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Abstract This paper overviews 18 plagiarism detectors that have been evaluated
within the fifth international competition on plagiarism detection at PAN 2013.
We report on their performances for the two tasks source retrieval and text align-
ment of external plagiarism detection. Furthermore, we continue last year’s ini-
tiative to invite software submissions instead of run submissions, and, re-evaluate
this year’s submissions on last year’s evaluation corpora and vice versa, thus
demonstrating the benefits of software submissions in terms of reproducibility.

1 Introduction

Text is reused in many ways, such as quotations, translations, paraphrases, summaries,
and boilerplate text. Under the right circumstances, all of these kinds of text reuse may
also be considered plagiarism [25]. A frequent research topic concerning text reuse
and plagiarism is algorithms that detect them. Particularly the detection of plagiarism
has received considerable attention in terms of publications over the past two decades.
Our focus is on the evaluation of such algorithms with respect to their retrieval perfor-
mance; since 2009 we have been organizing four annual competitions on plagiarism
detection [26, 27, 29, 30] and this paper reports on the results of the fifth edition.1

During the first three editions of our lab we developed the first standardized evalu-
ation framework for plagiarism detection [28]. A total of 32 teams of researchers took
part in these evaluations, nine of whom more than once, and the framework has been
adopted by the research community since. While evaluation frameworks should accu-
rately emulate the real world around a given computational task in a controlled labora-
tory environment, most frameworks do so only to some extent, since they typically rest
on design choices that affect their generalizability. This is also true for our framework,
which has been shown to exert a number of shortcomings due to its semiautomatic con-
struction that render it less realistic and sometimes lead to impractical algorithm design.
As of last year, we started developments on a new, more realistic evaluation framework

1 Some of the concepts found in this paper have been described earlier, so that, because of the
inherently incremental nature of evaluations, and in order for this paper to be self-contained,
we reuse text from these sources.
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Figure 1. Generic retrieval process to detect plagiarism [40].

that consists of entirely manually generated text reuse and plagiarism [32]. This year,
we employ the new framework for the second time to evaluate a total of 18 plagiarism
detectors, revising it along the way.

1.1 Plagiarism Detection and its Step-wise Evaluation

Figure 1 shows a generic retrieval process to detect plagiarism in a given suspicious doc-
ument dplg, when also given a (very large) document collection D of potential source
documents. This process is also referred to as external plagiarism detection since plagia-
rism in dplg is detected by searching for text passages inD that are highly similar to text
passages in dplg.2 The process is divided into three basic steps, which are typically im-
plemented in most plagiarism detectors. First, source retrieval, which identifies a small
set of candidate documents Dsrc ⊆ D that are likely sources for plagiarism regard-
ing dplg. Second, text alignment, where each candidate document dsrc ∈ Dsrc is com-
pared to dplg, extracting all passages of text that are highly similar. Third, knowledge-
based post-processing, where the extracted passage pairs are cleaned, filtered, and pos-
sibly visualized for later presentation.

1.2 Contributions

Since last year, we evaluate plagiarism detectors step-wise instead of as a whole. Our
focus is on the source retrieval task and the text alignment task, and we research and
develop new evaluation frameworks for each of them. In the following two sections, we
detail the evaluations of both tasks. Our contributions are as follows:

1. Software Submissions. For the second time, we asked participants to submit their
software instead of outputs of software runs. The submitted softwares were run and

2 Another approach to detect plagiarism is called intrinsic plagiarism detection, where detectors
are given only a suspicious document and are supposed to identify text passages in them which
deviate in their style from the remainder of the document. This year, we focus on external
plagiarism detection.



evaluated at our site using the TIRA experimentation platform [9]. This improves
the sustainability of our evaluations because submitted softwares are maintained in
executable state so that they can be run against new corpora later on.

