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Abstract. This article describes the participation of the Image and Text
Integration (ITI) group in the 2012 ImageCLEf medical retrieval and
classification tasks. We present our methods for each of the three tasks
and discuss our submitted textual, visual, and mixed runs as well as
their results. While our methods generally perform well for each task,
our best ad-hoc image retrieval submission was ranked first among all
the submissions from the participating groups.
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1 Introduction

This article describes the participation of the Image and Text Integration (ITI)
group in the ImageCLEF 2012 medical retrieval and classification tasks. Our
group is from the Communications Engineering Branch of the Lister Hill National
Center for Biomedical Communications, which is a division of the U. S. National
Library of Medicine.

The medical track [15] of ImageCLEF 2012 consists of an image modality
classification task and two retrieval tasks. For the classification task, the goal is
to classify a given set of medical images according to thirty-one modalities (e.g.,
“Computerized Tomography,” “Electron Microscopy,” etc.). The modalities are
organized hierarchically into meta-classes such as “Radiology” and “Microscopy,”
which are themselves types of “Diagnostic Images.” In the first retrieval task, a
set of ad-hoc information requests is given, and the goal is to retrieve the most
relevant images from a collection of biomedical articles for each topic. Finally, in
the second retrieval task, a set of case-based information requests is given, and
the goal is to retrieve the most relevant articles describing similar cases.

In the following sections, we describe the textual and visual features that
comprise our image and article representations (Sections 2–3) and our methods
for the modality classification (Section 4) and medical retrieval tasks (Sections
5–6). Our textual approaches primarily utilize the Unified Medical Language
System R©(UMLS R©) [11] synonymy to identify concepts in topic descriptions and
article text, and our visual approaches rely on computed distances between
descriptors of various low-level visual features. In developing mixed approaches,
we explore the use of clustered visual features that can be represented using text,
attribute selection, and ranked list merging strategies.



In Section 7 we describe our submitted runs, and in Section 8 we present
our results. For the modality classification task, our best submission achieved a
classification accuracy of 63.2% and was ranked within the submissions from the
top three participating groups. Our best submission for the ad-hoc image retrieval
task was ranked first overall, achieving a mean average precision of 0.2377, which
is a statistically significant improvement over the second ranked submission. For
the case-based article retrieval task, our best submission achieved a mean average
precision of 0.1035 and was ranked within the submissions from the top four
participating groups, but this submission is statistically indistinguishable from
our other case-based submissions.

2 Image Representation for Ad-hoc Retrieval

We represent the images contained in biomedical articles using a combination of
the textual and visual features described below.

2.1 Textual Features
We represent each image in the collection as a structured document of image-
related text called an enriched citation. Our representation includes the title,
abstract, and MeSH R© terms1 of the article in which the image appears as well
as the image’s caption and “mentions” (snippets of text within the body of an
article that discuss an image). These features can be indexed with a traditional
text-based information retrieval system, or they may be exposed as term vectors
and combined with the visual feature vectors described below.

2.2 Visual Features
In addition to the above textual features, we also represent the visual content
of images using various low-level visual descriptors. Table 1 summarizes the
descriptors we extract and their dimensionality. Due to the large number of
these features, we forego describing them in any detail. However, they are all
well-known and discussed extensively in existing literature.

Cluster Words. To avoid the computational complexity of computing distances
between the above visual descriptors, we create a textual representation of visual
features that is easily integrated with our existing textual features. For each
visual descriptor listed in Table 1, we cluster the vectors assigned to all images
using the k-means++ [3] algorithm. We then assign each cluster a unique “cluster
word” and represent each image as a sequence of these words. We add an image’s
cluster words to its enriched citation as a “global image feature” field, which can
be searched using a traditional text-based information retrieval system.

Attribute Selection. An orthogonal approach to transforming our visual de-
scriptors into a computationally manageable representation is attribute selection.
By eliminating unneeded or redundant information, these techniques can also
improve our modality classification and image retrieval methods. We perform
attribute selection using the WEKA [8] data mining software. First, we group
all our visual descriptors into a single combined vector, and we then perform
attribute selection to reduce the dimensionality of this combined feature.

1 MeSH is a controlled vocabulary created by U. S. National Library of Medicine to
index biomedical articles.



Table 1: Extracted visual descriptors.

