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Abstract. This paper describes the participation of our team - MIAR
ICT in the ImageCLEF 2013 Robot Vision Challenge. The task of the
Challenge asked participants to classify imaged indoor scenes and recog-
nize the predefined objects appeared in the imaged scene. Our approach
is based on the recently proposed Kernel Descriptors framework, which
is an effective representation for images. For the provided visual and
depth sequences, we make a simple fusion at feature level. Then we use
Linear Support Vector Machine (L-SVM) classifiers for both scene clas-
sification and object recognition. At last, the temporal continuity of the
given sequences is considered. Our team ranked the first among all the
participants, showing the effectiveness of our proposed scheme.
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1 Introduction

In the 5th Robot Vision Challenge of the ImageCLEF 2013, image sequences were
captured by a perspective camera and a Kinect[1] mounted on a mobile robot
within an office environment. Visual (RGB) images and depth images generated
from 3D point clouds were available. Training sequences were labelled not only
with semantic labels (corridor, kitchen, office, etc.) but also with the objects that
were represented in them (fridge, chair, computer, etc.). The test sequence were
acquired within the same building and floor, but there could be variations in
the lighting conditions (very bright places or very dark ones) or the acquisition
procedure (clockwise and counter clockwise). Given test sequences, participants
were asked to classify different indoor scenes, and judge the existence of the
given objects within each image.

This paper describes the participation of our team in the Robot Vision Chal-
lenge. For the image features extraction part, we used the state-of-the-art Kernel
Descriptors[2] framework, which has proven to be useful for many problems with
RGB-D (visual and depth) information[9]. We applied L-SVM[11] for classifica-
tion, and the temporal continuity is utilized during the classification stage.

The rest part of this paper is organized as follows. In Section 2, we briefly
give a overview of our classification system. In Section 3, we describe in detail
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Fig. 1. Training stage of scene classification.

the image feature we used in our scheme. In Section 4 we describe how we apply
classifier for both two tasks, and how we make use of the temporal continuity.
In Section 5, we give some of our experiments and show our final result on test
sequence. In Section 6, we draw some conclusions.

2 Overview

In this section, we describe the procedure of our scheme. Both scene classification
and object recognition tasks can be solved using classification framework based
on supervised learning. The training stage for scene classification is shown in
Fig.1 and the test stage is shown in Fig.2. Framework for the recognition of each
object is similar, except that training labels and predicted labels are replaced
by the existence of each predefined object.

During the preprocessing stage of our scheme, the given 3D Point Cloud data
are transformed to depth images,which afterwards will be treated as grayscale
images. Then for both visual images and depth images, we extract Kernel De-
scriptors [2] as local descriptors, and use efficient match kernels (EMK) to trans-
form and aggregate the descriptors to the features of images. We represent each
frame by concatenating the two kinds of features extracted from each visual im-
age and depth image. Then we choose L-SVM as our classifier for both scene
classification and object recognition. In consideration of temporal continuity, we
assign the averaged L-SVM scores of one frame’s temporal neighbors to its final
score. More details of our scheme will be described in the following sections.
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3 Image Features

In this section, we describe the features of image, which have been used in our
work. The feature extraction procedure consists of two steps. The first step is to
design match kernels using pixel attributes, and the second is to learn compact
features.

3.1 Kernel descriptors

Kernel descriptors are able to generate rich patch-level features from different
types of pixel attributes. For visual images, we use gradient, local binary pattern
(LBP)[8] and color kernels. For depth images, we use depth gradient, depth LBP,
spin/surface normal kernels.

The gradient match kernel is:

Kgrad(P,Q) =
∑

p∈P

∑

q∈Q

m̃ (p) m̃ (q) ko

(

θ̃ (p) , θ̃ (q)
)

kp (p, q) , (1)

where P and Q are the set of nearby points around the reference point p̄
and p̄, respectively . kp (p, q) = exp

(

−γp‖p−q‖2
)

is a Gaussian position kernel
with z denoting the 2D position of a pixel in an image patch (normalized to
[0, 1]), and ko (θ (p) , θ (q)) = exp

(

−γo‖θ (p)−θ (q) ‖2
)

is a Gaussian kernel over
orientations.

