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Abstract. In this paper we present the modeling strategies that were
applied by the IBM T.J. Watson research team to the modality classifi-
cation and case-based retrieval tasks of ImageCLEF 2012.
The primary challenges of this year’s medical modality classification task
were as follows: 1) the supplied training data was extremely limited,
with some categories having as few as 5 positive examples, leaving little
room for internal testing, and 2) some modalities appeared to be visually
similar.
In order to address these challenges, we approached the task from two
fronts: 1) we attempted to augment the training data with additional
examples of each category, and 2) we experimented with a broad range
of modeling strategies and feature extraction techniques.
For the case based retrieval task, we employed a semantic similarity
approach to measure the relatedness among medical concepts found in
the text corpus. We believe the lack of using additional lexical database
besides the UMLS-methathesaurus led to poor performance in relation
to other approaches.
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1 Introduction

The ImageCLEF 2012 Medical Modality Classification Task is a standardized
benchmark for systems to automatically classify medical image modality from
PubMed journal articles. The 2012 dataset has changed from the previous year
in 3 significant ways: 1) there are more categories, 2) the number of training
examples is far fewer, and 3) some modalities are more similar.

Our approach can be described as scaling up to utilize as many features and
data as possible. Our experiments demonstrate that increasing either axes tends
to boost performance. In addition, we present a method for kernel approximation
to help address the computational time costs of using a wide variety of methods.
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Fig. 1. Number of visual examples per category in each dataset used for experiments.

For data augmentation, we drew from several sources outside the Image-
CLEF2012 collection, such as a Bing web-crawl for each category, as well as
publicly available medical image datasets, such as The Cancer Imaging Archives
(TCIA), and Image Retrieval in Medical Applications (IRMA). For our mod-
eling approaches, we selected multiple features extracted from a set of image
granularities, such as SIFT variants [1], GIST [2], Local Binary Patterns (LBP)
[3], edge and color histograms, and Curvelets [4]. In addition, we experimented
with a variety of feature fusion and learning approaches, including early, late,
and kernel fusion, kernel approximation, multiclass SVM, and one-vs-all. We
discovered that multiclass SVM using an early fusion of many features with an
augmented dataset yielded the best performance. Kernel approximation meth-
ods were able to significantly increase the efficiency of modeling at a small cost
to performance.

2 Modality Classification Task

2.1 Datasets

Our experiments are performed on the following datasets:

• Dataset 1: The original ImageCLEF2012 training dataset.
• Dataset 2: A dataset augmented with up to 100 additional examples per

category. Augmenting data was collected from Bing Image Search, a Cor-
nell University Vision and Image Analysis Group & International Early
Lung Cancer Action Program (VIA/I-ELCAP) Public CT datase1, The
Cancer Imaging Archives (TCIA)2, Image Retrieval in Medical Applications
(IRMA)3, and the Japanese Society of Radological Technology (JSRT) [5].

1 http://www.via.cornell.edu/lungdb.html
2 Image data used in this research were obtained from The Cancer Imaging Archive

(http://cancerimagingarchive.net/) sponsored by the Cancer Imaging Program,
DCTD/NCI/NIH.

3 courtesy of TM Deserno, Dept. of Medical Informatics, RWTH Aachen, Germany
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Due to the low number of positive examples in some categories in the original
training dataset, we chose to construct an additional augmented dataset. The
number of examples per category for both is shown in Fig. 1.

2.2 Feature Collections

All our experiments are run using 1 of 7 sets of low-level visual features. Here
we name and describe the contents of 7 sets of features that were used for
modeling. Each feature is described by name, with the granularity of extraction
in parenthesis. The granularities are as follows:

• Global: Feature extracted from entire image. Native feature dimensionality
preserved.

• Grid: 5x5 image grid, with feature vector extracted from each grid block
and concatenated. Increases dimensionality by factor of 25.

• Grid7: 7x7 image grid, with feature vector extracted from each grid block
and concatenated. Increases dimensionality by factor of 49.

• Layout: 5 image regions including the center and the 4 quarters. Increases
dimensionaltiy by a facor of 5.

• Pyramid: Spatial pyramid, with global as first level, and 2x2 image grid as
second level. Increases dimensionaltiy by a facor of 5.

