 Retrieval Model

Repeating our summary found in prior work [15], CQQL can be considered a
query language dealing with probabilities that is consistent with the laws of
the Boolean algebra. The probabilities denote how “similar” a document is to
a query regarding a given condition in the query, e.g. a color histogram. In the
next section, we will sketch the arithmetic evaluation of CQQL as it is necessary
for the understanding of this paper.

2.1 Evaluation of CQQL

Given that f,(d) is the evaluation of a document d w.r.t. a CQQL query ¢. To
form ¢, various conditions ¢ can be linked in an arbitrary manner using the
conjunction (Equation 2), disjunction (Equation 3), or negation (Equation 4). If
 is atomic, f,(d) can be directly evaluated yielding a value out of the interval
[0;1] As stated before, the actual value of a representation can be calculated by
a similarity measure or a Boolean evaluation carried out by a DB system or the
like.

After a necessary syntactical normalization step [18], the evaluation of a
CQQL query is performed by recursively applying the succeeding formulas until
the atomic base case is reached:

f@lALP2 (d) = fS01 (d) * f<P2 (d) (2>
ftplvsaz( ) ftpl d)+f<P ( ) (fsal( )/\.ﬁpz(d)) (3)
~p(d) =1 — f,(d) (4)



The result of an evaluation of a document d yields the probability of relevance
of d w.r.t. the given query. This probability value is then used for the ranking
of the result list of documents.

2.2 Weighting in CQQL

In order to steer the influence of certain conditions onto the query evaluation,
CQQL has been extended with a weighting scheme [7]. This weighting scheme
can be used for relevance feedback (RF) during the retrieval process. Weighting
is a crucial part of our machine-based learning supported user interaction model
discussed in [18]. Although an extensive evaluation of RF for multimodal retrieval
is not in the scope of this paper, we will outline how weights are embedded in
a CQQL query because the weights are later used for the optimization of the
discussed queries (see Table 2).

Equation 5 denotes a weighted conjunction, whereas Equation 6 states a
weighted disjunction. A weight 6; is directly associated with a logical connector
and steers the influence of a representation ¢; on the evaluation. To evaluate a
weighted CQQL query, the weights are syntactically replaced by constant values
according to the following rules:

©1 Ny 0, P2 ~ (1 V =b1) A (2 V —02) (5)

©1 Vo, .0, P2 ~ (01 A01) V (2 A O2) (6)

3 Experimental Description

For the scope of this paper, experiments have been conducted on low-level fea-
tures combined with some of the provided metadata. The discussed approach
aims at improving the performance on the plant identification task by using
combinations of different features. Hence, the three main objectives of the ex-
periments are as follows:

First, we will investigate and optimize the efficiency of a combination of
visual low-level features alone.

Second, the performance improvement using low-level features as well as
metadata in a CQQL query will be examined.

Third, the discussed CQQL approach will be compared with other state-of-
the-art systems using classification systems like support vector machines (SVM).

In order to investigate these points, three different approaches are used in com-
bination with a preparatory study (see Section 3.1).

Section 3.2 describes the results of a query by example (QBE) approach,
while Section 3.4 presents a solution of the plant identification task using a
k-medoid clustering technique. Section 3.3 combines both approaches.



3.1 Preparatory Study

In order to conduct the experiments, a preparatory study has been carried out.
All assumptions used later are based on this study.

To conduct the preparatory study, we used our own developed multimodal
retrieval system [14, 12]. The retrieval systems allows the extraction and com-
bination of several different document representations, e.g. low-level features,
metadata, textual information or database attributes. Additionally, the system
allows a preference-based relevance feedback approach for learning weights inside
a CQQL formula. A detailed description of the approach is discussed in prior
work [17,18].

To get an overview of the performance of the individual low-level features
we measured the accuracy of them with the Pl@ntLeaves data set. For our
first participation we decided not to evaluate each image type (scan, scan like,
photographs) separately. An excerpt of the results of our initial evaluation runs
is shown in Figure 1 displaying the values of precision at 5, 10, 20, 30, and mean
average precision (MAP). Overall, we tested 15 low-level features in addition to
the given GPS information. To calculate the similarity between the GPS data
of two images we used the following similarity measure:

V(715 - (long, — long,))? + (111.3 - (lat, — lat,))?

GPSoim = 1= 6378.338

(7)
whereas long stands for longitude and lat for latitude.

The MPEG-7 Color Structure Descriptor (CSD) [4], which defines a color dis-
tribution and the spatial structure of an image, was the best performing visual
feature whereas GPS performed surprisingly poor. The bad performance is due
to the distribution of the plant species over several territories. As a single feature
it is nearly worthless for this task. Although, it can improve performance when
used in combination (see Figure 2; UCCps).
Based on the results of Figure 1, we tried to find different CQQL combina-
tions that would exceed the performance of the low-level feature runs. Our first
combinations were based on our former evaluations with general purpose image
collections like Caltech 101 [1], Pythia [13], or Wang [10]. Unfortunately, the
results could not be transferred successfully because of the specialized nature of
the plant identification task.

