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Abstract. This paper details the approach of implementing an English 

plagiarism source retrieval system to be presented at PAN 2013. The system 

uses the TextTiling algorithm to break a given document into segments that are 

centered around certain topics within the document. From these segments, 

keyphrases are generated using the KPMiner keyphrase extraction system. 

These keyphrases and segments are then used in generating queries indicative 

of the segment, and consequently the document. The queries are submitted to 

ChatNoir for finding plagiarism sources in the ClueWeb09 corpus from which 

the pan13 dataset is plagiarized. The target is to lessen the overall search effort 

while maximizing the performance by scoring unconsumed queries against the 

already downloaded candidate sources. Comparison to other PAN 2013 

submissions for the same task, show the presented system to be one of the top 

performers.  

1   Introduction 

Plagiarism is the act of copying or using other people’s data without permission or 

giving credit. It poses an unfortunate problem in modern academia as figures, charts, 

and even text from research papers and proposals can be copied without permission. 

For example, when asked to write a study on a certain topic, most students would start 

by searching the internet, or looking up Wikipedia. Some would then proceed to copy 

data on the subject, be it charts figures, tables or text, while omitting references to the 

sources. Such activities are deemed dishonorable and unacceptable in the academic 

community, and are considered as theft. It is often up to the reviewers of the material 

to detect the plagiarism through experience, and properly act upon it by proving and 

reporting it. Many tools have been developed recently for checking papers for 

plagiarism examples of which include Turnitin’s OriginalityCheck[1] and 

iThenticate[2]. These tools check submitted papers for plagiarism by comparing them 

against a vast collection of documents in the form of webpages, papers, etc. The 

increasing demand for these tools serves to prove how severe the problem of 

plagiarism is becoming. 



In this paper, we present an approach for generating discriminative queries from 

documents suspected of plagiarism. These queries are then used to search for possible 

sources of a suspect document at hand. This is done by dissecting the given document 

into related subtopics that are then condensed into characteristic keyphrases. The 

keyphrases are used to direct the focus of the search towards the possible sources of 

the aforementioned subtopics to avoid looking up as many irrelevant documents as 

possible. 

The rest of this paper is organized as follows; Section 2 describes the problem and 

explores its various dimensions. Section 3 provides the details of the implementation. 

Section 4 presents the performance of the system in comparison to other PAN 2013 

system submissions. Section 5 concludes the paper, and discusses possible future 

improvements. 

2   Problem and Task Descriptions  

2.1 Problem Description 

 

Text plagiarism is a very common form of plagiarism, and is one of the prime 

focuses of PAN[3]. Unfortunately, detecting this kind of plagiarism can be a difficult 

task. The difficulty in detecting such plagiarism stems from the fact that it is relatively 

easy for one to conceal the plagiarism in a number of ways. One could obfuscate, 

paraphrase, or simply rearrange words, rendering it much harder for a machine, or 

even a human to detect the plagiarism. However, most plagiarists do not exert a lot of 

effort in their plagiarism as they simply copy and paste data. 

There are two types of plagiarism detection, extrinsic and intrinsic[4]; intrinsic 

detection is the detection of deviations in the overall document style given only the 

document, thus identifying possible non-authentic bodies of text. Extrinsic detection 

is the task of identifying possible plagiarism instances in the document with relation 

to other documents. Extrinsic plagiarism detection is the focus of this work. Extrinsic 

plagiarism detection as a task is comprised of two sub-tasks: source retrieval, and 

text alignment. Source retrieval is the process of locating as many as possible source 

documents from which a suspect document has been plagiarized. Text alignment is 

the process of mapping passages within a suspect document to passages from which 

they have been copied in the source document. Source retrieval is the focus of this 

work. 

 

2.2 PAN task Description  

 

Participants in the source retrieval task were given a plagiarized dataset[5] that 

consists of suspicious documents. Each document addresses a certain topic and is 

plagiarized from web pages on that topic from the ClueWeb09[6] corpus. Analysis of 

the dataset revealed that there is little to no obfuscation in the documents. Some small 

passages and headlines are authentic and not plagiarized and the documents are well 

written, punctuated, and organized into paragraphs focusing on certain aspects. 



The task requires processing the suspect documents to formulate queries that are 

indicative and characteristic of their content. These queries should then be used to 

search for the plagiarism sources in the ClueWeb09 corpus using one of two provided 

search engines: ChatNoir[7] or Indri[8].  

