
Tweet Contextualization (Answering Tweet Question)
– the Role of Multi-document Summarization

Pinaki Bhaskar, Somnath Banerjee, and Sivaji Bandyopadhyay

Department of Computer Science and Engineering,
Jadavpur University, Kolkata - 700032, India

{pinaki.bhaskar, s.banerjee1980}@gmail.com, sivaji_cse_ju@yahoo.com

Abstract. The article presents the experiments carried out as part of the
participation in the Tweet Contextualization (TC) track of INEX 2013. In our
system there are three major sub-systems; i) Offline multi-document
summarization, ii) Focused IR and iii) online multi-document Summarization.
The Offline multi-document summarization system is based on document
graph, clustering and sentence compression. In the Focused IR system,
Wikipedia documents are indexed using Lucene with NE field. The most
relevant documents are retrieved using the tweet. Online multi-document
summary are generated from the most relevant Wikipedia documents and the
offline summary of entity (if any). Most relevant sentences are retrieved and
each retrieved sentence is assigned a ranking score in the online summary with
a limit of 500 words. The three unique runs differ in the way of how many
documents are retrieved per tweet. The evaluation score of informativeness is
0.9397 and Readability is 46.72% and both of which achieved 7th rank among
the automatic runs.

Keywords: Question Answering, Multi-document Summarization, Automatic
Summarization, Information Retrieval, Information Extraction, Tweet
Contextualization, INEX 2013

1 Introduction

With the explosion of information in Internet, Natural language Question Answering
(QA) is recognized as a capability with great potential. Traditionally, QA has
attracted many AI researchers, but most QA systems developed are toy systems or
games confined to laboratories and to a very restricted domain. Several recent
conferences and workshops have focused on aspects of the QA research. Starting in
1999, the Text Retrieval Conference (TREC)1 has sponsored a question-answering
track, which evaluates systems that answer factual questions by consulting the
documents of the TREC corpus. A number of systems in this evaluation have
successfully combined information retrieval and natural language processing
techniques. More recently, Conference and Labs of Evaluation Forums (CLEF)2 are

1 http://trec.nist.gov/
2 http://www.clef-initiative.eu//

organizing QA lab from 2010. INEX3 has also started Question Answering track.
INEX 2011 designed a QA track [1] to stimulate the research for real world
application. The Question Answering (QA) task performed by the participating
groups of INEX 2011 is contextualizing tweets, i.e., answering questions of the form
"what is this tweet about?" using a recent cleaned dump of the Wikipedia (April
2011). In 2012 they renamed this task as Tweet Contextualization [2].

Current INEX 2013 Tweet Contextualization (TC) track gives QA research a new
direction by fusing IR and summarization with QA. The TC track of INEX 2013 had
two major sub tasks. The first task is to identify the most relevant document from the
Wikipedia dump, for this we need a focused IR system. And the second task is to
extract most relevant passages from the most relevant retrieved document. So we need
an automatic summarization system. The general purpose of the task involves tweet
analysis, passage and/or XML elements retrieval and construction of the answer, more
specifically, the summarization of the tweet topic.

Automatic text summarization [3] has become an important and timely tool for
assisting and interpreting text information in today’s fast-growing information age.
Text Summarization methods can be classified into abstractive and extractive
summarization. An Abstractive Summarization ([4] and [5]) attempts to develop an
understanding of the main concepts in a document and then expresses those concepts
in clear natural language. Extractive Summaries [6] are formulated by extracting key
text segments (sentences or passages) from the text, based on statistical analysis of
individual or mixed surface level features such as word/phrase frequency, location or
cue words to locate the sentences to be extracted. Our approach is based on Extractive
Summarization.

In this paper, we describe a hybrid Tweet Contextualization system of offline
multi-document summarization, focused IR and online multi-document
summarization for TC track of INEX 2013. The offline multi-document
summarization system is based on document graph, clustering and sentence
compression. The focused IR system is based on Nutch architecture and the online
multi-document summarization system is based on TF-IDF based sentence ranking
and sentence extraction techniques. The same sentence scoring and ranking approach
of [7] and [8] has been followed. We have submitted three runs in the TC track (267,
270 and 271).

2 Related Works

Recent trend shows hybrid approach of tweet contextualization using Information
Retrieval (IR) can improve the performance of the TC system. Reference [9] removed
incorrect answers of QA system using an IR engine. Reference [10] successfully used
methods of IR into QA system. Reference [11] used the IR system into QA and [12]
and [13] proposed an efficient hybrid QA system using IR in QA.

Reference [14] presents an investigation into the utility of document
summarization in the context of IR, more specifically in the application of so-called

3 https://inex.mmci.uni-saarland.de/

query-biased summaries: summaries customized to reflect the information need
expressed in a query. Employed in the retrieved document list displayed after retrieval
took place, the summaries’ utility was evaluated in a task-based environment by
measuring users’ speed and accuracy in identifying relevant documents. This was
compared to the performance achieved when users were presented with the more
typical output of an IR system: a static predefined summary composed of the title and
first few sentences of retrieved documents. The results from the evaluation indicate
that the use of query-biased summaries significantly improves both the accuracy and
speed of user relevance judgments.

A lot of research work has been done in the domain of both query dependent and
independent summarization. MEAD [15] is a centroid based multi document
summarizer, which generates summaries using cluster centroids produced by topic
detection and tracking system. NeATS [16] selects important content using sentence
position, term frequency, topic signature and term clustering. XDoX [17] identifies
the most salient themes within the document set by passage clustering and then
composes an extraction summary, which reflects these main themes. Graph based
methods have been also proposed for generating summaries. A document graph based
query focused multi-document summarization system has been described by [18], [7]
and [8].