The feature sets referenced later in the section are as follows:

• Feature Set 1 Color Correlogram (grid), Edge Histogram (grid), Image
Type (grid), LBP histogram (grid7), Color SIFT AM Codebook Size 2000
(pyramid), SIFT AM Codebook Size 2000 (pyramid), HSV SIFT AM Code-
book Size 1000 (pyramid), Image Stats (grid), Gist (layout), Curvelet Tex-
ture (layout).

• Feature Set 2 Feature Set 1, removing SIFT features, and adding the fol-
lowing: Color Histogram (grid), Color Moments (grid), Dominant Colors
(global), Thumbnail Vector (global), Color SIFT AM Codebook Size 1000
(pyramid), SIFT AM Codebook Size 1000 (pyramid), FourierOrientation-
Vector (grid). FourierOrientationVector is a feature representing the average
of diameters in Fourier-Mellin space, across varying angles from 0 to 180
degrees.

• Feature Set 3: Feature Set 2, adding FourierPolarPyramid (layout). Fouri-
erPolarPyramid is a pyramid constructed in polar coordinates of Fourier-
Mellin space. 4 radial levels are employed (partitions of size 1, 2, 4, and 8),
with 6 angular levels, across 4 color channels (RGB and Grayscale).

• Feature Set 4: Color Correlogram (grid), Color Histogram (grid), Edge His-
togram (layout), Edge Histogram (grid), Gist (layout), FourierPolarPyramid
(global), FourierPolarPyramid (layout), Image Type (grid), LBP Histogram
(grid7), SIFT Codebook Size 1000 (global),

• Feature Set 5: Feature Set 2, minus all SIFT variants.
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• Feature Set 6: Image Stats (grid), LBP Histogram (grid), Image Type
(grid), Edge Histogram (grid), Shape Moments (grid), Dominant Colors
(grid), image stats (global), LBP histogram (global), Image Type (global),
Shape Moments (global), Edge Histogram (global), Color Wavelet (global),
Dominant Colors (global), Color Moments (global), Color Correlogram (global),
Color Moments (global), Gist (global), Wavelet Texture (global), Tamura
Texture (grid).

• Feature Set 7: SIFT Codebook Size 1000 (pyramid), HSV SIFT AM Code-
book Size 1000 (pyramid).

2.3 Multiclass SVM

We employed the LibSVM library [17] to perform Multiclass SVM classification.
The process involves learning a set of 1-vs-1 classifiers, one for each pair of classes
in the dataset. In order to classify a new example, each 1-vs-1 model is evaluated
on it and the most likely label is selected based on a majority voting scheme. No
data sampling was performed: the Multiclass SVM model was learned directly
from the whole training set (either original and augmented). As such, one of the
advantages of this learning strategy consists in explicitly modeling the priors of
the classes in the dataset. All the parameters of the models chosen for the final
submissions to ImageCLEF 2012 were chosen according to 5-fold (for the original
dataset) and 3-fold (for the augmented one) cross validation performances. After
experimenting on the internal cross-validation splits, a set of the best performing
descriptors was selected for fusion. For the original dataset, Feature Set 1, as
described in Section 2.2, was chosen. Feature Sect 2 was instead adopted for the
extended dataset. Furthermore, the Chi-square kernel was selected (in preference
over linear, RBF and histogram intersection) for all the Multiclass SVM runs,
computed as

K(x,y) = 1−
∑
d

(xd − yd)2
1
2 (xd + yd)

, (1)

Three types of feature fusion methods were experimented: early, late, and
kernel fusion.

• Early fusion: consists of a concatenation of different descriptors, before
SVM modeling

• Kernel Fusion: consists of a point-wise pooling (max or average operator)
over the kernel matrices produced by each descriptor. The Multiclass SVM
is then learned on top of the aggregate matrix

• Late Fusion: consists of a pooling (max, average or product) operator over
the predictions of the models learned from individual features for each test
image. For this type of fusion we employed the probabilistic output option
in each SVM, which converts the 1-vs-1 comparisons into class probabilities.
For each test image, each model produced a vector with N probabilities
(where N is the number of classes, 31 in our case). After the pooling was
applied in a point-wise manner over the prediction vectors of the models,
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the class with the maximum aggregate probability was chosen as the final
prediction.

Each strategy is exemplified in Figure 2. As reported in Section 2.6, the
Multiclass SVM trained from the augmented dataset with early fusion strategy
(Experiment 12) provided the best performance. Kernel fusion proved to be
equivalent, while late fusion performed worse than the other methods.