Four different measures are used to assess any source retrieval system: Retrieval 

performance represented by Precision, Recall, and the F1 score, the workload 

represented by the number of queries and document downloaded, time till first 

detection, represented by the number of queries and documents downloaded before an 

actual source is located, and system runtime.  The goal is to maintain a good balance 

between those four measures while aiming to maximize retrieval performance and to 

minimize workload and system runtime. With these constraints in mind, keeping a 

keen eye on downloads is determined to be the core of the problem. Downloading 

irrelevant documents would lead to more searching, possibly retrieving more 

documents that are irrelevant, and damaging the performance. Whereas downloading 

relevant documents would help minimize the search effort and sharpen the system’s 

precision. As such, it was concluded that the strategy to be adopted must be devised to 

control the number of downloads.  

Another factor that should be taken into consideration is that the ClueWeb09 

corpus contains “spam” pages, and noisy documents such as huge site directories and 

listings. These could be wrongfully flagged as candidate sources, due to these pages 

having a huge variety of unrelated words that could trick the system into flagging 

them as a source of a certain query slowing the time to the first actual correct result, 

while dealing a blow to the precision of the system. Thus, we have also concluded 

that after retrieving candidate sources, and to keep the number of downloads and 

precision in check, there needs to be some kind of relation between the current 

downloaded candidates and the queries that have not been utilized yet. It would be 

favorable to score the unutilized queries against the already downloaded candidates to 

prevent the system from over-searching. 

3   Implementation 

The slight obfuscation in the dataset was determined not to affect the general 

outcome of the plagiarism detection process as initial experimentation showed that it 

did not hinder the searching process from retrieving documents that are relevant to the 

topic at hand. We have chosen ChatNoir as the search engine to use for searching for 

possible document sources. Within the proposed system, a number of phases were 

implemented. In the following subsections, each phase is detailed.  

 

3.1 Preparing the Data 

 

Given an input suspect plagiarized document, it is preprocessed with regular 

expressions to remove all non-English characters (including numbers, symbols, 

punctuation, etc) since the dataset is already known to be in English. It is then 

tokenized on whitespace, and the frequency distribution of the document is calculated. 

Then using the TextTiling[9] algorithm (provided by Python’s NLTK[10] platform), 



the document is divided into topically related segments/subdocuments. This step is 

tuned to produce a relatively small number of large segments, as explained in 

subsection 3.4. 

 

3.2 Formulating the Queries 

 

Keyphrases are extracted for each of the document’s generated segments  using the 

KPMiner[11] keyphrase extraction system, which returns the topmost keyphrase of 

the segment.
 
This keyphrase (which is a phrase of 1 to 3 words on average) is said to 

be characteristic of the segment. The segment is then divided into sentences, and 

every four sentences are grouped into a chunk. A query is then generated for each 

chunk.  

Each chunk is preprocessed exactly like the main document, and tokenized on 

whitespace. English stopwords are removed, and the unique words (words with a 

frequency of 1 over the document) are identified. These unique words are removed 

from the chunk, and added to the chunk’s query. The chunk now contains no 

stopwords, or unique words. The remaining non-unique words in the chunk are then 

sorted by ascending frequency, and moved into the query in their sorted order. 

The query is now organized in such a way that the unique words are at the 

beginning, and then the rest of the words in ascending frequency. If the length of the 

query is greater than 10 words, the query is trimmed down to 10 keywords taking 

only the first 10 terms that appear in the query. This is due to ChatNoir’s keyword 

limit of 10. The segment’s keyphrase (which could be of length n-words) is then 

added in place of the last n words in the query if the query does not already contain 

the keyphrase’s terms. The queries are stored as a list of strings per document. An 

overview of the process of query generation is shown in Fig.1. 
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Fig. 1, Overview of query generation 

3.3 Searching 

 

ChatNoir allows for requesting snippets of the search results of a query. A snippet 

request returns a number of characters (500 characters) from the search result around 

the terms of the submitted query. Snippets do not count as “downloads” when 

calculating performance. For each document, its list of queries is traversed as follows:  

The first query is submitted to ChatNoir for a snippet request. The query is scored 

against the snippet through simple token matching; if 50% or more of the query’s 

tokens are found in the 500-character snippet’s tokens, then the search result (the 



snippet’s origin) is considered a candidate source. This candidate is then downloaded 

and added to a list of downloaded documents related to the document at hand. 