In the present work, we have used the offline multi-document summarization
system as described in [7] and [8]. The IR system as described in [11], [12], [13], [19]
and [20] and the online multi-document summarization system as discussed in [19],
[20], [21] and [22]. In the later part of this paper, section 3 describes the corpus
statistics and section 4 shows the system architecture of combined TC system of
offline summarization, focused IR and online summarization for INEX 2013. The
Offline Multi-document Summarization technique is described in section 5. Section 6
details the Focused Information Retrieval system architecture. Section 7 details the
Online Multi-document Summarization system architecture. The evaluations carried
out on submitted runs are discussed in Section 8 along with the evaluation results. The
conclusions are drawn in Section 9.

3 Corpus statistics

The training data is the collection of documents that has been rebuilt based on recent
English Wikipedia dump (from November 2012). All notes and bibliographic
references have been removed from Wikipedia pages to prepare plain xml corpus for
an easy extraction of plain text answers. Each training document is made of a title, an
abstract and sections. Each section has a sub-title. Abstract and sections are made of
paragraphs and each paragraph can have entities that refer to Wikipedia pages.
Therefore, the resulting corpus has this simple DTD as shown in table 1.

A two columned text file containing the Entity list are provided in the test data set.
The file contains all the entities extracted from the entire Wikipedia dump. Entity id is
in the first column and corresponding entity is given in the second column. There are
total 39,02,345 entities in the list.

Test data is made up of 598 tweets in English have been collected by the
organizers from Twitter®. They were selected among informative accounts (for
example, @CNN, @TennisTweets, @PeopleMag, @science...), in order to avoid
purely personal tweets that could not be contextualized. There are two different
formats of tweets, one is the full JSON format with all information such as the user
name, tags or URLs as shown in the table 2 and another is a single xml file with three
fields: topic, title and txt. The topic field contains the tweet id as attribute,
the title field shows the tweet text, for people not wanting to bother with JSON format
and the txt field contains full JSON format with all tweet metadata, as shown in the
table 3.

Table 1. The DTD for Wikipedia pages

<!ELEMENT xml (page)+>
<!ELEMENT page (ID, title, a, s*)>
<!ELEMENT ID (#PCDATA)>
<!ELEMENT title (#PCDATA)>
<!ELEMENT a (p+)>
<!ELEMENT s (h, p+)>
<!ATTLIST s o CDATA #REQUIRED>
<!ELEMENT h (#PCDATA)>
<!ELEMENT p (#PCDATA | t)*>
<!ATTLIST p o CDATA #REQUIRED>
<!ELEMENT t (#PCDATA)>

 <!ATTLIST t e CDATA #IMPLIED>

Table 2. A full JSON format with all tweet metadata of INEX 2013 test corpus

"created_at":"Fri, 03 Feb 2012 09:10:20 +0000",
"from_user":"XXX",
"from_user_id":XXX,
"from_user_id_str":"XXX",
"from_user_name":"XXX",
"geo":null,
"id":XXX,
"id_str":"XXX",
"iso_language_code":"en",
"metadata":{"result_type":"recent"},
"profile_image_url":"http://XXX",
"profile_image_url_https":"https://XXX",
"source":"",
"text":"blahblahblah",
"to_user":null,
"to_user_id":null,
"to_user_id_str":null,
"to_user_name":null

Table 3. An example of a tweet topic in xml format of INEX 2013 test corpus

<topic id="306410030352195585">
<title>How does pop art differ across the world and cultures?
http://t.co/j6oFJK4pwp</title>
<txt>

{"source":"
HootSuite", "geo":null, "profile_image_url":
"http://a0.twimg.com/profile_images/1326615844/
twitterlogo_normal.jpg", "id_str": "306410030352195585",
"from_user_id":5225991, "profile_image_url_https":
"https://si0.twimg.com/profile_images/1326615844/
twitterlogo_normal.jpg", "iso_language_code": "en", "created_at":
"Tue, 26 Feb 2013 14:26:58 +0000", "text": "How does pop art differ
across the world and cultures? http://t.co/j6oFJK4pwp", "metadata":
{"result_type":"recent"}, "from_user_name":"Tate", "id":
306410030352195585, "from_user_id_str": "5225991", "from_user":
"Tate"}

</txt>
</topic>

4 System Architecture

In this section the overview of the system framework of the current INEX system has
been shown. The current INEX system has three major sub-systems; i) Offline multi-
document summarization, ii) Focused IR and iii) online multi-document
Summarization. The Offline multi-document summarization system is based on
document graph and clustering. The Focused IR system has been developed on the
basic architecture of Nutch4, which use the architecture of Lucene5. Nutch is an open
source search engine, which supports only the monolingual Information Retrieval in
English, etc. The Higher-level system architecture of the combined Tweet
Contextualization system of INEX 2013 is shown in the Figure 1.

5 Offline Multi-document Summarization

All the entities in the Wikipedia documents are tagged using the entity tag and a list
of all the entities present in the entire test Wikipedia documents are provided along
with the test data set. Entities are the key terms or topic of a document. So, we
retrieved most relevant 10 Wikipedia documents for each entity and then we
generated a multi-document summary for each entity. This process does not need the
tweets and that’s why it is a complete offline process. We can prepare the offline

4 http://nutch.apache.org/
5 http://lucene.apache.org/

Fig. 1. Higher level system architecture of current INEX system

summaries using the Wikipedia documents and their entities only. For retrieval,
traditional Lucene indexer and Nutch have been used.