Kernel view of orientation histograms provides a way to turn pixel attributes
into patch-level features, which can also be extended to LBP match kernel:



KLBP (P,Q) =
∑

p∈P

∑

q∈Q

s̃ (p) s̃ (q) kb (b (p) , b (q)) kp (p, q) , (2)

where s̃ = s (p) /
√

∑

p∈P s (p)
2
+ ǫs,s (p) is the standard deviation of values

in the 3 × 3 neighborhood around p ,ǫs is a small constant, and b (p) is a bi-
nary column vector which binarizes the pixel value differences in a local window
around p.

Similar to gradient and LBP kernels, the color match kernel can be formu-
lated as:

Kcol(P,Q) =
∑

p∈P

∑

q∈Q

kc (c (p) , c (q)) kp (p, q) , (3)

where c (p) is the pixel color at position z (intensity for gray images and RGB
values for color images). kp (c (p) , c (q)) = exp(−γc‖c (p)−c (q) ‖2) measures how
similar two pixel values are.

Since depth images are treated as grayscale images, depth gradient and depth
LBP kernels are constructed in a similar way like the gradient and LBP ker-
nels for visual images. Here we just describe another one of the depth kernels -
spin/surface normal kernel[3].

In spin images[6], a reference point in a local 3D point cloud is represented
as the pair(p̄, n̄) formed by its 3D coordinate p̄ and surface normal n̄. The spin
image attribute of a point p ∈ P represented by the pair (p̄, n̄) is given by the
triple [ηp, ςp, βp], where the elevation coordinate ηp is the signed perpendicular
distance from the point p to the tangent plane defined by the pair (p̄, n̄), the
radial coordinate ςp is the perpendicular distance from the point p to the line
through the normal n̄, and βp is the angle between the normals n and n̄. The
point attributes [ηp, ςp, βp] can be aggregated into local shape features by the
following kernel:

Kspin (P,Q) =
∑

p∈P

∑

q∈Q

ka
(

β̄p, β̄q

)

kspin ([ηp, ςp] , [ηq, ςq]) , (4)

where β̄p = [sin (βp) , cos (βp)], P is the set of nearby points around the refer-
ence point p̄. Gaussian kernels ka and kspin are used to measure the similarities
of attributes β, η and ς , respectively.

3.2 Learning Compact Features

Evaluating kernels is computationally expensive when image patches are large.
For both computational efficiency and representational convenience, the feature
can be extracted as following:

1. uniformly and densely sample sufficient basis vectors from support region
to guarantee accurate approximation to match kernels.

2. learn compact basis vectors using kernel principal component analysis.



EMK combines the advantage of both bag-of-words and set kernels. Here we
briefly describe how the EMK transforms kernel descriptors to low dimensional
space to achieve compact features (see [4] for details).

Take feature based on gradient match kernel for example, other kinds of
feature can be extracted in the same way. Rewriting the Eq.1:







ko

(

θ̃ (p) , θ̃ (q)
)

= φo

(

θ̃ (p)
)⊤

φo

(

θ̃ (q)
)

kp (p, q) = φp (p)
⊤
φp (q)

, (5)

the feature over image patches will be:

Fgrad (P ) =
∑

p∈P

m (p)φo

(

θ̃ (p)
)

⊗ φp (p) . (6)

where ⊗ is the Kronecker product. A straightforward way to dimension re-
duction is to sample sufficient image patches from training images and perform
KPCA for match kernels.

Sufficient Finite-dimensional Approximation Finite-dimensional features can be
learned by projecting Fgrad (P ) into a set of basis vectors. A key issue in this
projection process is how to choose a set of basis vectors which makes the
finite-dimensional kernel approximate well the original kernel. Given a set of
basis vectors {ϕo (xi)}

do

i=1
where xi are sampled normalized gradient vectors, a

infinite-dimensional vector can be approximated by a infinite-dimensional vector
ϕo (θ (p)) by its projection into the space spanned by the set of these do basis
vectors. Such a procedure is equivalent to using a finite-dimensional kernel:

k̃o

(

θ̃ (p) , θ̃ (q)
)

= ko

(

θ̃ (p) , X
)

[

K−1
o

]⊤

ij
ko

(

θ̃ (p′) , X
)

, (7)

which can be rewritten as:

k̃o

(

θ̃ (p) , θ̃ (q)
)

=
[

Gko

(

θ̃ (p) , X
)]⊤ [

Gko

(

θ̃ (q) , X
)]

. (8)

Here ko

(

θ̃ (p) , X
)

=
[

ko

(

θ̃ (p) , x1

)

, · · · , ko

(

θ̃ (p) , xdo

)]⊤

is a do×1 vector,

Ko is a do × do matrix with Koij = ko (xi, xj), and K = G⊤G. The resulting
feature map ϕo (θ (p)) = Gko (θ (p) , X) is now only do-dimensional.