Each of the subsequent queries is then checked against the list of downloaded 

documents through simple token matching as well. If 60% or more of the query’s 

tokens are found in any of the downloaded documents’ tokens, then this document is 

considered a source for this query, and this query will not be used for searching. If the 

query fails to score 60% against all the downloaded documents, it is then used for a 

new snippet request, and possibly to download a new candidate source as above. The 

algorithm for scoring the queries is illustrated in pseudo-code below: 

 
For i = 1 to Length(queries): #1st query has been used 

    For j = 0 to Length(downloadedDocs): 

        If ScoreQuery(queries[i], downloadedDocs[j]) > 0.6: 

  FoundCandidate = True; 

Break; #Found possible source for this query     

    If not (FoundCandidate): 

        Snippet = GetSnippet(queries[i]) 

        If ScoreSnippet(Snippet, queries[i]) > 0.5: 

            downloadedDocs.add(Download(Snippet.id));  

 

When downloading documents, ChatNoir provides an “oracle” function. Given the 

id of the suspicious document in the training set that you are searching for, and the id 

of the page you are trying to download, the oracle would inform you if the 

downloaded page is a source for the suspicious document or not. This is used to 

calculate precision, recall, and the time to the first actual result. 

 

3.4 Tunable Parameters 

 

The plagiarism detection system detailed above is affected by a number of tunable 

parameters. Due to the time cost of the runs over the dataset, as a typical run takes 

around 2-3 hours, it was decided that determining the optimum factors through 

iteration over all the different combinations of the parameters would take a lot of 

time. As a result, a different approach was used to obtain values that would be good 

enough, but are not necessarily globally optimal. Through human intuition and 

common sense, and a small number of experiments we tried to find an optimum value 

for each of the parameters. Below, we go through the reasoning behind the various 

configurations. The row in bold in the tables denotes the submitted configuration. 

TextTiling parameters: TextTiling offers control over how large the 

subdocuments/segments can be, by changing two parameters w, and k; TextTiling is 

done by tokenizing the text into pseudo-sentences of a fixed size w, where k is the 

size (in sentences) of the block used in the block comparison method[12]. The size of 

the pseudo-sentences control to a large degree the number of segments generated.  

Through experimentation, it was found that tuning the segmentation for a large 

number of topics of small size leads to higher recall but lesser precision. This is 

logical due to there being a lot of variance in the queries due to the large number of 

topics and their different keyphrases; Many queries would fail to score 60+% on the 

downloaded documents due to the variety in the downloads. This leads the system to 

carry out more searching and downloading, which in the end damages the precision, 

without much gain in recall as shown in Table 1.  



It is determined that setting the segmentation to collect larger topics (an average of 

15 segments per document) is best for both precision and recall. This is obtained by 

setting w = 50, and k = 5 as can be seen in Table 1. 

 
 No. of Topics Precision Recall No. Qrs No. Dlds 1st Detection 

w=20, k=5 35 0.67 0.44 42.9 7.85 12.55 
w=50, k=5 15 0.72 0.44 36.33 7.4 9.775 

w=80, k=30 11 0.69 0.43 32.15 7.45 11.1 

Table 1, TextTiling parameters w, k at a Snippet score of 50%, and a Query score of 60%, Chunk Size 

of 4, Frequency Threshold of 1. First Detection is in queries. All numbers are averages over the dataset 

 

Chunk size selection: there is a choice as to how large the sentence chunk size 

could be. Setting the chunk size to 1 (one sentence per chunk, i.e., one sentence per 

query) leads to more searching, and higher recall at a loss for precision. The choice of 

four sentences was determined by running a number of experiments to determine the 

best performing chunk size and as can be seen from table 2, a chunk size of 4 was best 

for both precision and recall. There is also the choice of the frequency threshold that 

identifies “unique” words. Several values were also tested in the same manner and a 

threshold of 1 was found to be best as shown in Table 2.  