5.1 Wikipedia Document Parsing, Indexing and Retrieval

The web documents are full of noises mixed with the original content. In that case it is
very difficult to identify and separate the noises from the actual content. INEX 2013
corpus, i.e., Wikipedia dump, had some noise in the documents and the documents are

in XML tagged format. So, first of all, the documents had to be preprocessed. The
document structure is checked and reformatted according to the system requirements.

XML Parser. The corpus was in XML format. All the XML test data has been parsed
before indexing using our XML Parser. The XML Parser extracts the Title of the
document along with the paragraphs.

Noise Removal. The corpus has some noise as well as some special symbols that are
not necessary for our system. The list of noise symbols and the special symbols is
initially developed manually by looking at a number of documents and then the list is
used to automatically remove such symbols from the documents. Some examples are
“"”, “&”, “'''”, multiple spaces etc.

Named Entity Recognizer (NER). After cleaning the corpus, the named entity
recognizer identifies all the named entities (NE) in the documents using Stanford
NER engine6 and tags them according to their types, which are indexed during the
document indexing.

Document Indexing. After parsing the Wikipedia documents, they are indexed using
Lucene, an open source indexer.

Document Retrieval. After indexing, each entity is searched into the Lucene index
using Nutch and a set of retrieved top 10 documents in ranked order for each entity is
received. First of all, all entities were fired with AND operator. If at least ten
documents are retrieved using the entity with AND operator then the entity is
removed from the entity list and need not be searched again. If less than 10
documents are retrieved using AND search then the entity are fired again with OR
operator. OR searching retrieves at least 10 documents for each entity. Now, the top
10 ranked relevant documents for each entity is considered for offline multi-document
summary.

5.2 Graph based Multi-document Summarization

Graph Based Clustered Model. The proposed graph based multi-document
summarization method consists of following steps:

(1) The document set D = {d1,d2, … d10} is processed to extract text fragments,
which are sentences in this system as it has been discussed earlier. Here, It has been
assumed that the entire documents in a particular set are related i.e. they describe the
same event. Some document clustering techniques may be adopted to find related
documents from a large collection. Document clustering is out of the scope of this
current discussion and is itself a research interest. Let for a document di, the sentences
are {si1, si2, … sim}. But the system can be easily modified to work with phrase level

6 http://www-nlp.stanford.edu/ner/

extraction. Each text fragment becomes a node of the graph i.e. all the sentences
become a node.

(2) Next, edges are created between nodes across the documents where edge score
represents the degree of correlation between inter-documents nodes.

(3) Seed nodes are extracted which identify the relevant sentences within D and a
search graph is built to reflect the semantic relationship between the nodes.

(4) Now, each node is assigned a entity dependent score and the search graph is
expanded.

(5) A entity dependent multi-document summary is generated from the search
graph.

Each sentence is represented as a node in the graph. The text in each document is
split into sentences and each sentence is represented with a vector of constituent
words. If pair of related document is considered, then the inter document graph can be
represented as a set of nodes in the form of bipartite graph. The edges connect two
nodes corresponding to sentences from different documents.

Construct the Edge and Calculate Edge Score. The similarity between two nodes is
expressed as the edge weight of the bipartite graph. Two nodes are related if they
share common words (except stop words) and the degree of relationship can be
measured by equation 1 adapting some traditional IR formula from [23].

 (1)

where, tf(d , w) is number of occurrence of w in d, idf (w) is the inverse of the
number of documents containing w, and size(d) is the size of the documents in words.
Actually for a particular node, total edge score is defined as the sum of scores of all
out going edges from that node. The nodes with higher total edge scores than some
predefined threshold are included as seed nodes.

But the challenge for multi-document summarization is that the information stored
in different documents inevitably overlap with each other. So, before inclusion of a
particular node (sentence), it has to be checked whether it is being repeated or not.
Two sentences are said to be similar if they share for example, 70% words in
common.

Construction of Search Graph. After identification of seed/topic nodes a search graph
is constructed. For nodes, pertaining to different documents, edge scores are already
calculated, but for intra document nodes, edge scores are calculated in the similar
fashion as said earlier. Since, highly dense graph leads to higher search / execution
time, only the edges having edge scores well above the threshold value might be
considered.

Identification of Sub-topics through Markov Clustering. In this section, we will
discuss the process to identify shared subtopics from related multi source documents.
We already discussed that the subtopics shared by different news articles on same
event form natural (separate) clusters of sentences when they are represented using

Edge_Score =

((tf (t(u),w)+ tf (t(v),w))× idf (w))
w∈(t (u)∩t (v))
∑

size(t(u))+ size(t(v))

document graph. We use Markov principle of graph clustering to identify those
clusters from the document graph.

Markov Graph Clustering Principle. The MCL algorithm is designed specifically for
the settings of simple and weighted graph [24]. Given that the multi document
summarization problem can be represented in the framework of weighted graph
structure, it is possible to apply MCL for identifying subtopical groups already
present in the input document set. MCL process consists of following steps: In the
first step, the associated matrix of the input (document) graph MG is transformed into
Markov Matrix TG according to TG= MGd-1, where d denote the diagonal matrix that
has diagonal entries as the column weights of MG, thus , 0kk ik ij

i
d M d= =∑ , and

i≠j. The Markov matrix TG is associated with a graph G′, which is called the
associated Markov graph of G. In the second step, the MCL process simulates random
walks in the Markov graph by iteratively performing two operations, expansion and
inflation. The process will converge to a limit. The MCL process generates a
sequence of stochastic matrices starting from the given Markov matrix. Expansion
coincides with taking the power of stochastic matrix using the normal matrix product
and Inflation corresponds to taking the Hadamard power (entrywise power) of the
matrix, followed by scaling step, such that the resulting matrix is stochastic again, i.e.,
the matrix elements correspond to probability value. The MCL algorithm is described
in figure 2.

