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Abstract. This note summarizes methodologies employed in our sub-
missions for the medical retrieval subtask of 2012 ImageCLEF compe-
tition. Our work aims to provide a systematic comparison of various
similarity measures in the Medical CBIR application context. Our sys-
tem consists of the standard bag-of-words features with SIFT. Computed
features are then compared by using various plug-in similarity measures,
including diffusion distance and information-theoretic metric learning.
This note provides the results of our experimental validation using the
2011 ImageCLEF dataset.
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1 Introduction

ImageCLEF[1–3] is a public standardized competition which focuses attention
on, among other things, Medical CBIR (hereafter M-CBIR): CBIR[4–9] in which
all images are taken from figures in medical publications. This note focuses
on a subtask of M-CBIR 2012, the medical image retrieval task with image
data alone without other text-based data. Previous work on M-CBIR has led
to the development of an array of specific/general and local/global features. For
examples, see SIFT [10, 11], SURF [12, 13] and Gabor Wavelets [14]. Despite the
relative maturity of feature design studies, similarity measures in CBIR have not
been investigated thoroughly. Previous studies in this regard [15–17] are still few
and the lack is especially evident in the M-CBIR subfield.

Addressing this shortcoming, this paper presents a comparative study of M-
CBIR with a comprehensive list of similarity measures of many types. Our study
shows that well known measures tend to outperform more complex measures
with the notable exception of the Diffusion Distance [18]. Further, we show
that learning a metric from a set of training data is worthwhile, our best result
coming from a combination of a metric learning transformation combined with
the Diffusion Distance.
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This paper is organized as follows. Sections 2 and 3 will outline, respectively, our
methods of feature extraction and representation, and our comparative study
of similarity measures. Sections 4 and 5 will summarize our results and their
interpretation.

2 Feature Extraction and Image Representation

In this section we describe the process and the individual steps involved in trans-
forming an image to a feature vector, which consists of the following three steps.
First, we identify and extract SIFT features from all of the dataset images.
Second, we create a codebook of K representative features using K-means clus-
tering. Third, we generate a single vector per image as a normalized histogram
of such representative features. Beyond this basic three-step procedure we ex-
periment with a number of standard transformations on the feature codebooks
for better retrieval performance.

2.1 Image Representation

From each image, we extract a variable number of features which we classify
into K types using the codebook resulting from the bag-of-words model de-
scribed below. An image is then represented by the frequency distribution of
feature types in the image and is, by construction, a vector of length K. Be-
fore calculating similarities, each vector is normalized so that it is a probability
distribution.

2.2 SIFT: Scale Invariant Feature Transform

SIFT [10, 11] is a proprietary algorithm that describes regions of interest within
an image as a feature which is both scale and rotation invariant. The positions of
these features, called keypoints, are determined by finding extrema of difference-
of-Gaussian images which are robust across multiple scales. Such regions are then
turned into 128-element SIFT feature vectors using local directional gradients
around the keypoint. We include the 4 extra parameters consisting of the 2 spa-
tial coordinates of the keypoint’s position within the image, the scale parameter
and the dominant-orientation parameter for a total of 132 dimensions.

2.3 Bag-of-Words

In order to generate an fixed-length vector for each image, we cluster all features
together in space using K-means clustering with a predefined vector-length K.
Before clustering, each SIFT feature-vector is centered and scaled using Z-Score
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normalization. In our case we chose K to be 1000 where this number was taken
from an earlier report in the same competition [19]. Each SIFT feature can
then be matched with one of the 1000 labels, 0-999, corresponding to the cluster
centers. We refer to this set of centers and the corresponding labels as a codebook.
This bag-of-words method yields the frequency distribution of these labels, 0-999,
which describes an image. The notion of a bag-of-words comes from textual data
mining and was originally proposed as a way of representing a text document
by it’s word frequency distribution, ignoring order. In the analogy here, SIFT
vectors are word instances and the K centers returned from K-means clustering
are the true words. Instead of instances being exact copies of that word as in the
text mining case, in the image context a word instance is ascribed to represent
the center to which it is closest in distance.

2.4 Data Transformations

The following standard transformations were examined with the goal of improved
performance.