Compact Features The size of basis vectors can be further reduced by performing
kernel principal component analysis over joint basis vectors:

{

ϕo (x1)⊗ ϕp (y1) , · · · , ϕo (xdo
)⊗ ϕp

(

ydp

)}

, (9)

where ϕp (ys) are basis vectors for the position kernel and dp is the number
of basis vectors. The t-th kernel principal component can be written as:



PCt =

do
∑

i=1

dp
∑

j=1

αt
ijφo (xi)⊗ φp (yj) , (10)

where αt
ij is learned through kernel principal component analysis[10].

Under the framework of kernel principal component analysis, the gradient
kernel descriptor for the patch P has the form:

Fgrad (P ) =

do
∑

i=1

dp
∑

j=1

αt
ij







∑

p∈P

m̃ (p) ko

(

θ̃ (p) , xi

)

kp (p, yj)







. (11)

With patch descriptors available, we apply bag-of-words model and spatial
pyramid [7] to get the final reprensentation of images. The details of parameter
setting will be discussed in Sec.5.2.

4 Classification

4.1 Classifier

In our work, we applied the LibLinear[5] as our classifier, since SVM is widely
used for classification task and performs effective especially when the scale of
data is small. For scene classification, we train a multiclass one-vs-all L-SVM
classifier. As there are 10 different concepts of indoor scene, 10 binary L-SVMs
are trained for each concept. For object recognition task, we treat the existence of
each object as a binary classification problem. Frames that contain the predefined
object are taken as positive samples, and the rest are taken as negative samples.

For better comprehension, let us introduce some notation here. Let In be one
image of the test sequence, n ∈ {1, 2, 3, · · · , N}, where N is the number of all
images in the test sequence.

For scene classification, let Sc
n be the L-SVM output score for test image

In on concept c, c ∈ {1, 2, 3, · · · , C}, where C is the number of concepts, and
C = 10 in this task. Then the predicted label cpredn of a test image In is decided
following the rule below:

cpredn = argmax
c

Sc
n. (12)

For recognition of object objk, k ∈ {1, 2, 3, · · · ,K}, where K is the number
of objects to be recognized, and K = 8 in this task. Let Sn,k be the L-SVM

output score of test image In for objk, and cpredn,k indicates the predicted concept

of In for objk, where cpredn,k ∈ {−1, 1}, -1 for concept absence and 1 for concept
occurrence. Whether a certain kind of object exists in the test image can be
judged as below:

cpredn,k =











1

0

−1

Sn,k > 0

Sn,k = 0

Sn,k < 0

, (13)



where the prediction 0 in Eq.(13) means that whether the object exists or
not is ambiguous, and we deal with this situation with not classifying it. This
happens only when Sn,k = 0, which means that for the test image In, object
objk has the same confidence on both concept occurrence and absence.

4.2 Consideration of Temporal Continuity

Since all the images in training and test sequences are captured continuously, it is
reasonable and feasible to make full use of the temporal continuity. In our work,
we apply a smoothing method for the L-SVM score to improve the classification
performance.

We empirically think that the concept of an image is quite likely the same
with that of its temporal neighbors, and the L-SVM score should be less changed
compared to its neighbors. Based on this assumption, we smooth the L-SVM
score for both scene classification and object recognition task as bellow:

Sc
n =

1

2r + 1

n+r
∑

k=n−r

Sc
k, (14)

where r is the radius of smooth window. Eq.(14) indicates that the final L-
SVM score for image In on a certain concept c is determined by all the scores of
neighbors within the smoothing window. With all the L-SVM scores updated,
we do classification and recognition on the basis of these new scores.

Choosing appropriate r is very important, for it has a relevance with the
specific data and differs from scene classification and object recognition. The
details of choosing r will be discussed in Sec. 5.3.

5 Experiments

5.1 Datasets and experimental setup

For Robot Vision Challenge this year, two training sequences are provided with
1947 and 3316 images respectively. An additional (labelled) validation sequence
with 1869 images is also provided. The final test sequence involves 3315 unla-
belled images. For all the sequences, RGB images and Point Cloud Data (PCD)
are available. As mentioned in Sec.1, there can be variations in the lighting condi-
tions or the acquisition procedure between test sequence and training sequences,
and the validation sequence is similar to the test to some degree.

For depth features extraction, we transformed all the given PCDs into depth
images, and crop the useless blank border. See the example in Fig.3.