Fig. 2. Multiclass SVM fusion strategies: (a) early fusion, (b) kernel fusion and (c) late
fusion. The fusion element in the pipeline is indicated in gray.

2.4 Efficient Feature Fusion with Kernel Approximation

To explore different aspects of visual phenomenon, we employed 19 different
features, described in Feature Set 5. We used an early fusion strategy by con-
catenating these features together and training a kernelized Supporting Vector
Machine (SVM). However, a practical problem of using so many features lies
in the computational cost, both in the training and testing stage. When the
number of images grows, or when the feature dimension increases, traditional
SVM solvers may not work well or take a very long time to compute the optimal
solution.

Among all the kernels in practice, the Chi-square kernel often yields very
good performance compared with the others. Moreover, a large amount of our
features, including LBP histogram, edge histogram, color histogram, and SIFT
histogram, are in the form of histogram features. Chi-square kernel is arguable
regarded as the first choice for histogram form features. In our work, we focus on
how to efficiently solve Chi-square kernel only. We do not consider the problem
of general kernels.
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We consider the Chi-square kernel in the form of

K(x,y) =
∑
d

2xdyd
xd + yd

, (2)

where x = [x1, x2, · · · , xd, · · ·, y = [y1, y2, · · · , yd, · · ·.
It is easy to see that Eq.(2) is defined as the additive sum of different dimen-

sions. Such a kernel is referred to as an additive kernel. As suggested by [13],
such a group of kernels can be approximated by mapping the feature into a high
dimensional space. By the representer theorem [14], the solution of classification
model can be written in the form of

f(x) =

N∑
i=1

K(x,xi),

where i denotes the index of training samples. For any positive definite kernel,
there exists a mapping x→ φ(x) so that the final classification model becomes

f(x) = wT
φφ(x) + b

where wφ denotes the weights of the linear model in the mapped space. In this
work, we will use Nystrom’s approximation to construct the mapping function
explicitly.

To make the representation simply we let

k(x, y) =
2xdyd
xd + yd

,

then we can see the kernel is

K(x,y) =
∑
d

k(xd, yd). (3)

Next we will discuss how to approximate k(x, y), which is a function on 1D space.
To approximate k(x, y), we employ

φj(x) =


√
κ0 if j = 0√

2κ j+1
2
cos( j+1

2 Lx) if j > 0 odd√
2κ j

2
sin( j2Lx) if j > 0 even

(4)

where φj and κj constitute one pair of Fourier transform, L is the frequency
parameter, and we use L = 2π/15 in practice. Then we can convert the nonlinear
kernels with the linear model over φj(x). For more details, please refer to [13].

So far we have discussed how to approximate the kernelized SVM using a
linear model. Now we can compare the computational complexity of both meth-
ods. Suppose we have m features, 1 ≤ m ≤M , and each feature is of dimension
dm. The number of training samples is N , and size of testing set is T . For each
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dm features, we map it to the space of dimension 7dm. Note that the evaluation
of kernel SVM depends on the number of support vectors, which in practice is
proportional to the number of training examples. Also our linear approximation
requires the extra cost of feature mapping, which is 7dN for training and 7dT
for testing. Table 1 compares the computational complexity of the two methods.
It is easy to see our linear approximation is much more efficient in both training
and testing stage. Our linear approximation is even plausible for the scenario
with a lot of features.

Table 1. Comparing the computational cost of kernelized SVM and linear approxima-
tion.

Training Testing

Kernel SVM O(N2 ∑
m dm) O(TN

∑
m dm)

Linear approx O(αN
∑

m dm) +O(N
∑

m dm) O(αT
∑

m dm) +O(T
∑

m dm)

To measure the effectiveness of our kernel approximation method, we com-
pare how much difference exists between Chi-square kernels and our approxi-
mated kernels. Table 2 illustrates the speed up and percentage of kernel approx-
imation error using randomly-generated features. It is easy to see the approxi-
mation error is low, while the speed up will be increasingly significant when the
number of training samples grows.

Table 2. Comparing the kernel matrix approximation using our method.