Fig. 2: Pseudo code of MCL Principle

The construction of entity independent part of the Markov clusters completes the
document-based processing phase of the system.

Key Term Extraction. Key Term Extraction module has two sub modules, i.e., entity
term extraction and Title words extraction.

Entity Term Extraction. First the entity is parsed using the Entity Parsing module. In
this Entity Parsing module, the Named Entities (NE) are identified and tagged in the
given entity using the Stanford NER engine. The remaining words after stop words
removal are stemmed using Porter Stemmer.

Title Word Extraction. The titles of each retrieved documents are extracted and
forwarded as input given to the Title Word Extraction module. After removing all the

T1 = Associated Markov Matrix
For k = 1 to ∞ do
1. T2k = Expand(T2k-1) ;
2. T2k+1 = Γr(T2k) ;
3. If T2k+1 is limit
Break;
End For

stop words from the titles, the remaining tile words are extracted and used as the
keywords in this system.

Entity Dependent Process. The nodes of the already constructed search graph are
given a entity dependent score. Using the combined scores of entity independent score
and dependent score, clusters are reordered and relevant sentences are collected from
each cluster in order. Then each collected sentence has processed and compressed
removing the unimportant phrases. After that the compressed sentences are used to
construct the summary.

Recalculate the Cluster Score. There are three basic components in the sentence
weight like entity terms dependent score, title words dependent score and synonyms
of entity terms dependent score. We collect the list of synonyms of the each word in
the entities from the WordNet 3.07 and form a set of synonyms.

The entity terms dependent score is calculated using equation 2.

𝑤! = 𝑛! − 𝑒 + 1 1 −
𝑓!! − 1
𝑁!!

×3
!!

!!!

 (2)

where, we is the entity terms dependent score of the sentence i, e is the no. of the
entity term, ne is the total no. of entity term, 𝑓!! is the possession of the word which
was matched with the entity term e in the sentence i, Ni is the total no. of words in
sentence i. A boost factor of the entity term, which is 3 for entity term, is multiplied at
the end for boosting the entity dependent score.

The title words dependent score is calculated using equation 3.

𝑤! = 𝑛! − 𝑡 + 1 1 −
𝑓!! − 1
𝑁!!

×2
!!

!!!

 (3)

where, wt is the title words dependent score of the sentence i, t is the no. of the title
words, nt is the total no. of title word, 𝑓!! is the possession of the word which was
matched with the title word t in the sentence i. A boost factor of the title words, which
is 2, is multiplied at the end for boosting the title words dependent score.

The synonyms of entity terms dependent score is calculated using equation 4.

𝑤! = 𝑛! − 𝑠 + 1 1 −
𝑓!! − 1
𝑁!!

!!

!!!

 (4)

where, ws is the synonyms dependent score of the sentence i, s is the no. of
synonyms, ns is the total no. of synonym, 𝑓!! is the possession of the word which was
matched with the synonym s in the sentence i. There is no boosting the synonyms
dependent score.

These three components i.e. wq, wt and ws, are added to get the final weight of a
sentence.

7 http://wordnet.princeton.edu/

Recalculate the Cluster Ranking. We start by defining a function that attributes values
to the sentences as well as to the clusters. We refer to sentences indexed by i and
entity terms indexed by j. We want to maximize the number of entity term covered by
a selection of sentences:

𝑚𝑎𝑥𝑖𝑚𝑖𝑧𝑒 𝑤!!𝑒!
!

 (5)

where, 𝑤!!is the weight of entity term j in the sentence i and ej is a binary variable
indicating the presence of that entity term in the cluster.

We also take the selection over title words. We refer to title words indexed by k.
We want to maximize the number of title word covered by a selection of sentences:

𝑚𝑎𝑥𝑖𝑚𝑖𝑧𝑒 𝑤!!𝑡!
!

 (6)

where, 𝑤!! is the weight of title word k in the sentence i and tk is a binary
variable indicating the presence of that title word in the cluster.

To take the selection over synonyms of the entity terms, we refer to
synonyms indexed by l. We want to maximize the number of synonyms
covered by a selection of sentences:

𝑚𝑎𝑥𝑖𝑚𝑖𝑧𝑒 𝑤!!𝑠!
!

 (7)

where, 𝑤!!is the weight of synonym l in the sentence i and sl is a binary variable
indicating the presence of that synonym in the cluster.

So, the entity dependent score of a cluster is the weighted sum of the entity terms it
contains. If clusters are indexed by x, the entity dependent score of the cluster x is:

𝑐!! = 𝑤!!𝑒! +
!

𝑤!!𝑡! +
!

𝑤!!𝑠!
!

!

!!!

!

!!!

!

!!!

 (8)

where, 𝑐!
! is the entity dependent score of the cluster x, n is the total no. of

sentences in cluster x. Now, the new recalculated combined score of cluster x is:
 𝑐! = 𝑐!

! + 𝑐!! (9)

where, cx is the new score of the cluster x and is the entity independent cluster
score in the graph of cluster x. Now, all the clusters are ranked with their new score
cx.

Retrieve Sentences for Summary. Get the highest weighted two sentences of each
cluster, by the following equation:

max 𝑤!
!𝑞! +

!

𝑤!!𝑡! +
!

𝑤!!𝑠!
!