Consequently, new combinations using the best performing low-level visual
features were examined. An excerpt of the used CQQL combinations can be
found in Table 2.

Test Design We evaluated the performance using the given training data but
using MAP and Precision at n evaluation metrics instead of the special plant
identification metric. In total, 14 CQQL formulas containing visual low-level fea-
tures and two combinations of visual and GPS data were tested. To evaluate the
CQQL combinations, we used a Z-Score normalization for each feature similarity
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Fig. 1. Low-level feature performance on the Pl@ntLeaves data set (excerpt)

Table 2. Analyzed CQQL combinations

Name CQQL combination

Q1o (CEDDgim, Vo,,0, FCTHgm) N (COLORLAYOUTsimy V¥ (TAMURAim N
EDGEHISTOGRAMjin.))

UCCho /\ei (COLORSTRUCTUREjim, CEDDsim, FCTHgim,)

UCCys (CEDDsim Voy,0, FCTHSim)/\95796
(COLORSTRUCTUREG im Vog,0, AUTOCOLORCORRELOGRAM i)

UCCy; (REGIONSHAPEGm Vo, 00 COLORSTRUCTUREsim)Nos .06
(TAMURAim Vos,0, COLCORHISTOGRAM i)

UCCps (REGIONSHAPEim Vo,,0, COLORSTRUCTURE im)/No-,04
(TAMURAGsim Vog,0, COLCORHISTOGRAM im)Nog .01
(EDGEHISTOGRAMim Vog,00 COLCORLAY OUTgrm,)

UCCps GPSsim N((REGIONSHAPEim Vo, 60 COLORSTRUCTUREjim)Nos .05

(TAMURA im Vos.0, COLCORHISTOGRAM i) oo 6,0
(EDGEHISTOGRAM i Vo 95 COLCORLAY OUTi,))

Weights (6;) are initially set to 1.0. Features;m denotes similarity of a rep-
resentation to the QBE document.




and the CQQL evaluation rules (see Formulae 2, 3, and 4). Together with the
ground truth of the training data and our preference based approach we tried
to optimize the weights used in the CQQL formulas in order to improve the
retrieval metrics. Initially all weights (6;) are set to 1. After a learning run, the
weights are set to values between 0 and 1 that fulfill the most preferences given
by the ground truth. An excerpt from the final evaluation results can be found
in Figure 2.

The best visual-only run gives us a small performance boost of about 14% with
a MAP value of 0.39 and a PQ5 of 0.75 in comparison to the best single feature
ColorStructure. In contrast, the best multimodal CQQL combination (UCCO08)
gives a clearly greater performance boost of about 39% with a MAP value of
0.47 and P@5 of 0.8. It should be noted that we use no optimization for each
image type (scan, scan like or photograph) which should improve the values even
further.
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Fig. 2. Evaluation of CQQL combinations (unweighted and with learned weights)

3.2 QBE-based Approach

We used a query by example (QBE) based approach for run 1 and 2 (see Fig-
ure 3). For this approach, test images are considered QBE documents and the
training images form the collection to be used for retrieval.

The only difference between both runs of the QBE approach is that the first
run (our main run) uses a multimodal CQQL combination (UCCO08) whereas the
second run is based on a CQQL combination consisting only of visual features

(UCCO6).



Based on the preparatory study, weighted CQQL queries were defined using
the best performing features. To learn the actual weight values, we picked a small
random sample of images of all image types (scans, scan-like and photographs).
With this training data, we evaluated the initial retrieval performance. To learn
the best weights for a query, three steps were carried out:

1. A set of QBE images was chosen randomly from the training data. The
QBE set includes all image types and some species which have the highest
frequency in the training data.

2. For each of the QBE images, a ranking is calculated using a distinct set of
weight values.

3. The results were interpreted using precision at n and MAP to reveal the best
weight setting.

In order to find out the optimal weight setting, each QBE image is used to re-
trieve similar images from the collection eventually generating a ranking. As we
know the species for each QBE document the ranking can then be compared
with the optimal ranking of a species. This comparison is needed for the auto-
matic preference input in order to learn weights with the presented approach. In
order to provide preferences, the first 500 (at most) documents of the generated
ranking are checked for irrelevant documents preceding relevant ones regarding
the examined species defined by the current QBE document. If such an order
dirrele'uant > drelevant is deteCted» and inverted preference dirrelevant < drelevant
is defined. After the first 500 (at most) documents have been tested, these pref-
erences serve as input for the weight learning algorithm. Using these weights,
a new ranking is generated. This ranking is then evaluated for the aforemen-
tioned retrieval metrics. To conclude with, all runs are averaged to determine an
average set of weight values for a given query.