Descriptor Dimensionality

Autocorrelation 25
Color and edge directivity? (CEDD) [5] 144
Color layout? (CLD) [4] 16
Color moment 3
Edge frequency 25
Edge histogram? (EHD) [4] 80
Fuzzy color and texture histogram? (FCTH) [6] 192
Gabor moment? 60
Gray-level co-occurrence matrix moment (GLCM) [19] 20
Local binary pattern (LBP1) [14] 256
Local binary pattern (LBP2) [14] 256
Local color histogram (LCH) 1024
Primitive length 5
Scale-invariant feature transformation? (SIFT) [12] 256
Semantic concept (SCONCEPT) [16] 30
Shape moment 5
Tamura moment? [20] 18

Combined 2415

? Feature computed using the Lucene Image Retrieval library [13].

3 Article Representation for Case-based Retrieval

We represent articles using the textual features of each image appearing in the
article. Thus, each article enriched citation consists of its title, abstract, and
MeSH terms as well as the caption and mention of each contained image.

4 Modality Classification Task

We experimented with both flat and hierarchical modality classification methods.
Below we describe our flat classification strategy, an extension of this approach
that exploits the hierarchical structure of the classes, and a post-processing
method for improving the classification accuracy of illustrations.

4.1 Flat Classification
Figure 1a provides an overview of our basic classification approach. We utilize
multi-class support vector machines (SVMs) as our flat modality classifiers.
First, we extract our visual and textual image features from the training images
(representing the textual features as term vectors). Then, we perform attribute
selection to reduce the dimensionality of the features. We construct the lower-
dimensional vectors independently for each feature type (textual or visual) and
combine the resulting attributes into a single, compound vector. Finally, we use
the lower-dimensional feature vectors to train multi-class SVMs for producing
textual, visual, or mixed modality predictions.

4.2 Hierarchical Classification
Unlike the flat classification strategy described above, it is possible to exploit the
hierarchical organization of the modality classes in order to decompose the task
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Fig. 1: Overview of our flat and hierarchical modality classification strategies.

into several smaller classification problems that can be sequentially applied. Based
on our visual observation of the training samples and our initial experiments, we
modified the original modality hierarchy [15] proposed for the task. The hierarchy
we used for our experiments is shown in Figure 1b.

We train flat multi-class SVMs, as shown in Figure 1a, for each meta-class. For
recognizing compound images, we utilize the algorithm proposed by Apostilova et
al. [1], which detects sub-figure labels and the border of each sub-figure within a
compound image. To arrive at a final class label, an image is sequentially classified
beginning at the root of the hierarchy until a leaf class can be determined.

4.3 Illustration Post-processing
Because our initial classification experiments resulted in only modest accuracy
for the fourteen “Illustration” classes shown in Figure 1b, we concluded that
our current textual and visual features may not be sufficient for representing
these figures. Therefore, in addition to the aforementioned machine learning
modality classification methods, we also developed several complimentary rule-
based strategies for increasing the classification accuracy of “Illustration” classes.

A majority of the training samples contained in the “Illustration” meta-class,
unlike other images in the collection, consist of line drawings or text superimposed
on a white background. For example, program listings mostly consist of text;
thus, the use of text and line detection methods may increase the classification
accuracy of Class GPLI. Similarly, polygons (e.g., rectangles, hexagons, etc.)
contained in flowcharts (GFLO), tables (GTAB), system overviews (GSYS), and
chemical structures (GCHE) are a distinctive feature of these modalities. We
utilize the methods of Jung et al. [10] and OpenCV2 functions to assess the
presence of text and polygons, respectively.

5 Ad-Hoc Image Retrieval Task

In this section we describe our textual, visual and mixed approaches to the
ad-hoc image retrieval task. Descriptions of the submitted runs that utilize these
methods are presented in Section 7.

2 http://opencv.willowgarage.com/wiki/



5.1 Textual Approaches

To allow for efficient retrieval and to compare their relative performance, we
index our enriched citations with the Essie [9] and Lucene/SOLR3 search engines.
Essie is a search engine developed by the U.S. National Library of Medicine
and is particularly well-suited for the medical retrieval task due to its ability to
automatically expand query terms using the UMLS synonymy. Lucene/SOLR
is a popular search engine developed by the Apache Software Foundation that
employs the well-known vector space model of information retrieval. We have
extracted the UMLS synonymy from Essie and use it for term expansion when
indexing enriched citations with Lucene/SOLR.