For the scene classification task, we pick the same size of images for each
class in the training sequences to avoid the imbalance between semantic classes.
In our work, we pick out the concept with minimum training data, count the
number of training images in the concept and set this number as the size of
training data for all the other concepts.
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Fig. 4. Evaluation of 6 kernel descriptors on validation sequence.

5.2 Kernel descriptors selection

To choose appropriate kernel descriptors, we evaluate 6 kinds of kernel descrip-
tors (gradient, LBP, color, depth gradient, depth LBP, spin/surface normal)
through scene classification task on validation sequence. Fig.4 shows the eval-
uation of all the 6 kernel descriptors. Depth kernel descriptors perform a little
better than visual kernel descriptors, due to the variations in the lighting condi-
tions between the training sequences and validation sequence. For the final test,
we select the three descriptors (gradient, depth gradient, depth LBP) which get
the highest classification accuracy on validation sequence, since the test sequence
is similar with validation sequence.

After 3 optimal kernel descriptors are chosen, we apply spatial pyramid (1, 2×
2, 3×3) and perform the EMK transform with 1000 words. Then we get the image
feature with a total length of 1000×

(

1 + 22 + 32
)

× 3 = 42000.

5.3 Smoothing window radius

As explained in Sec.4.2, the radius of smoothing window is important for the
final performance. We perform experiments on different radius r for validation se-
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Fig. 5. (left)Variation of scene classification accuracy with r on validation sequence.
(right)Variation of object recognition accuracy with r.

quences, and choose the r which corresponds to the highest accuracy. Fig.5 (left)
shows how the scene classification accuracy varies with the radius of smoothing
window r. We set the step width as 5, and find out that the accuracy reaches
the climax when r is around 25.

Since the radius is related to the length of continuous scene images with
the same concept, and there is a proportion between the quantity of validation
images and test images, the estimated radius r should be multiplied the propor-
tion to fit the test sequence. According to Eq.15, we get the estimated radius
rscenetest = 44 for test sequence.

rscenetest = rscenevalidation ×
Ntest

Nvalidation

. (15)

For object recognition, Fig.5 (right) shows how the object recognition accu-
racy varies with the radius of smoothing window r, and it reaches the climax
when r is around 10. Then we use the same method to get the estimated radius
robjecttest = 18 for test sequence.

5.4 Results on validation sequence

We applied our method on the validation sequence, and computed the classi-
fication accuracy for each scene concept and object category. See Table 1 and
Table 2 for detailed results. We notice that our method has good performance
on each concept except ’StudentOffice’ and ’TechnicalRoom’. This is due to the
large variation of luminance between training and validation sequences on these
two concepts images.



Scene Concept Corridor Hall ProfessorOffice StudentOffice TechnicalRoom Toilet

Accuracy 0.986 * 0.850 0.472 0.453 0.979

Scene Concept Secretary VisioConference Warehouse ElevatorArea Total

Accuracy 0.934 * * 1.000 0.827

Table 1. Scene classification results on validation sequence. Here * means that there is
no images with concept Hall, VisioConference or Warehouse in the validation sequence.

Object Category Extinguisher Computer Chair Printer Urinal Fridge Screen Trash Total

Accuracy 0.949 0.884 0.907 0.899 0.935 0.998 0.919 0.960 0.935

Table 2. Object recognition results on validation sequence.

5.5 Results on Robot Vision task

In the 5th edition of the Robot Vision Challenge,Our team ranked the first out
of six participants, results are listed in Table 3.

# Group Score Class Score Objects SCORE TOTAL

1 MIAR ICT 3168.5 2865.000 6033.500

2 NUDT 3002.0 2720.500 5722.500

3 SIMD* 1988.0 3016.750 5004.750

4 REGIM 2223.5 2414.750 4638.250

5 MICA 2063.0 2416.875 4479.875

6 GRAM -487.0 0.000 -487.000
Table 3. Robot Vision final results.

6 Conclusion

In this paper we present our scheme on the 5th Robot Vision Challenge. Our
approach leverages the state-of-the-art methods in the fields of RGB-D image
classification. Among all the participants for the Challenge, our team ranked
the first, showing the effectiveness of our approach. Since the predefined objects
have high dependence on indoor scenes, we achieve high accuracy on object
recognition by using the representation of whole image. This method is useful
for the specific task of this Challenge, and we plan to investigate more effective
methods to better tackle general object recognition problem in future work.
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