Number of samples Dim. Dim. of projection Speed up (x times) Approx. error (ratio)

100 100 700 14.83 0.0027
500 100 700 28.19 0.0026
1000 100 700 76.69 0.0026
2000 100 700 118.41 0.0026

It is also interesting to see the classification accuracy after our kernel ap-
proximation. We implement the Chi-square kernel with LibSVM, and also use
liblinear [16] to train a linear classifier using our projected features. As Figure 3
shows, the linear model based on the high dimensional approximation is not
necessarily worse than the original model. In fact in some categories, the liblin-
ear model even works slightly better. Note that we do not tune the parameters
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Fig. 3. Comparing the performance using LibSVM and Liblinear with our kernel ap-
proximation.

of both models in this toy experiments. In the future, we plan to improve our
model with heterogeneous kernel learning methods [15].

2.5 One-vs-All Ensemble SVM with Data Sampling

IBM Multimedia Analytics and Retrieval System (IMARS) [6] has been devel-
oped and applied previously for semantic classification of unstructured images
and videos. The general framework is depicted in Fig. 4, and is primarily based
on generating collections of 1-vs-All SVM classifiers.

Using the IMARS learning paradigm, we explored several variants of the
pipeline to better understand the contribution of each to system performance:

• Feature Fusion: Early (vector concatenation) or Late (Unit Model score
averaging).

• Data Sampling: Random subsamples of negative examples, or using the
entire dataset.

• Number of Bags: Changing the number of Unit Models that are trained
for a particular feature by choosing different subsamplings of example data.

• Feature Sets: Varying sets of features used for modeling.

• Kernel Type: A single RBF kernel with kernel parameter -4, C=100, and
sigmoid feature normalization was used for most model learning; however,
we performed one experiment with a Chi2 kernel, similar parameters, to
understand any effect the variation of kernels might have.

1-vs-All scores of multiple Ensemble Models were converted to Multiclass
labels by choosing the max over all the classifier scores.
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Fig. 4. IBM Multimedia Analytics and Retrieval System (IMARS) Flowchart. Training
data is seperated into a Learning and Validation partition, used for model learning and
model selection, respectively. Within the Learning partition, data is segmented across
features and data subsamples. These segments are referred to as ”bags.” Within the
Validation partition, data is only segmented across features. Unit Models are trained for
each bag within the Learning partition using a 1-vs-All SVM. The performance of each
Unit Model is assessed on the Validation data partition, and Unit Models are selected
for inclusion in the Ensemble Model based on which models boost Ensemble Model
performance on the Validation data the most. If no Validation partition is definied
(0%), all Unit Models are fused into an Ensemble Model. Fusion is performed by
weighted averaging, with weigts based on average precision.

Table 3. Multiclass Accuracy of 1-vs-ALL SVM

Exp. Fusion B. Size # D. Bags # F. Bags F. Set Avg. Dim. Dataset VS % MACC P/C

1 Early 100 1 1 7 10000 2 0% 51.6% 1.0
2 Early 100 1 1 5 16020 2 0% 50.0% 0.605
3 Early 100 1 1 2 26020 2 0% 55.2% 0.411
4 Early 100 1 1 3 44920 2 0% 55.9% 0.241
5 Late 100 1 15 3 3134 2 20% 42.3% 0.174
6 Early 200 1 1 2 26020 2 0% 59.1% 0.110
7 Early 500 2 1 3 44920 2 20% 62.6% 0.005
8 Early 1000 1 1 3 44920 2 0% 64.2% 0.003
9 Late 1000 1 10 4 3854 1 0% 52.7% 0.003
10 Early 2000 1 1 3 44920 2 0% 66.6% 0.001
11 Early All 1 1 3 44920 2 0% 68.0% 0.0001

2.6 Results

One-vs-All Ensemble SVM with Data Sampling 1-vs-ALL experiments
are depicted in Table 3. Experiment index number, feature fusion type (Early
or Late), number of examples for each of positive and negative categories per
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bag, number of bags across data, number of bags across features, the feature set
used, the average dimensionality across feature bags, the proportion of data used
for Validation Split (VS), multiclass accuracy scores, and relative performance
scaled by computational complexity (P/C) are shown. Computational complex-
ity is computed simply as the running time required to compute a kernel matrix.

Experiment 8 was reproduced using a Chi2 kernel, yielding MACC of 64.4%,
and was not listed in this table.