We organize each topic description into a frame-based (e.g., PICO4) repre-
sentation following the method similar to that described by Demner-Fushman
and Lin [7]. Extractors identify concepts related to problems, interventions, age,
anatomy, drugs, and modality. We also identify modifiers of the extracted con-
cepts and a limited number of relationships among them. We then transform the
extracted concepts into queries appropriate for either Essie or Lucene/SOLR.

5.2 Visual Approaches

Our visual approaches to image retrieval are based on retrieving images that
appear visually similar to the given topic images. We compute the visual similarity
between two images as the Euclidean distance between their visual descriptors.
For the purposes of computing this distance, we represent each image as a
combined feature vector composed of a subset of the visual descriptors listed in
Table 1 after attribute selection.

5.3 Mixed Approaches

We explore several methods of combing our textual and visual approaches. One
such approach involves the use of our image cluster words. For performing
multimodal retrieval using cluster words, we first extract the visual descriptors
listed in Table 1 from each example image of a given topic. We then locate the
clusters to which the extracted descriptors are nearest in order to determine their
corresponding cluster words. Finally, we combine these cluster words with words
taken from the topic description to form a multimodal query appropriate for
either Essie or Lucene/SOLR.

While the use of cluster words allows us to create multimodal queries, we
can instead directly combine the independent outputs of our textual and visual
approaches. In a score merging approach, we apply a min-max normalization to
the ranked lists of scores produced by our textual and visual retrieval strategies.
We then linearly combine the normalized scores given to each image to produce
a final ranking. Similarly, a rank merging approach combines the results of our
textual and visual approaches using the ranks of the retrieved images instead of
their normalized scores. To produce the final image ranking using this strategy,
we re-score each retrieved image as the reciprocal of its rank and then repeat the
above procedure for combining scores.

3 http://lucene.apache.org/
4 PICO is a mnemonic for structuring clinical questions in evidence-based practice and

represents Patient/Population/Problem, Intervention, Comparison, and Outcome.



Another means of incorporating visual information with our retrieval ap-
proaches is through the use of a modality classifier. Using our hierarchical
modality classification approach, we can first determine the most probable modal-
ities for a topic’s example images. After retrieving a set of images using either
our textual or visual methods, we can eliminate retrieved images that are not of
the same modality as the topic images. An advantage of performing hierarchical
classification is that we can filter the retrieved results using the meta-classes
within the hierarchy (e.g., “Radiology”).

Finally, we often combine the retrieval results produced by several queries into
a single ranked list of images. We perform this query combination, or padding,
by simply appending the ranked list of images retrieved by a subsequent query
to the end of the ranked list produced by the preceding query.

6 Case-Based Retrieval Task

Our method for performing case-based retrieval is analogous to our textual
approaches for ad-hoc image retrieval. Here, we index the enriched citations
described in Section 3 using the Essie and Lucene/SOLR search engines (for
performance comparison). We generate textual and mixed queries appropriate
for both search engines according to the approaches described in Sections 5.1.

As a form of query expansion for case-based topics, we also explore the
possibility of determining relevant disease names to correspond with signs and
symptoms found in a topic case. To determine a set of potential diseases, we first
use the Google Search API5 to search the World Wide Web using a topic case as
a query. We then process the top five documents with MetaMap [2] to extract
terms having the UMLS semantic type “Disease or Syndrome.” Finally, we select
the top three most frequent diseases for query expansion.

7 Submitted Runs

In this section we describe each of our submitted runs for the modality classifica-
tion, ad-hoc image retrieval, and case-based article retrieval tasks. Each run is
identified by its submission file name or trec_eval run ID and mode (textual,
visual or mixed). All submitted runs are automatic.

7.1 Modality Classification Task

We submitted the following nine runs for the modality classification task:
M1. Visual only Flat.txt (visual): A flat multi-class SVM classification using

selected attributes from a combined visual descriptor of 15 features (all
descriptors in Table 1 except LCH and SCONCEPT).