∀𝑖 (10)

where, i is the sentence index of a cluster. The original sentences in the documents
are generally very lengthy to place in the summary. So, we are actually interested in a
selection over phrases of sentence. After getting the top two sentences of a cluster,

 cx
g

they are split into multiple phrases. The Stanford Parser8 is used to parse the sentences
and get the phrases of the sentence.

Sentence Compression. All the phrases which are in one of those 34 relations in the
training file, whose probability to drop was 100% and also do not contain any entity
term, are removed from the selected summary sentence as described by [7]. Now the
remaining phrases are identified from the parser output of the sentence and search
phrases that contain at least one entity term then those phrases are selected. The
selected phrases are combined together with the necessary phrases of the sentence to
construct a new compressed sentence for the summary. The necessary phrases are
identified from the parse tree of the sentence. The phrases with nsubj and the VP
phrase related with the nsubj are some example of necessary phrases.

Sentence Selection for Summary. The compressed sentences for summary have
been taken until the length restriction of the summary is reached, i.e. until the
following condition holds:

𝑙!𝑆! < 𝐿
!

 (11)

where, li is the length (in no. of words) of compressed sentence i, Si is a binary
variable representing the selection of sentence i for the summary and L (=1000 words)
is the maximum summary length. After taking the top two sentences from all the
clusters, if the length restriction L is not reached, then the second iteration is started
similar to the first iteration and the next top most weighted sentence of each cluster
are taken in order of the clusters and compressed. If after the completion of the
second iteration same thing happens, then the next iteration will start in the same way
and so on until the length restriction has been reached.

Sentence Ordering and Coherency. In this paper, we will propose a scheme of
ordering; in that, it only takes into consideration the semantic closeness of
information pieces (sentences) in deciding the ordering among them. First, the starting
sentence is identified which is the sentence with lowest positional ranking among
selected ones over the document set. Next for any source node (sentence) we find the
summary node that is not already selected and have (correlation value) with the
source node. This node will be selected as next source node in ordering. This ordering
process will continue until the nodes are totally ordered. The above ordering scheme
will order the nodes independent of the actual ordering of nodes in the original
document, thus eliminating the source bias due to individual writing style of human
authors. Moreover, the scheme is logical because we select a sentence for position p
at output summary, based on how coherent it is with the (p-1)th sentence. The main
sentence’s number has been taken as the sentence number of the fused sentence.

8 http://nlp.stanford.edu/software/lex-parser.shtml

Offline Summary. Now, each generated multi-document summary is indexed along
with it entity. There are 39,02,345 entities in the entity list provided in the test data
set. So it will be very time consuming to generate such a huge numbers of multi-
document summaries. For the time constrain, we have simplified the task. We have
selected all the entities, those are present in the tweets and then we have created
multi-document summary of such matched entities.

6 Focused Information Retrieval (IR)

6.1 Tweets Parsing

The tweets had to be processed to retrieve relevant documents. Each tweet / topic was
processed to identify the query words for submission to Lucene. The tweets
processing steps are described below:

Stop Word Removal. In this step the tweet words are identified from the tweets. The
stop words and question words (what, when, where, which etc.) are removed from
each tweet and the words remaining in the tweets after the removal of such words are
identified as the query tokens. The stop word list used in the present work can be
found at http://members.unine.ch/jacques.savoy/clef/.

Named Entity Recognizer (NER). After removing the stop words, the named entity
recognizer identifies all the named entities (NE) in the tweet using Stanford NER
engine and tags them according to their types, which are used during the scoring of
the sentences of the retrieved document.

Stemming. Query tokens may appear in inflected forms in the tweets. For English,
standard Porter Stemming algorithm9 has been used to stem the query tokens. After
stemming all the query tokens, queries are formed with the stemmed query tokens.

6.2 Document Retrieval using Tweet

The same Lucene index described in the section 5.1, has been used to retrieve
documents using tweet. After searching each query into the Lucene index, a set of top
10 retrieved documents in ranked order for each tweet is received. Same Boolean
logic as proposed in section 5.1, are used to retrieved the top ranked 10 relevant
documents for each tweet and considered for final multi-document summarization.

9 http://tartarus.org/~martin/PorterStemmer/java.txt

7 Online Multi-document Summarization

The entity words are identified and marked by the # before each entity word in the
tweet. So the entity words are extracted from the tweet and searched into the entity
list. Then the pre-generated offline summaries of the matched entities and taken for
the final / online summary generation. E.g. if a tweet contains a entity word of entity
ei and si is the offline summary of entity ei, then offline summary si will also be taken
along with the 10 retrieved Wikipedia documents for generating the final/online
summary.

7.1 Sentence Extraction

The documents texts and the summary text are parsed and the parsed text is used to
generate the summary. This module will take the parsed text of the documents as
input, filter the input parsed text and extract all the sentences from the parsed text. So
this module has two sub modules, Text Filterization and Sentence Extraction.

Text Filterization. The parsed text may content some junk or unrecognized character
or symbol. First, these characters or symbols are identified and removed. The text in
the query language are identified and extracted from the document using the Unicode
character list, which has been collected from Wikipedia10. The symbols like dot (.),
coma (,), single quote (‘), double quote (“), ‘!’, ‘?’ etc. are common for all languages,
so these are also listed as symbols

Sentence Extraction. In Sentence Extraction module, filtered parsed text has been
parsed to identify and extract all sentences in the documents. Sentence identification
and extraction is not an easy task for English document. As the sentence marker ‘.’
(dot) is not only used as a sentence marker, it has other uses also like decimal point
and in abbreviations like Mr., Prof., U.S.A. etc. So it creates lot of ambiguity. A
possible list of abbreviation had to created to minimize the ambiguity. Most of the
times the end quotation (”) is placed wrongly at the end of the sentence like .”. These
kinds of ambiguities are identified and removed to extract all the sentences from the
document.