3.3 QBE-based Approach Combined with Top-k Clustering

For our second test (run 3), we used an approach combining a QBE-based ap-
proach with image clustering. The first part of this approach uses the same tech-
niques as described in the last section. To reveal the relationship of all images
found in the top-k result, we applied an image clustering method. We expected
to find a homogeneous group of images which could then be used to determine
the species of the query document. Therefore we used a distance based clustering
approach, a k-medoid clustering. It was necessary to use such a method because
we want use the CQQL similarities between all top-k images.

The result of the k-medoid clustering is a set of clusters. A cluster contains a
mixture of training and test data (cluster members). To make a prediction which
species should be associated with a given test image, we inspect the cluster con-
taining the test image. Analyzing the rest of the cluster members (considering
only training images of which the species is known), we check to which species
the training data belongs. Taking the distance between the test image and the
nearest training image, a ranking is created. The ordered list gives us the prob-
ability of a membership for all species within the cluster. To get a prediction



for each type of species, we take the other clusters and continue following the
same principle. To optimize our approach, we evaluate which values for top-k
and the number of clusters reached the best quality. The idea of the used quality
measure is straightforward: a correct classification on the first predicted species
will define a score value of 1. If the correct species is on the n-th position we
define a score value of n. Then a minimized summed score value defines the best
quality.

The usage of this combined approach gives us the opportunity to use the
frequency of occurrence of the plant species. In the next approach, multiple
occurrences of a species are ignored. Instead, only the first appearance is regarded
important. Considering all top-k documents, we expect some species to occur
repeatedly. A clustering on these images (with multiple occurrences of a species)
yields a (good) probability that images with the same species belong to the same
cluster (because of their high similarity). For a given test image which belongs
to the same cluster there is a high probability that this test image belongs to
the species too. The handling of images which occur very rarely or never in the
training data set is complicated because our prediction is undefined.

3.4 Cluster-based approach

For our last try (run 4), we used a pure image clustering approach. Unlike our
first methods we do not calculate an individual species prediction for each test
image. Instead, we cluster the complete data set including the train and test
images. We used a k-medoid clustering approach, which works on distances,
calculated by a logical combination of global visual features combined with GPS
data (UCCO08). In this run, we used no special optimization techniques, so we
apply initial weights to the CQQL formula. The species prediction of each test
image is similar to the method used in the top-k clustering. For a given test
image we analyzed the result list of the cluster which holds these object. To
make a prediction for all categories we analyzed the nearest clusters and took
all unused categories like we did in top-k clustering approach.

With this approach we are able to exploit the relationship of the test images
and training images as additional information to identify the species. But without
an equal distribution of all species we get some problems with categories which
occur rarely as we already discussed in last section.

4 Results

According to the official results, our best run achieved place 20 in the overall
ranking. Considering only automatic runs, we achieved rank 11. At a closer look,
the score values of our results for scans and scan-like photographs are very poor.
We cannot fully explain the failure with these image types as there were no
indications for the weak performance during the training stage. One reasonable
interpretation of the results is that the conducted learning runs led to an over-
fitting. Another reason could be the gap between the final metric used in the
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task and the metrics (precision at n, MAP) used during our preparatory study. A
detailed analysis is not yet possible until the exact score calculation method and
the ground truth of the test data is released. To conclude with, further research
has to be carried out to find satisfying answers.

Regarding our general approach and the results in the photograph category
we obtained a decent rank 6 (3rd best group) considering only automatic runs
as illustrated in Figure 3. The fact that our run based on visual features alone

TUM
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Fig. 3. Ranking score for fully automatic runs considering photographs

(run 2) performed better or as well as the combined run (run 1) for all image
types is surprising. This is contradictory to the results we had observed during
the training runs.

In comparison to the best submission, our results are far off. One reason for
the large distance to the best group can be the training which was realized for
all three image types in the same run, while other teams tried to differentiate.

5 Conclusions and Future Work

Our participation on the ImageCLEF plant identification task poses a lot of
questions. The results are not devastating for our first participation. Anyhow,
we are not satisfied because the results during the training were auspiciously.
Furthermore, our run relying on visual features alone performed best and the
differences between scan, scan-like and photographs were very small. Further
research might reveal the reasons. For our next participation, we have to consider
some general points that were neglected. First, we learned that concentrating
on each individual image type definitely improves performance and should be
incorporated in our approach. Additionally, we acknowledge that a reasonably
working image segmentation is important for natural photographs in order to
extract shape features which could be included into our retrieval model.
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