M2. Visual only Hierarchy.txt (visual): Like Run M1 but classification is per-
formed hierarchically.

M3. Text only Flat.txt (textual): A flat multi-class SVM classification using
selected attributes from a combined term vector created from four textual
features (article title, MeSH terms, and image caption and mention).

M4. Text only Hierarchy.txt (textual): Like Run M3 but classification is per-
formed hierarchically.

5 https://developers.google.com/custom-search/v1/overview



M5. Visual Text Flat.txt (mixed): A flat multi-class SVM classification combin-
ing the feature representations used in Runs M1–3.

M6. Visual Text Hierarchy.txt (mixed): Like Run M5 but classification is per-
formed hierarchically.

M7. Visual Text Flat w Postprocessing 4 Illustration.txt (mixed): Like Run M5
but additional post-processing is applied for “Illustration” classes.

M8. Visual Text Hierarchy w Postprocessing 4 Illustration.txt (mixed): Like
Run M7 but classification is performed hierarchically.

M9. Image Text Hierarchy Entire set.txt (mixed): Like Run M6 but applied to
all the images contained in the retrieval collection.

7.2 Ad-hoc Image Retrieval Task

We submitted the following ten runs for the ad-hoc image retrieval task:

A1. nlm-se (mixed): A combination of three queries using Essie. (A1.Q1) A
disjunction of modality terms extracted from the query topic must occur
within the caption or mention fields of an image’s enriched citation; a dis-
junction of the remaining terms is allowed to occur in any field. (A1.Q2) A
lossy expansion of the verbatim topic is allowed to occur in any field.
(A1.Q3) A disjunction of the query images’ cluster words must occur
within the global image feature field.

A2. nlm-se-cw-mf (mixed): A combination of Query A1.Q1 with the additional
query below using Essie. (A2.Q2) A lossy expansion of the verbatim topic is
allowed occur in any field of an image’s enriched citation and a disjunction
of the query images’ cluster words can optionally occur within the global
image feature field. Additionally, the retrieved images are filtered so that
they share a least common ancestor modality with the query images, as
determined by the modality classifier used in Run M9. Query A2.Q2 is
distinct from Queries 1.Q2–3 in that the occurrence of a lossy expansion
of the topic is not necessarily weighted more heavily than the occurrence
of image cluster words.

A3. nlm-se-scw-mf (mixed): Like Run A2 but image cluster words are only
considered if the modality classifier used in Run M9 identically labels all
the example images of a topic.

A4. nlm-lc (mixed): A combination of three queries using Lucene with BM25
similarity and UMLS synonymy. (A4.Q1) A fuzzy phrase-based occurrence
of the verbatim topic is allowed in any field of an image’s enriched citation.
(A4.Q2) A disjunction of the topic words is allowed to occur in any field.
(A4.Q3) A disjunction of the query images’ cluster words must occur within
the global image feature field.

A5. nlm-lc-cw-mf (mixed): A combination of Query A4.Q1 with the additional
query below using Lucene with BM25 similarity and UMLS synonymy.
(A5.Q2) A disjunction of the topic words is allowed occur in any field
of an image’s enriched citation and a disjunction of the query images’
cluster words can optionally occur within the global image feature field.
Additionally, the retrieved images are filtered so that they share a least
common ancestor modality with the query images, as determined by the
modality classifier used in Run M9.



A6. nlm-lc-scw-mf (mixed): Like Run A5 but image cluster words are only
considered if the modality classifier used in Run M9 identically labels all
the example images of a topic.

A7. Combined Selected Fileterd Merge (visual): Similarity matching using 62
min-max normalized attributes selected from a combined visual descriptor
of 15 features (all descriptors in Table 1 except LCH and SCONCEPT).
Retrieval is performed separately for each query image, and the retrieved
results are filtered, according to the modality classifier used in Run M9,
so that they share the top two modality levels with the query. Images are
scored according the query image resulting in the maximum score.

A8. Combined LateFusion Fileterd Merge (visual): Like Run A8 but similarity
matching is performed separately for seven features (CLD, GLCM, SCON-
CEPT, and the color, Gabor, shape, and Tamura moments from Table 1)
whose scores are linearly combined with predefined weights.

A9. Txt Img Wighted Merge (mixed): A combination of visual Run A7 with a
textual run consisting solely of Query A1.Q2 using score merging.