PCA: Principal Components Analysis PCA[20] is a technique used mainly
for dimension reduction. For a space X, It seeks to find the linear combina-
tion Y =

∑n
i=1 λix

(i) for column vectors x(i) of X such that the dimensions
of Y are not correlated (linearly independent). Moreover, dimensions in Y
are ordered from most to least important, where importance is defined in
terms of variance. In practice, the transformed data in Y is often used for
dimension reduction since one gets a variance-maximal m-dimensional rep-
resentation of X by taking the first m dimensions of Y . How small to make
m is data dependent and is typically chosen to cover at least 95% or 99% of
the data’s variance.

We experimented by varying the number of dimensions in PCA with both
2011 and 2012 ImageCLEF competition datasets and the results are shown
in Figure. 1. We found the variance spread of these two datasets to be quite
large. Overall, using our image representation, the 2012 codebook captured
more variance in fewer components than did the 2011 codebook. However,
in both cases we found that it took most of the components to cover an
adequate amount of variance.

Tf-Idf: Term Frequency - Inverse Document Frequency This idea, like
bag-of-words, comes from textual data mining. The goal is to penalize a
vector for words (features) whenever they are common across the entire
data set. Term Frequency (Tf) for an observation x is just the value at
term i’s position, i.e. xi. Inverse Document Frequency (Idf) is calculated

by Idft = log |D|
|{d∈D:t∈d}| where D is the dataset of observations and {d ∈

D : t ∈ d} is the number of observations which are non-zero in the i-th
position. For Tf-Idf, we transform d ∈ D by d · Idf . In our case, we do not
explicitly measure the presence or non-presence of a feature but rather the
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Fig. 1: Variance captured by principal components

count of each feature. Thus, Tf-Idf provides for us a weighting of our images
which penalizes features if they are very common in the data set and awards
features otherwise.

In the course of our study we experimented not just with PCA and Tf-Idf, but
also with nestings of these operations. In short, for our dataset, X, we compute
the following data transformations.

1. PCA(X)

2. Tf-Idf(X)

3. PCA(Tf-Idf(X))

4. Tf-Idf(PCA(X))

3 Database Ranking by Similarity Comparison

Given a query image, the goal here is to calculate the similarities or distances
between it and each of the images in the database. Then the first image returned
will be the most similar, the second return will be the second most similar, and
so on. In some cases a query may consist of multiple images. In this case, we
calculate the average similarity of the query parts to each database image as
the representative score. The subjectivity inherent to the idea of similarity is
reflected in the varying types of similarity measures which can be defined. In
some cases below, e.g. cosine similarity, a measure has its natural expression
as a similarity rather than a dissimilarity measure. However, in most cases the
natural definition is as a dissimilarity measure. We shall use d when referring to
a dissimilarity measure and s when referring to a similarity measure. The idea
of calculating similarity as an additive inverse of distance comes from the idea of
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a metric. A metric on a set X is a mapping d : X×X → R such that ∀x, y ∈ X,
the following conditions all hold: d(x, y) ≥ 0, d(x, y) = 0 if and only if x = y,
d(x, y) = d(y, x), and d(x, z) ≤ d(x, y) + d(y, z).

We use the broader term measure because in some cases what we use will fail
in one or more of the conditions above. For example, the Kullback-Liebler Di-
vergence is not symmetric since, in general, d(x, y) 6= d(y, x). Finally, when a
dissimilarity measure is being considered, it should be understood that we are
using 1 − d(x, y) to calculate the similarity where x and y are appropriately
scaled so that d(x, y) ∈ [0, 1].

3.1 Various Similarity Measures

The following lists similarity or dissimilarity measures we considered in our study.
Let x denote the vector (x1, x2, ..., xn) representing the query image and y the
vector (y1, y2, ..., yn) representing another image. Further, let x̄ represents the
mean of the values in the x vector and ȳ the mean of y. Further, let X and
Y represent, respectively, the cumulative distributions of x and y when they
are considered as probability distributions (

∑n
i=1 xi =

∑n
i=1 yi = 1). That is

X = (X1, X2, · · · , Xn) where Xj =
∑j
i=1 xi and similarly for Y and y. Finally

µ = (µ1, .., µn) is the mean vector such that µ = x+y
2 .