7.2 Key Term Extraction

Key Term Extraction module has three sub modules like Query Term, i.e., tweet term
extraction, tweet text extraction and Title words extraction. All these three sub
modules have been described in the following sections.

10 http://en.wikipedia.org/wiki/List_of_Unicode_characters

Query/Tweet Term Extraction. First the query generated from the tweet, is parsed
using the Query Parsing module. In this Query Parsing module, the Named Entities
(NE) are identified and tagged in the given query using the Stanford NER engine.

Title Word Extraction. The title of the retrieved document is extracted and
forwarded as input given to the Title Word Extraction module. After removing all the
stop words from the title, the remaining tile words are extracted and used as the
keywords in this system.

7.3 Top Sentence Identification

All the extracted sentences are now searched for the keywords, i.e., query terms,
tweet’s text keywords and title words. Extracted sentences are given some weight
according to search and ranked on the basis of the calculated weight. For this task this
module has two sub modules: Weight Assigning and Sentence Ranking, which are
described below.

Weight Assigning. This sub module calculates the weights of each sentence in the
document. There are three basic components in the sentence weight like query term
dependent score, tweet’s text keyword dependent score and title word dependent
score. These three components are calculated and added to get the final weight of a
sentence.

Query/Tweet Term dependent score: Query/Tweet term dependent score is the most
important and relevant score for summary. Priority of this query/tweet dependent
score is maximum. The query dependent scores are calculated using equation 12.

Qs = Fq 20 + nq − q +1() 1−
fp
q −1
Ns

⎛

⎝⎜
⎞

⎠⎟p
∑

⎛

⎝
⎜

⎞

⎠
⎟ × p

⎛

⎝
⎜

⎞

⎠
⎟

q=1

nq

∑ (12)

where, QS is the query/tweet term dependent score of the sentence s, q is the no. of the
query/tweet term, nq is the total no. of query terms, fp

q is the possession of the word
which was matched with the query term q in the sentence s, Ns is the total no. of
words in sentence s,

Fq =
0; if querytermqisnot found
1; if querytermqis found

 (13)

and p =
5; if query term is NE
3; if query term is not NE

 (14)

At the end of the equation 12, the calculated query term dependent score is
multiplied by p to give the priority among all the scores. If the query term is NE and
contained in a sentence then the weight of the matched sentence are multiplied by 5 as
the value of p is 5, to give the highest priority, other wise it has been multiplied by 3
(as p=3 for non NE query terms).

Title Word dependent score: Title words are extracted from the title field of the top
ranked retrieved document. A title word dependent score is also calculated for each
sentence. Generally title words are also the much relevant words of the document. So
the sentence containing any title words can be a relevant sentence of the main topic of
the document. Title word dependent scores are calculated using equation 15.

Ts = Ft nt − t +1() 1−
fp
t −1
Ns

⎛

⎝⎜
⎞

⎠⎟p
∑

⎛

⎝
⎜

⎞

⎠
⎟

t=0

nt

∑ (15)

where, TS is the title word dependent score of the sentence s, t is the no. of the title
word, nt is the total number of title words, fp

t is the position of the word which
matched with the title word t in the sentence s, Ns is the total number of words in
sentence s and

Ft =
0; if titleword t isnot found
1; if titleword t is found

. (16)

After calculating all the above three scores the final weight of each sentence is
calculated by simply adding all the two scores as mentioned in the equation 17.

Ws =Qs +Ts (17)
where, WS is the final weight of the sentence s.

Sentence Ranking. After calculating weights of all the sentences in the document,
sentences are sorted in descending order of their weight. In this process if any two or
more than two sentences get equal weight, then they are sorted in the ascending order
of their positional value, i.e., the sentence number in the document. So, this Sentence
Ranking module provides the ranked sentences.

7.4 Summary Generation

This is the final and most critical module of this system. This module generates the
Summary from the ranked sentences. As in [15] using equation 11, the module selects
the ranked sentences subject to maximum length L (=500 words) of the summary.

Now, the selected sentences along with their weight are presented as the INEX
output format.

8 Evaluation

8.1 Informative Content Evaluation

The organizers did the Informative Content evaluation [1], [2] by selecting relevant
passages. The organizers have used a standalone evaluation toolkit based on Porter
stemmer and implementing a new normalized ad-hoc dissimilarity defined as
following:

(18)

(19)

(20)

where T is the set of terms in the reference and for every 𝑡 ∈ 𝑇, fT(t) is its
frequency in the reference and fS(t) its frequency in the summary. The idea was to
have a dissimilarity which complement has similar properties to usual IR Interpolate
Precision measures. Actually, 1−Dis(T, S) increases with the Interpolated Precision at
500 tokens where Precision is defined as the number of word n-grams in the
reference. The introduction of the log is necessary to deal with highly frequent words.

As previously announced, we used this software to evaluate informativeness and
like in INEX QA tracks, we considered as T three different sets based on Porter
stemming:

– Unigrams made of single lemmas (after removing stop-words).
– Bigrams made of pairs of consecutive lemmas (in the same sentence).
– Bigrams with 2-gaps also made of pairs of consecutive lemmas but

allowing the insertion between them of a maximum of two lemmas.
Informativity has been evaluated based on three overlapping references:

1. prior set of relevant pages selected by organizers while building the 2013
topics (40 tweets, 380 passages, 11 523 tokens),

2. pool selection of most relevant passages from participant submissions for
tweets selected by organizers (45 tweets, 1 760 passages, 58 035 tokens),

3. all relevant text merged together with an extra selection of relevant passages
from a random pool of ten tweets (70 tweets, 2 378 passages, 77 043 tokens)

Ranking. Runs are ranked by decreasing score of divergence with the final reference
(All.skip). The organizers rank both manual and automatic runs. But we have
recalculate the rank considering only the automatic runs, which has been shown here.
Before our run there are two manual runs in the ranked list. So, the rank provided by
the organizers are 2 more than what we have shown in the rank column.