A10. Merge RankToScore weighted (mixed): A combination of visual Run A8
with a textual run consisting solely of Query A1.Q2 using rank mering.

7.3 Case-based Article Retrieval Task

We submitted the following eight runs for the case-based article retrieval task:

C1. nlm-se-max (textual): A combination of three queries for each topic sentence
using Essie. (C1.Q1) A disjunction of modality terms extracted from the
sentence must occur within the caption or mention fields of an article’s
enriched citation; a disjunction of the remaining terms is allowed to occur
in any field. (C1.Q2) A lossy expansion of the verbatim sentence is allowed
to occur in any field. (C1.Q3) A disjunction of all extracted words and
discovered diseases in the sentence is allowed to occur in any field. Articles
are scored according to the sentence resulting in the maximum score.

C2. nlm-se-sum (textual): Like Run C1 but articles are scored according to the
sum of the scores produced for each sentence.

C3. nlm-se-frames-max (textual): A combination of the query below with Query
C1.Q2 for each topic sentence using Essie. (C3.Q1) An expansion of the
frame-based representation of the sentence is allowed to occur in any field of
an article’s enriched citation. Articles are scored according to the sentence
resulting in the maximum score.

C4. nlm-se-frames-sum (textual): Like Run C3 but articles are scored according
to the sum of the scores produced for each sentence.

C5. nlm-lc-max (textual): A combination of two queries for each topic sentence
using Lucene with language model similarity, Jelinek-Mercer smoothing,
and UMLS synonymy. (C5.Q1) A fuzzy phrase-based occurrence of the
verbatim sentence is allowed in any field of an article’s enriched citation.
(C5.Q2) A disjunction of all words and discovered diseases in the sentence is
allowed to occur in any field. Articles are scored according to the sentence
resulting in the maximum score.

C6. nlm-lc-sum (textual): Like Run C5 but articles are scored according to the
sum of the scores produced for each sentence.



Table 2: Accuracy results for the modality classification task.

File Name Mode Accuracy (%)

Visual Text Hierarchy w Postprocessing 4 Illustration.txt Mixed 63.2
Visual Text Flat w Postprocessing 4 Illustration.txt Mixed 61.7
Visual Text Hierarchy.txt Mixed 60.1
Visual Text Flat.txt Mixed 59.1
Visual only Hierarchy.txt Visual 51.6
Visual only Flat.txt Visual 50.3
Image Text Hierarchy Entire set.txt Mixed 44.2
Text only Hierarchy.txt Textual 41.3
Text only Flat.txt Textual 39.4

C7. nlm-lc-total-max (textual): A combination of the query below with Queries
C5.Q1–2 (as C7.Q2–3) using Lucene with language model similarity, Jelinek-
Mercer smoothing, and UMLS synonymy. (C7.Q1) A fuzzy phrase-based
occurrence of the entire verbatim topic is allowed in any field of an article’s
enriched citation. Articles are scored according to the sentence resulting in
the maximum score.

C8. nlm-lc-total-sum (textual): Like Run C7 but articles are scored according
to the sum of the scores produced for each sentence.

8 Results

We present and discuss the results of our modality classification, ad-hoc image
retrieval, and case-based article retrieval task submissions below.

8.1 Modality Classification Task
Table 2 presents the classification accuracy of our submitted runs for the modality
classification task. Visual Text Hierarchy w Postprocessing 4 Illustration.txt, a
mixed approach, achieved the highest accuracy (63.2%) of our submitted runs
and was ranked fifth overall. However, it ranked within the submissions from the
top three participating groups. This result validates our post-processing method
used to improve the recognition of “Illustration” classes, and provides, with our
previous experience [17], further evidence that hierarchical classification is a
successful strategy. Each of our hierarchical classification methods outperforms
the corresponding flat approach having the same feature representation.

While our submitted runs were only judged on their ability to identify each of
the thirty-one modality classes [15], Table 3 presents the classification accuracy
of the intermediate classifiers we used for our hierarchical approaches. For each
meta-class in the hierarchy shown in Figure 1b, Table 3 gives the number of
classes they contain; the classification accuracy associated with the textual,
visual, and mixed feature representations; and the dimensionality of the mixed
feature representation after attribute selection. These results demonstrate that
the accuracies of the intermediate classifiers generally improve as the number
of class labels decreases. Given the limited amount of training data in relation
to the number of total modalities, the smaller number of labels per classifier
likely is significant for explaining why our hierarchical classification approaches
consistently outperform their corresponding flat approaches.