– Minkowski and Standard Measures

Euclidean Distance (L2) d(x,y) =
√∑n

i=1 (xi − yi)2

Cityblock Distance (L1) d(x,y) =
∑n
i=1 |xi − yi|

Infinity Distance (L∞) d(x,y) = maxni=1|xi − yi|

Cosine Similarity (CO) s(x,y) = x·y
‖x‖‖y‖

– Statistical Measures

Pearson Correlation Coefficient (CC) d(x,y) =
∑n

i=1 (xi−x̄)(yi−ȳ)√∑n
i=1 (xi−x̄)2(yi−ȳ)2

Chi-Square Dissimilarity (CS) d(x,y) =
∑n
i=1

(xi−µi)
2

µi
[21]

– Divergence Measures

Kullback-Liebler Divergence (KL) d(x,y) =
∑n
i=1 xi log xi

yi
[22]

Jeffrey Divergence (JF) d(x,y) =
∑n
i=1 xi log xi

µi
+ yi log yi

µi
[21]

Kolmogorov-Smirnov Divergence (KS) d(x,y) = maxni=1|Xi − Yi| [23]

Cramer-von Mises Divergence (CvM) d(x,y) =
∑n
i=1 (Xi − Yi)2 [21]

– Other Measures
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Earth Mover’s Distance (EMD-L1) d(x,y) =
∑n
i=1 |Xi − Yi| [24]1

Diffusion Distance (DD) d(x,y) =
∑log2 n
i=1

∑n/2j

j=1 z
(j)
i where z = (z1, z2, · · · , zn)

and z(l) is the l-times iteratively Gaussian-smoothened, then 2-downsampled
vector representation of |X−Y| [18].

3.2 Metric Learning

Metric Learning [26] is the process of using information about the similarity
and/or dissimilarity of some dataset X, to learn a mapping to a new space
Y = A1/2X, in which similar data will be closer together and dissimilar data will
be farther apart. Let λ denote an n-dimensional vector in which λi determines
the weight given to the i-th variable. With such a λ we can define a weighted L2

metric on X such that for each x and y in X we capture the distance between

them by dλ(x,y) =
√∑N

i=1 λi(xi − yi)2. The idea of metric learning is to learn

the appropriate weights λ from a training dataset. A less strict formulation of
metric learning allows the weights to be described by a non-diagonal symmetric
positive semi-definite matrix A such that λ = diag(A), leading to a more general
Mahalanobis-type metric formulation:

dA(x,y) = ||x− y||A =
√

(x− y)TA(x− y) (1)

Many algorithms [26–28] have been used to learn such a metric with Yang [29]
giving a nice summary. We employ an algorithm called Information-Theoretic
Metric Learning (hereafter ITML) which is widely used. ITML uses an information-
theoretic cost model which iteratively enforces similarity/dissimilarity constraints
with the input being a list of such pairwise constraints and the output being a
learned matrix A. An equivalent and more computationally efficient formulation
to the one above is to use the L2 metric on the data after applying the data
transformation X 7→ A1/2X. In this study, we employ the diagonal form of A
for simplicity and information about similarity/dissimilarity attained from the
2011 ImageCLEF dataset as our training data.

3.3 Query Filtering

We used the Modality Classification results made available by ImageCLEF to
filter out certain image types which are likely to be irrelevant to all queries.
Table 1 indicates the filtering performed. In short, we included all and only
diagnostic images.

1 EMD for 1D features is equivalent to the Mallows Distance [25]
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Table 1: Filtering of Modality Types
Included Modalities Modalities Filtered Out

Ultrasound Compound or multipane images
Magnetic Resonance Tables and Forms

Computerized Tomography Program Listing
X-Ray, 2D Radiography Statistical figures, graphs, charts

Angiography Screenshots
PET Flowcharts

Combined Modalities in one image System overviews
Dermatology, skin Gene sequence

Endoscopy Chromatography
Other organs Chemical structure

Electroencephalography Mathematics, formulae
Electrocardiography Non-clinical photos
Electromyography Hand-drawn sketches
Light microscopy

Electron microscopy
Transmission microscopy
Fluorescence microscopy

3D reconstructions

4 Experimental Results

Using the relevance judgments from 2011 ImageCLEF, we validate our proposed
system. Table 2 shows the Mean Average Precision (hereafter MAP) scores for
various permutation of our system components computed using the relevance
judgment file from the 2011 results.