2. Text Alignment Evaluation Across Years. Since software submissions were intro-
duced last year for the text alignment task, this puts us in the position to re-evaluate
last year’s submissions against this year’s evaluation corpora and vice versa. We
report on the results of this cross-year evaluation and present a combined ranking,
demonstrating the benefits of software submissions in terms or reproducibility.

3. Survey of Retrieval Approaches. We survey the 18 submitted softwares as described
by their authors, analyze how they work, and organize them into generic retrieval
processes for both of the two tasks source retrieval and text alignment.

4. Performance Measures for Source Retrieval. Regarding the source retrieval task,
we shed light onto measuring the performance of a source retrieval algorithm. In
particular, we show that near-duplicate retrieval results should be discounted when
measuring source retrieval performance.

2 Source Retrieval

In source retrieval, given a suspicious document and a web search engine, the task is
to retrieve all source documents from which text has been reused whilst minimizing
retrieval costs. The cost-effectiveness of plagiarism detectors in this task is important
since using existing search engines is perhaps the only feasible way for researchers as
well as small and medium-sized businesses to implement plagiarism detection against
the web, whereas search companies charge considerable fees for automatic usage.

In what follows, we describe the building blocks of our evaluation setup, provide
details about the evaluation corpus and how it was constructed, discuss performance
measures, survey the submitted softwares, and finally, report on the evaluation of these
softwares.

2.1 Evaluation Setup

For the evaluation of source retrieval from the web, we consider the real-world scenario
of an author who uses a web search engine to retrieve documents in order to reuse text
from them in a document. A plagiarism detector typically uses a search engine, too,
to find reused sources of a given document. Therefore, to evaluate a plagiarism detec-
tor, an evaluator must collect realistic samples of documents that contain reused text
and feed them into the detector while keeping the web environment under full con-
trol. To do so in a reproducible manner, the web environment must be representative,
yet static, so that evaluations of different detectors yield comparable results when done
asynchronously. Meeting both constraints at the same time poses a significant engineer-
ing challenge. Over the past years, we assembled the necessary building blocks to allow
for a meaningful evaluation of source retrieval algorithms; Figure 2 shows how they are
connected:

– A large-scale web corpus (in our case, the ClueWeb09) that can be readily served
and browsed as if it were the real web (i.e., links of delivered web pages are rewrit-
ten so that they point to the servers hosting the web corpus instead of the real web).
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Figure 2. Overview of the building blocks used in the evaluation of plagiarism detectors that im-
plement source retrieval. The components are organized by the two activities corpus construction
and evaluation runs (top two rows). Both activities are based on a static evaluation infrastructure
(bottom row) consisting of an experimentation platform, web search engines, and a web corpus.

– Web search engines (Indri and ChatNoir) that index the web corpus using two dif-
ferent retrieval models and that offer both a user interface as well as an API for
automatic usage.

– An evaluation corpus (Webis-TRC-12) that consists of long, manually written doc-
uments from authors who searched for sources in the web corpus using one of the
search engines and then reused text from sources retrieved.

– An experimentation platform (TIRA) that allows participants to submit their pla-
giarism detector for evaluation and for conservation in an executable state for future
evaluations.

– A search proxy API that, for later analysis, monitors and logs a participant’s use of
the search engines as well as web page downloads from the corpus.

– Performance measures that measure the retrieval quality and cost-effectiveness of
a plagiarism detector.

– A source oracle that provides feedback to a detector about whether or not a web
page the detector decided to download is a true positive detection (i.e., a source
document, or a duplicate thereof, that was actually used).

This setup has been used for both corpus construction as well as for evaluation runs,
both of which are detailed in the following sections. Beforehand, we briefly describe



the underlying infrastructure which must be kept operational for both purposes and
maintained for future evaluations.