We have submitted three runs (267, 270 and 271). The evaluation scores of
informativeness by organizers of all topics are shown in the table 4.

Table 4. The evaluation scores of Informativeness by organizers of all topics

Run Rank All.
skip

All
.bi

All
.uni

Pool
.skip

Pool.
bi

Pool
.uni

Prior
.skip

Prior
.bi

Prior
.uni

270 7 0.9397 0.9365 0.8481 0.9274 0.9246 0.8418 0.9686 0.9642 0.8529
267 8 0.9468 0.9444 0.8838 0.9389 0.9362 0.8802 0.9625 0.9596 0.883
271 9 0.95 0.9475 0.8569 0.9446 0.9421 0.8543 0.9793 0.9759 0.867

8.2 Readability Evaluation

For Readability evaluation [1], [2] all passages in a summary have been evaluated
according to Syntax (S), Anaphora (A), Redundancy (R) and Trash (T). If a passage
contains a syntactic problem (bad segmentation for example) then it has been marked
as Syntax (S) error. If a passage contains an unsolved anaphora then it has been
marked as Anaphora (A) error. If a passage contains any redundant information, i.e.,
an information that have already been given in a previous passage then it has been
marked as Redundancy (R) error. If a passage does not make any sense in its context
(i.e., after reading the previous passages) then these passages must be considered as
trashed, and readability of following passages must be assessed as if these passages
were not present, so they were marked as Trash (T).

Readability has been evaluated by organizers over the ten tweets having the largest
text references (t-rels). For these tweets, summaries are expected to have almost 500
words since the reference is much larger. For each participant summary, we have then
check the number of words over 500 in passages that are:

1. Relevant (T) i.e. clearly related to the tweet,
2. Sound (A) i.e. no issues about resolving references to earlier or later items

in the discourse.
3. Non redundant (R) with previous passages.
4. Syntactically (S) correct.

Non-relevant passages have also been considered non-sound, redundant and
syntactically incorrect.

Ranking. Runs are ranked according to mean average scores per summary over
Soundness, Non redundancy and Syntactically correctness among Relevant passages.
The readability evaluation scores are shown in the table 5. Here also we have
recalculate the rank considering only the automatic runs, which has been shown here.

Table 5. The evaluation scores of Readability Evaluation

Run Rank Mean
Average

Relevancy
(T)

Non
redundancy (R)

Soundness
(A)

Syntax
(S)

267 7 46.72% 50.54% 40.90% 49.56% 49.70%
270 8 44.17% 46.84% 41.20% 45.30% 46.00%
271 9 38.76% 41.16% 35.38% 39.74% 41.16%

9 Conclusion and Future Works

The tweet contextualization system has been developed as part of the participation in
the Tweet Contextualization track of the INEX 2013 evaluation campaign. The
overall system has been evaluated using the evaluation metrics provided as part of this
track of INEX 2013. Considering that this is the second participation in the track, the

evaluation results are satisfactory, which will really encourage us to continue work on
it and participate in this track in future.

Future works will be motivated towards improving the performance of the system
by concentrating on co-reference and anaphora resolution, multi-word identification,
para phrasing, feature selection etc. In future, we will also try to use semantic
similarity, which will increase our relevance score.

Acknowledgements. We acknowledge the support of the Department of Electronics
and Information Technology (DeitY), Ministry of Communications & Information
Technology (MCIT), Government of India funded project “Development of Cross
Lingual Information Access (CLIA) System Phase II”.

References

1. SanJuan, E., Moriceau, V., Tannier, X., Bellot, P., Mothe, J.: Overview of the INEX 2011
Question Answering Track (QA@INEX). In: Focused Retrieval of Content and Structure,
10th International Workshop of the Initiative for the Evaluation of XML Retrieval (INEX),
Geva, S., Kamps, J., Schenkel, R. (Eds.). Lecture Notes in Computer Sc., Springer (2011)

2. SanJuan, E., Moriceau, V., Tannier, X., Bellot, P., & Mothe, J. (2012, September).
Overview of the INEX 2012 tweet contextualization track. In: Copyright cG2012 remains
with the author/owner (s). The unreviewed pre-proceedings are collections of work
submitted before the December workshops. They are not peer reviewed, are not quality
controlled, and contain known errors in content and editing. The proceedings, published
after the Workshop, is the authoritative reference for the work done at INEX. (pp. 148-159).