 
 Precision Recall No. Qrs No. Dlds 1st Detection 

CS=1, FT=1 0.45 0.5 53 13 12 

CS=3, FT=1 0.65 0.46 37.85 8.8 9.7 

CS=4, FT=1 0.72 0.44 36.33 7.4 9.775 

CS=5, FT=1 0.71 0.41 28.6 6.7 8.7 

CS=4, FT=3 0.73 0.4 30.45 7.0 8.95 

CS=4, FT=5 0.63 0.37 27.25 6.85 11.35 

Table 2, Choice of sentence chunk size (CS) and the frequency threshold (FT) at w=50, k=5, Snippet 

Score of 50%, Query score of 60%. First Detection is in queries. All numbers are averages over the dataset 
 

Search parameters: one can retrieve more than one result for a certain query. 

Doing so does not benefit the performance, as the first result is often the most correct 

one. There are also the two scoring functions: one that scores queries against 

snippets, and queries against candidate downloaded documents. The snippet score 

is chosen to be 50%. On trying higher values, more snippets would fail to pass the 

check due to their limited number of characters, damaging both the precision and the 

recall. For lower values most snippets would pass the check flagging more documents 

for downloads, damaging the precision. The same rationale goes for scoring queries 

against the candidate documents as in shown Table 3. 

 

Snippet 

Score 

Query 

Score 

Precision Recall No. Qrs No. Dlds 1st Detection 

40 60 0.71 0.45 35.675 7.5 9.55 

50 60 0.72 0.44 36.33 7.4 9.775 

60 60 0.72 0.42 37.65 7.05 10.425 

50 40 0.75 0.4 29.65 6.175 9.625 
50 70 0.72 0.45 39.5 7.525 9.75 

Table 3, Choice of Snippet and Query scores at w=50, and k=5, chunk size of 4, Frequency Threshold 

of 1. First Detection is in queries. All numbers are averages over the dataset 



4   Results 

The presented system was evaluated using the four measures described in section 

2.2 in addition to the “No Detection” metric. Our system was determined to be one of 

the top three submissions to PAN’13 in the source retrieval task. Among the top three 

participants (shown in Table 4a), our system has the highest precision, the lightest 

workload and the fastest runtime. Our system is also the fastest system to 

download the first source. Overall, our system has the highest number of top 

performance indicators. In addition, our system has the second-highest recall and F1 

score. Table 4b provides a comparison between the performance of our system and 

the other participants of PAN13.  

 
 Retrieval 

Performance 

Workload 1st Detection No 

Detection 

Runtime 

 F1 Prec Recall Qrs Dlds Qrs Dlds 

Haggag 0.44 0.63 0.38 32.04 5.93 8.92 1.47 9 9162471 

Williams 0.47 0.55 0.50 116.4 14.05 17.59 2.45 5 69781436 

Lee 0.35 0.50 0.33 44.04 11.16 7.74 1.72 15 18628376 

 

 
Table 4a (top), Performance comparison with the top three participants. Table 4b (bottom), Performance of 

all participants. In bold are the metrics in which each system performed better compared to the others 

5   Conclusion and Future Work 

This paper has presented a system that can retrieve plagiarism sources while 

minimizing the workload. The system is capable of achieving its goal by careful 

formulation and elimination of queries to be submitted for search.  The system utilizes 

two algorithms in generating the queries, namely the TextTiling algorithm, and the 

KPMiner keyphrase extraction algorithm as well as a set of heuristics for employing 

those. The system’s performance was shown to be among the best this year, as shown 

in Table 4. 

There is however room for improvement on the current system.  For example, the 

values of the used parameters could be further optimized. Measures could also be 

taken to counter the obfuscation without adding too much complexity to the system. 

More use of ChatNoir’s additional functionality can be made. This includes for 

example, making use of ChatNoir’s batch query service where you can request search 

results for more than one query in the same request. This can be used on the document 

level, by coming up with a method of speeding up the searching process by using 

more than one query at the same time, while maintaining the scoring scheme. It can 



also be used on a dataset level basis by processing a number of documents 

simultaneously. Moreover, ChatNoir provides some advanced parameters for 

searching, such as defining spam rank, page rank limits, and a proximity factor 

between queries and the results they return. All these could be used to refine the 

search results, filtering out unwanted result pages. The scoring functions could take 

into consideration the context of the query while scoring queries against candidate 

documents instead of simple token matching. The code to our implementation will be 

available under the MIT license[13] for whoever wants to extend or use our system. 
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