In the first experiment, we established a baseline with a very small data
sampling rate (100 examples in each of positive and negative) and only two
SIFT features utilized. In the second experiment, we examined the performance
of our other features, excluding SIFT. In the third, we used both sets, and
in the fourth we added the newer FourierPolarPyramid feature vector. In the
fifth experiment, we examined the effect of using late fusion, instead of early
fusion. In the sixth experiment, we began to study the effects of increasing
the number of examplars. In the seventh and eigth experiments, we examined
the effect of increasing data sampling either by using larger data bag sizes,
or a larger number of bags. The ninth experiment represented our submission
NCFC ORIG 2 EXTERNAL SUBMIT.txt; this dataset used a restricted num-
ber of features and late fusion, due to time constraints. In the last two experi-
ments, we finally examine the effects of using larger amounts of data, up to the
limit of our dataset.

In summary, our experiments yield a number of notable observations:

1. With early fusion, adding more features improves performance, SIFT con-
tributing the most (see Exp. 1-4).

2. Adding additional data improves performance (Exp. 4, 6-11) .

3. Early fusion of features outperforms late fusion with averaging, and provides
a better P/C ratio (Exp. 4-5).

4. Bagging along the data dimension reduces overall performance, but improves
P/C (Exp. 7-8).

5. Best performance is acheived using early fusion of all features and all data
(Exp. 11).

6. Chi2 kernels and searching over SVM parameters holds the potential to boost
performance further.

Multiclass SVM Multiclass SVM experiments are depicted in Table 4. Three
different aspects were explored in the experiments: fusion type, dataset size, and
aggregation type. From the results in the Table emerges that:

1. Early and kernel fusion are comparable, and perform better than late fusion

2. a larger training set leads to a better classification performance (Dataset 2
is better than Dataset 1)

3. Averaging seems to be the best aggregation strategy.
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Table 4. Multiclass SVM Experiments with Mean Accuracy performance

Exp. Fusion Aggregation Feature Set Dataset Mean ACC

12 Early - 2 2 69.7%
13 Early - 1 1 66.0%
14 Kernel Avg 2 2 69.7%
15 Kernel Avg 1 1 66.1%
16 Late Avg 2 2 68.2%
17 Late Prod 2 2 67.8%
18 Late Max 2 2 65.2%
19 Late Avg 1 1 62.8%
20 Late Prod 1 1 62.2%
21 Late Max 1 1 57.9%

2.7 Official Submissions

In Figure 5 are reported the official runs submitted to the ImageCLEF 2012 web-
site, in comparison to all other official submissions (43 in total). IBM achieved
the top three visual only classification performances, as well as the best overall
accuracy.

The submissions were all purely visual, and corresponded to the following
experiments (in decreasing order of performance): 12, 13 with Kernel approxi-
mation fusion (as described in Section 2.4), 13, 11, 12 with Kernel approximation
fusion, 18, 21. After the submissions we further improved the worst performing
ones through better normalization, parameter selection, and further debugging,
yielding to the performances reported in Tables 3 and 4.

Fig. 6(b) shows the confusion matrix of the best performing run. Overall the
matrix presents a strong diagonal. However, some clear mis-classifications are
evident. In particular, “GSYS - System overview” resulted to be the hardest class
to categorize, being quite often confused with “GFLO - Flowcharts”. Looking at
the appearance of the images in such classes, it is evident that based on visual
features alone they are in most cases indistinguishable. This confusion might
be mitigated by exploiting the textual information associated with, or in, the
images. We plan to follow this direction in future experiments.

We expect that extracting textual information and combining it with our
strong visual modeling will boost classification performance, given the com-
plementary information of those two representations, and also looking at the
performances of other groups.

In conclusion, appropriately modeling the visual appearance can provide
strong modality classification performance, even without text analysis. In our
experiments we found that adding more features and training data lead to mod-
els with better classification performance. Early fusion and kernel fusion seem to
be the best combination strategies. Our kernel approximation provides a princi-
pled and efficient framework to perform such fusion, while significantly increasing
the efficiency of the computation of the best performing CHI2 kernel.
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Fig. 5. Distribution of mean accuracy scores across all the submissions to ImageCLEF
2012. Runs are divided by type (visual only, textual only, mixed). IBM submitted
only visual runs (in blue). IBM’s runs achieved the top three visual only performance.
IBM’s top run (Multiclass SVM trained from extended data, Experiment 12, circled
in red) performed even better than the mixed runs, thus achieving the best overall
classification accuracy.

3 Case-Based Retrieval Task

In this section, we give an overview of the application of our methods to case-
based medical image retrieval and present the results of our submitted runs.