Table 3: Accuracy results for our intermediate modality classifiers.

ID Number of Classes Feature Accuracy (%) Dims.?

Mixed Visual Textual

1 2 (Illustration, General) 96.3 95.6 78.6 159
2 3 (Radiology 3D, Microscopy, Photo) 93.5 87.4 83.8 112
3 8 (DRUS, DRMR, . . . , D3DR) 75.9 64.4 71.3 89
4 4 (DMLI, DMEL, . . . , DMFL) 85.0 83.6 69.4 58
5 4 (DVDM, DVEN, . . . , GNCP) 77.6 62.3 89.1 108
6 14 (GTAB, GPLI, . . . , DSEM) 63.5 53.0 41.2 69

? Feature dimensionality is given for mixed mode classifiers only.

Table 4: Retrieval results for the ad-hoc image retrieval task

ID Mode MAP bpref P@10

nlm-se Mixed 0.2377 0.2542 0.3682
Merge RankToScore weighted Mixed 0.2166 0.2198 0.3682
nlm-lc Mixed 0.1941 0.1871 0.2727
nlm-lc-cw-mf Mixed 0.1938 0.1924 0.2636
nlm-lc-scw-mf Mixed 0.1927 0.1940 0.2636
nlm-se-scw-mf Mixed 0.1914 0.2062 0.2864
Txt Img Wighted Merge Mixed 0.1846 0.2039 0.3091
nlm-se-cw-mf Mixed 0.1774 0.1868 0.2909
Combined LateFusion Fileterd Merge Visual 0.0046 0.0107 0.0318
Combined Selected Fileterd Merge Visual 0.0009 0.0028 0.0227

8.2 Ad-hoc Image Retrieval Task

Table 4 presents the mean average precision (MAP), binary preference (bpref),
and early precision (P@10) of our submitted runs for the ad-hoc image retrieval
task. nlm-se achieved the highest MAP (0.2377) among our submitted runs and
was ranked first overall. Merge RankToScore weighted, the run achieving our
second highest MAP (0.2166), was ranked second overall. Comparing these two
runs using Fisher’s paired randomization test [18], a recommended statistical
test for evaluating information retrieval systems, we find that nlm-se achieved
a statistically significant increase (9.7%, p = 0.0016) over the performance of
Merge RankToScore weighted.

That the two highest ranked runs were multimodal, as apposed to textual, is
an encouraging result, and provides evidence that our ongoing efforts at integrat-
ing textual and visual information will be successful. In particular, the use by
nlm-se and other runs of cluster words, which are indexed and retrieved using
a traditional text-based information retrieval system, is an effective way, not
only of incorporating visual information with text, but of avoiding the computa-
tional expense common among content-based retrieval methods. Furthermore,
Merge RankToScore weighted demonstrates the value of rank merging when com-
bining textual and visual retrieval results. Some of our other mixed runs, in
utilizing the results of our modality classifiers, may have been weakened due to
the modest performance of our classification methods.



Table 5: Retrieval results for the case-based article retrieval task

ID Mode MAP bpref P@10

nlm-lc-total-sum Textual 0.1035 0.1053 0.1000
nlm-lc-total-max Textual 0.1027 0.1055 0.0923
nlm-se-sum Textual 0.0929 0.0738 0.0769
nlm-se-max Textual 0.0914 0.0736 0.0769
nlm-lc-sum Textual 0.0909 0.0933 0.1231
nlm-lc-max Textual 0.0840 0.0886 0.0923
nlm-se-frames-sum Textual 0.0771 0.0693 0.0692
nlm-se-frames-max Textual 0.0672 0.0574 0.0538

8.3 Case-based Article Retrieval Task

Table 5 presents the MAP, bpref, and P@10 of our submitted runs for the case-
based article retrieval task. nlm-lc-total-sum, a textual approach using language
model similarity, achieved the highest MAP (0.1035) among our submitted runs
and was ranked seventh overall. However, it ranked within the submissions from
the top four participating groups. Using Fisher’s paired randomization test,
we find that there is no statistically significant difference (p < 0.05) in MAP
among any of our submitted runs. The relatively low performance of most of the
ImageCLEF 2012 case-based submissions may be due, in part, to the existence
in the collection of only a small number of case reports, clinical trials, or other
types of documents relevant for case-based topics.