The TIRA experimentation platform The TIRA experimentation platform is developed
alongside our evaluation lab at our site [9]. It facilitates information retrieval experi-
ments by providing a unified execution environment that allows for local instantiation
of experiment software, web dissemination of evaluation results, platform independent
software development, and result retrieval and visualization. TIRA itself consists of a
number of building blocks the full description of which is beyond the scope of this
report. Suffice it to say that one of them, depicted in Figure 2 bottom left, facilitates
both platform independent software development and software submissions at the same
time by its capability to create and remote control virtual machines on which our lab’s
participants deploy their plagiarism detectors.

The ClueWeb, Indri, and ChatNoir The currently most widely adopted web crawl that
is regularly used for large-scale web search-related evaluations is the ClueWeb cor-
pus 2009 (ClueWeb09).3 The corpus consists of about one billion web pages, half of
which are English ones. It has been successfully employed to evaluate retrieval models
and search engines within the annual TREC evaluation conference4 and has therefore
been widely adopted. As of this year, an updated version of the corpus has been re-
leased,5 however, our evaluation is still based on the 2009 version.

Indri6 and ChatNoir [31] are currently the only publicly available search engines
that index the ClueWeb09 corpus. Indri’s retrieval model combines language model-
ing and inference networks [20], whereas ChatNoir implements the classic BM25F
model [33] and incorporates PageRank and SpamRank scores. This way, two of the
most widespread retrieval models are available within our evaluation setup. For devel-
oper convenience, we also provide a proxy server which unifies the APIs of the search
engines. At the same time, the proxy server logs all accesses to the search engines for
later performance analysis.

2.2 Evaluation Corpus

The evaluation corpus employed for source retrieval is based on the Webis text reuse
corpus 2012 (Webis-TRC-2012) [32]. The corpus consists of 297 documents that have
been written by 27 writers who worked with our setup as shown in the first row of
Figure 2: given a topic, a writer used ChatNoir to search for source material on that
topic while preparing a document of 5700 words length on average, reusing text from
the found sources. The writers were instructed to modify their text reuse as much as they
deemed necessary to avoid automatic detection. To do so, writers applied two general
strategies, namely paraphrasing of a reused passage and interleaving of two or more
reused passages from different source documents. Some writers made only superficial

3 http://lemurproject.org/clueweb09
4 http://trec.nist.gov
5 http://lemurproject.org/clueweb12
6 http://lemurproject.org/clueweb09/index.php#Services



modifications while others made many, so that a spectrum of cases ranging from no
paraphrasing and no interleaving to much paraphrasing and much interleaving can be
observed.

Last year, we sampled 40 documents from the Webis-TRC-2012 as training and
test documents. This year, these documents were provided for training, and another
58 documents were sampled as test documents. The remainder of the corpus will be
used within future labs on this task.

2.3 Performance Measures

Given a suspicious document dplg that contains passages of text that have been reused
from a set of source documents Dsrc, we measure the retrieval performance of a source
retrieval algorithm in retrieving Dsrc in terms of precision and recall. Let Dret denote
the set of documents that are retrieved by a source retrieval algorithm when given dplg,
then it may seem straightforward to define precision as prec = |Dret ∩ Dsrc|/|Dret|
and recall as rec = |Dret∩Dsrc|/|Dsrc|. However, this definition turns out to be overly
simplistic since it disregards an important side-effect of using a large-scale web corpus
for evaluation, namely near-duplicate web documents.

The web is rife with documents that are near-duplicates of each other [4]. A source
retrieval algorithm may therefore retrieve a document dret ∈ Dret that is almost the
same as a source document dsrc ∈ Dsrc in terms of its main contents, but not exactly the
same. Because of this, dret would be counted falsely as a negative detection despite the
fact that a human assessor would consider it a true positive one. To relax this constraint,
we employ a near-duplicate detector to judge whether a retrieved document dret is a true
positive detection; i.e., whether a document dsrc exists in dplg’s set of source documents
Dsrc that is a near-duplicate of dret. If one of the following conditions holds, we say
that dret is a true positive detection for a given pair of dsrc and dplg:

1. Equality. The document dret is a true positive detection of dsrc if dret = dsrc.
2. Similarity. The document dret is a true positive detection of dsrc if their n-gram

Jaccard similarity is above 0.8 for n = 3, above 0.5 for n = 5, and above 0
for n = 8. The thresholds have been determined experimentally.