3.1 Techniques and Approaches

Techniques used for case-based retrieval task are mainly based on methods from
Information Retrieval (IR) and Natural Language processing (NLP), including
rule-based and machine-learning techniques. In order to facilitate the classifica-
tion of a large dataset and to retrieve the most relevant documents for a given
query, an IR system applies various NLP methods to construct a semantic view
of each document indexed via relational database or text index. This seman-
tic view is summarized by a set of relevant keywords (i.e., index terms) as a
signature of this document.

In the biomedical domain, the terminology is very important because the
words used in the document are related to medical terms that can refer to the
same concept with different semantic interpretation (i.e., senses) based on the
textual context. In addition to the NLP techniques for reducing the size of the
relevant keywords by eliminating stopwords and stemming words, our system
also applies semantic similarity methods to improve the understanding of textual
terms and remedy potential ambiguity among medical concepts. The focus of
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Fig. 6. (a) IBM runs grouped according to training dataset, number of descriptors
adopted, and comparison with top performing non-IBM submissions. IBM’s run with
kernel approximation fusion trained on the original (limited in size) ImageCLEF
dataset performs comparably to the top Mixed non-IBM run and largely better than
other non-IBM visual only submissions. With additional training examples, IBM’s sys-
tem was able to significantly outperform all other runs, including Mixed ones. (b)
Confusion matrix of the best IBM run (Experiment 12). “GSYS - System overview”
resulted to be the hardest class to categorize, being quite often confused with “GFLO
- Flowcharts”.

the semantic similarity is to find the strength of the semantic relatedness or the
semantic connections between textual terms. The taxonomic proximity between
terms measures the degree of overlapping between contextual word vectors using
Information Content (IC) based measures. To reduce computational complexity,
the semantic relatedness is applied within an ordered window to find relevant
terms between adjacent terms in the document.

3.2 Retrieval Framework

To build our retrieval framework based on the approaches we described above,
we use the YTEX (Yale cTAKES extensions) system for computing the seman-
tic IC-based measures and the cTAKES (clinical Text Analysis and Knowledge
Extraction) as a NLP system based on the Unstructured Information Manage-
ment Architecture (UIMA) that combines rule-based and machine-learning. The
cTAKES system uses the OpenNLP Maximum Entropy package for sentence
detection, tokenization (words), part-of-speech (POS) tagging. It performs the
name entity recognition of biomedical from the Unified Medical Language sys-
tem (UMLS) Metathesaurus, and other biomedical source such as Systematized
Nomenclature of Medicine, Clinical Terms (SNOMED CT).

To classify the medical articles, our system used the YTEX semantic similar-
ity to identify and disambiguate medical terms before storing the annotations on
the documents in the relational database, and indexing relevant medical concepts
that can facilitate the topic case query matching. For each case-based query, we
first executed the NLP pipeline to extract relevant medical concepts and gen-
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Fig. 7. Case Based System Overview

Table 5. Case-Based Results
RunID Run Type MAP GM-MAP bpref P10 P30

ibm-case-based Textual 0.0484 0.0023 0.0439 0.0577 0.0449

erate an SQL expression by combining the concepts using logical OR operator
(meaning all of the concepts to be optional). To limit the number of query re-
sults and select the most relevant annotations, we define the weight measures for
sorting and ranking them based on the cosine distance between medical concept
vectors.

3.3 Experimental Results

Fig. 7 describes the processing flow of the system. The data processing splits the
whole article file into multiple individual files in order to distribute them across
multiple nodes. Each article is stored in the database as an annotation includ-
ing its most relevant medical concepts. The case-based NLP pipeline processes
each case-based file to find relevant medical concepts. Finally, the search engine
composes a SQL logical expression and ranks the result set retrieved from the
annotation database.

Due to time constraint, we only submitted one run for case-based retrieval
task, shown in Table 5. First, we experimented with the semantic similarity
approach, and found good correlation among medical concepts within the text
corpus with appropriate senses. However, by matching only the medical concepts,
the results are not as good as could be if we had used additional lexical databases.

3.4 Conclusion

The IC-based measures applied to adjacent words in a defined text window
improves the semantic relatedness performance and is less expensive than com-
puting all the word-pairs in the corpus. However, we also observed low system
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performance when the SQL expressions are complex and the number of concepts
is high. In the future, we would like to improve the semantic similarity methods
by incorporating the medical concepts with the lexical semantic analysis. We
also want to have a better matching measures to improve the accuracy.
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