9 Conclusion

This article describes the methods and results of the Image and Text Integration
(ITI) group in the ImageCLEF 2012 medical retrieval and classification tasks.
For the modality classification task, our best submission was ranked within the
submissions from the top three participating groups. Our best submission for the
ad-hoc image retrieval task was ranked first overall. Finally, for the case-based
article retrieval task, our best submission was ranked within the submissions from
the top four participating groups, though we found no statistical significance
between this run and our other case-based submissions. The effectiveness of our
multimodal approaches are encouraging and provide evidence that our ongoing
efforts at integrating textual and visual information will be successful.

Acknowledgments. We would like to thank Antonio Jimeno-Yepes for assisting in

expanding case-based topics with disease names, Russell Loane for proving source code

for converting frame-based topics to Essie queries, and Srinivas Phadnis for constructing

enriched citations and extracting visual features.

References

1. Apostolova, E., You, D., Xue, Z., Antani, S., Demner-Fushman, D., Thoma, G.:
Image retrieval from scientific publications: Text and image content processing
to separate multi-panel figures. Journal of the American Society for Information
Science and Technology (To appear)



2. Aronson, A.R.: Effective mapping of biomedical text to the UMLS metathesaurus:
The MetaMap program. In: Proc. of the Annual Symp. of the American Medical
Informatics Association (AMIA). pp. 17–21 (2001)

3. Arthur, D., Vassilvitskii, S.: k-means++: The advantages of careful seeding. In: Pro-
ceedings of the Eighteenth Annual ACM-SIAM Symposium on Discrete Algorithms.
pp. 1027–1035. SODA ’07 (2007)

4. Chang, S.F., Sikora, T., Puri, A.: Overview of the MPEG-7 standard. IEEE
Transactions on Circuits and Systems for Video Technology 11(6), 688–695 (2001)

5. Chatzichristofis, S.A., Boutalis, Y.S.: CEDD: Color and edge directivity descriptor:
A compact descriptor for image indexing and retrieval. In: Gasteratos, A., Vincze, M.,
Tsotsos, J.K. (eds.) Proceedings of the 6th International Conference on Computer
Vision Systems. Lecture Notes in Computer Science, vol. 5008, pp. 312–322. Springer
(2008)

6. Chatzichristofis, S.A., Boutalis, Y.S.: FCTH: Fuzzy color and texture histogram: A
low level feature for accurate image retrieval. In: Proceedings of the 9th International
Workshop on Image Analysis for Multimedia Interactive Services. pp. 191–196 (2008)

7. Demner-Fushman, D., Lin, J.: Answering clinical questions with knowledge-based
and statistical techniques. Computational Linguistics 33(1), 63–103 (Mar 2007)

8. Hall, M., Frank, E., Holmes, G., Pfahringer, B., Reutemann, P., Witten, I.H.: The
WEKA data mining software: An update. SIGKDD Explorations 11(1) (2009)

9. Ide, N.C., Loane, R.F., Demner-Fushman, D.: Essie: A concept-based search en-
gine for structured biomedical text. Journal of the American Medical Informatics
Association 1(3), 253–263 (2007)

10. Jung, K., Kim, K.I., Jain, A.K.: Text information extraction in images and video:
A survey. Pattern Recognition 37(5), 977–997 (2004)

11. Lindberg, D., Humphreys, B., McCray, A.: The unified medical language system.
Methods of Information in Medicine 32(4), 281–291 (1993)

12. Lowe, D.: Object recognition from local scale-invariant features. In: Proceedings
of the Seventh IEEE International Conference on Computer Vision. vol. 2, pp.
1150–1157 (1999)

13. Lux, M., Chatzichristofis, S.A.: LIRe: Lucene image retrival—an extensible java
CBIR library. In: Proceedings of the 16th ACM International Conference on Multi-
media. pp. 1085–1088 (2008)
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