We used this table to select our best potential measure/transformation combina-
tions for 2012 ImageCLEF competition. In the end we submitted the following
seven runs to the 2012 ImageCLEF medical retrieval competition.

1. L1 on the untransformed data (reg cityblock)

2. DD on the untransformed data (reg diffusion)

3. L2 on the Tf-Idf(PCA) transformed data (tfidf of pca euclidean)

4. CO on the Tf-Idf(PCA) transformed data (tfidf of pca cosine)

5. PC on the Tf-Idf(PCA) transformed data (tfidf of pca correlation)

6. L1 on the ITML data (itml cityblock)

7. DD on the ITML data (itml diffusion)

These selected runs are identified in Table 2 as highlighted items. Submissions
to ImageCLEF medical retrieval[30, 31] are text files containing a ranked list of
at most 1000 images for each of the competition queries, along with information
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Table 2: Result of similarity measure comparison using the MAP score with 2011 Im-
ageCLEF data. PCM : codebook constructed using the first M principal components..
PC: all principal components. Tf-Idf(PC) is the Tf-Idf transformation of the PC trans-
formed data. Tf-Idf is the data under the Tf-Idf transformation and PC(Tf-Idf) is the
PC transformation of the Tf-Idf transformed data. ITML is A1/2X where A is a metric
learned from similarity/dissimilarity information about X.

Measure Data Transformation
None PC75 PC200 PC500 PC Tf-Idf(PC) Tf-Idf PC(Tf-Idf) ITML

L2 0.0169 0.0207 0.0168 0.0194 0.0203 0.0208 0.0157 0.0172 0.0126
L1 0.0214 0.0183 0.0091 0.0196 0.0182 0.0180 0.0207 0.0180 0.0227
L∞ 0.0029 0.0032 0.0011 0.0012 0.0029 0.0016 0.0034 0.0097 0.0023
CO 0.0169 0.0207 0.0168 0.0194 0.0203 0.0208 0.0157 0.0173 0.0126
CC 0.0184 0.0207 0.0168 0.0194 0.0203 0.0209 0.0201 0.0172 0.0185
CS 0.0133 0 0 0 0 0 0.0163 0 0
KL 0.0004 0 0 0 0 0 0.0004 0 0
JF 0 0 0 0 0 0 0.0008 0 0
KS 0.0010 0.0176 0.0003 0.0020 0.0107 0.0176 0.0008 0.0008 0.0005

CvM 0.0011 0.0047 0.0017 0.0014 0.0091 0.0104 0.0009 0.0008 0.0006
EMD-L1 0.0011 0.0031 0.0016 0.0014 0.0089 0.0098 0.0009 0.0006 0.0006

DD 0.0214 0.0183 0.0091 0.0196 0.0140 0.0137 0.0207 0.0177 0.0227

such as the rank, query number and score. These submission files are constructed
in the TREC-style submission format [32].

5 Discussion

We have presented a systematic comparison of various plug-in (dis-)similarity
measures for M-CBIR with a standard bag-of-words feature method. Our vali-
dation results with the last year 2011 dataset indicates both ITML and diffusion
distance to be promising choices for the ad-hoc image-based retrieval task for
medical images. Based on this result, we have entered seven runs (combinations
of three top performing measures with different feature transformations). The
results were disappointing. All the runs were placed at the last of this cate-
gory with very low MAP scores for this year competition. The reasons for this
performance may include a potentially suboptimal choice of our feature extrac-
tion/representation and query filtering employed. Investigation of this and a re-
run of our study with a better base-CBIR system is our important future work.
Among our 2012 results, we observe the consistent trend of the diffusion and
cityblock distances to perform best among other submitted runs. This indicates
the virtue of distance measures based on L1 metric. The run with metric learn-
ing (ITML) was placed the last in our list. This may indicate significant change
of data characteristics between the 2011 and 2012 data, which would naturally
cause this reduced performance. Investigating the true advantage of the metric
learning approach in M-CBIR remains another future work.
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