3. Jezek, K., Steinberger, J.: Automatic Text summarization. In: Snasel, V. (ed.) Znalosti
2008. ISBN 978-80-227-2827-0, pp.1--12. FIIT STU Brarislava, Ustav Informatiky a
softveroveho inzinierstva (2008)

4. Erkan, G., Radev, D.R.: LexRank: Graph-based Centrality as Salience in Text
Summarization. In: Journal of Artificial Intelligence Research, vol. 22, pp. 457--479 (2004)

5. Hahn, U., Romacker, M.: The SYNDIKATE text Knowledge base generator. In: the first
International conference on Human language technology research, Association for
Computational Linguistics , ACM, Morristown, NJ, USA (2001)

6. Kyoomarsi, F., Khosravi, H., Eslami, E., Dehkordy, P.K.: Optimizing Text Summarization
Based on Fuzzy Logic. In: Seventh IEEE/ACIS International Conference on Computer and
Information Science, pp. 347--352, University of Shahid Bahonar Kerman, UK (2008)

7. Bhaskar, P., Bandyopadhyay, S.: A Query Focused Multi Document Automatic
Summarization. In: the 24th Pacific Asia Conference on Language, Information and
Computation (PACLIC 24), Tohoku University, Sendai, Japan (2010)

8. Bhaskar, P., Bandyopadhyay, S.: A Query Focused Automatic Multi Document
Summarizer. In: the International Conference on Natural Language Processing (ICON), pp.
241--250. IIT, Kharagpur, India (2010)

9. Rodrigo, A., Iglesias, J.P., Pe˜nas, A., Garrido, G., Araujo, L.: A Question Answering
System based on Information Retrieval and Validation, ResPubliQA (2010)

10. Schiffman, B., McKeown, K.R., Grishman, R., Allan, J.: Question Answering using
Integrated Information Retrieval and Information Extraction. In: NAACL HLT, pp. 532--
539 (2007)

11. Pakray, P., Bhaskar, P., Pal, S., Das, D., Bandyopadhyay, S., Gelbukh, A.: JU_CSE_TE:
System Description QA@CLEF 2010 – ResPubliQA. In: Multiple Language Question
Answering (MLQA 2010), CLEF-2010, Padua, Italy (2010)

12. P. Bhaskar, P. Pakray, S. Banerjee, S. Banerjee, S. Bandyopadhyay and A. Gelbukh,
Question Answering System for QA4MRE@CLEF 2012, In the proceedings of the
Question Answering for Machine Reading Evaluation (QA4MRE) at Conference and Labs
of the Evaluation Forum (CLEF) 2012, 17-20 Sep. 2012, Rome, Italy.

13. Pakray, P., Bhaskar, P., Banerjee, S., Pal, B.C., Bandyopadhyay, S., Gelbukh, A.: A Hybrid
Question Answering System based on Information Retrieval and Answer Validation. In:
Question Answering for Machine Reading Evaluation (QA4MRE), CLEF-2011,
Amsterdam (2011)

14. Tombros, A., Sanderson, M.: Advantages of Query Biased Summaries in Information
Retrieval. In: SIGIR (1998)

15. Radev, D.R., Jing, H., Styś, M., Tam, D.: Centroid- based summarization of multiple
documents. J. Information Processing and Management. 40, 919–938 (2004)

16. Lin, C.Y., Hovy, E.H.: From Single to Multidocument Summarization: A Prototype System
and its Evaluation. In: ACL, pp. 457--464 (2002)

17. Hardy, H., Shimizu, N., Strzalkowski, T., Ting, L., Wise, G. B., Zhang. X.: Cross-document
summarization by concept classification. In: SIGIR, pp. 65--69 (2002)

18. Paladhi, S., Bandyopadhyay, S.: A Document Graph Based Query Focused Multi-
Document Summarizer. In: the 2nd International Workshop on Cross Lingual Information
Access (CLIA), pp. 55-62 (2008)

19. Bhaskar, P., Banerjee, S., Neogi, S., Bandyopadhyay, S.: A Hybrid QA System with
Focused IR and Automatic Summarization for INEX 2011. In: Geva, S., Kamps, J.,
Schenkel, R.(eds.): Focused Retrieval of Content and Structure: 10th International
Workshop of the Initiative for the Evaluation of XML Retrieval, INEX 2011. Saarbruecken,
Germany, December 12-14, 2012. Revised and Selected Papers. Lecture Notes in Computer
Science Volume 7424, 2012, pp 207-218, DOI 10.1007/978-3-642-35734-3_18, ISBN 978-
3-642-35733-6, ISSN 0302-9743, Springer Verlag, Berlin, Heidelberg (2012)

20. Bhaskar. P., Banerjee. S. and Bandyopadhyay.S., A Hybrid Tweet Contextualization
System using IR and Summarization, In: the proceedings of the Initiative for the Evaluation
of XML Retrieval, INEX 2012 at Conference and Labs of the Evaluation Forum (CLEF)
2012, Forner. P., Karlgren. J., Womser-Hacker. C. (Eds.): CLEF 2012 Evaluation Labs and
Workshop, pp. 164-175, ISBN 978-88-904810-3-1, ISSN 2038-4963, Rome, Italy. (2012)

21. Bhaskar. P. and Bandyopadhyay. S., Language Independent Query Focused Snippet
Generation, T. Catarci et al. (Eds.): Information Access Evaluation. Multilinguality,
Multimodality, and Visual Analytics: Third International Conference of the CLEF
Initiative, CLEF 2012, Rome, Italy, September 17-20, 2012. Proceedings, Lecture Notes in
Computer Science Volume 7488, 2012, pp 138-140, ISBN 978-3-642-33246-3, ISSN 0302-
9743, Springer Verlag, Berlin, Heidelberg, Germany, 2012.

22. Bhaskar. P. and Bandyopadhyay. S., Cross Lingual Query Dependent Snippet Generation,
In: International Journal of Computer Science and Information Technologies (IJCSIT),
ISSN: 0975-9646, Vol. 3, Issue 4, 2012, pp. 4603 – 4609.

23. Varadarajan, R., Hristidis, V. 2006. A system for query specific document summarization.
CIKM, pp. 622--631.

24. Van Dongen, S. 2000. Graph clustering by flow simulation. PhD Thesis, University of
Utrecht, The Netherlands.