3. Containment. The document dret is a true positive detection of dsrc if the passages
in dplg known to be reused from dsrc are contained in dret. Containment is measured
as asymmetrical set overlap of the passages’ set of n-grams regarding that of dret,
so that the overlap is above 0.8 for n = 3, above 0.5 for n = 5, and above 0
for n = 8.

This way of determining whether a retrieved document dret is a true positive detection
inherently entails inaccuracies, so that not all near-duplicates of a source document dsrc
will be considered true positive detections. While there is no straightforward way to
solve this problem, this error source affect all detectors at the same time, still allowing
for relative comparisons.

Let ddup denote a near-duplicate of a given dsrc that would be considered a true
positive detection according to the above conditions if it was retrieved by a source
retrieval algorithm. Note that every dsrc may have more than one near-duplicate and



every ddup may be a near-duplicate of more than one source document. Further, let
Ddup denote the set of all near-duplicates of a given set of source documents Dsrc

of dplg and let D′
ret denote the subset of Dsrc that have at least one corresponding true

positive detection in Dret:

Ddup = {ddup | ∃dsrc ∈ Dsrc : ddup is a true positive detection of dsrc},
D′

ret = {dsrc | dsrc ∈ Dsrc and ∃dret ∈ Dret : dret is a true positive detection of dsrc}.

Based on these sets, we define precision and recall of Dret regarding Dsrc and dplg as
follows:

precision =
|Dret ∩Ddup|
|Dret|

, recall =
|D′

ret ∩Dsrc|
|D′

ret|
.

Rationale for this definition is the fact that, retrieving more than one near-duplicate of
a source document does not decrease precision, but it does not increase recall, either,
since no additional information is obtained.

Finally, to measure the cost-effectiveness of a source retrieval algorithm in retriev-
ingDret, we count the numbers of queries and downloads made and compute the work-
load in terms of queries and downloads until the first true positive detection is made.

The Source Oracle As described at the outset, the task subsequent to source retrieval is
text alignment, where the candidate sources found are compared in closer detail with a
given suspicious document (see Figure 1). Because of this connection, one problem of
implementing and evaluating a source retrieval algorithm is that a working text align-
ment algorithm is required a priori. Since such an algorithm is not at hand, we decouple
the source retrieval task from the text alignment task by means of a source oracle so as
to allow for participation without the need to develop a text alignment algorithm. The
oracle automatically enriches a downloaded document with information about whether
or not it is considered a true positive source for the given suspicious document. Note
that the oracle employs the aforementioned conditions to determine whether a docu-
ment is a true positive detection. However, the oracle does not, yet, tell for which part
of a suspicious document a downloaded document is a true positive detection detection.
Hence, applying a custom text alignment strategy can still be beneficial.

2.4 Survey of Retrieval Approaches

Nine of the 14 participants submitted runs for the source retrieval task, eight of whom
also submitted a notebook describing their approach. An analysis of these descriptions
reveals the same building blocks that were commonly used in last year’s source retrieval
algorithms: (1) chunking, (2) keyphrase extraction, (3) query formulation, (4) search
control, and (5) download filtering. Some participants simply reused their previous ap-
proach; in what follows, we describe the new or changed ideas in detail.

Chunking Given a suspicious document, it is divided into (possibly overlapping) pas-
sages of text. Each chunk of text is then processed individually. Rationale for chunking
the suspicious document is to evenly distribute “attention” over a suspicious document



so that algorithms employed in subsequent steps are less susceptible to unexpected char-
acteristics of the suspicious document.

The chunking strategies employed by the participants are no chunking (i.e., the
whole document as one chunk) [3, 18, 42], 50-line chunks [3], TextTiling [14] to
identify the topically related passage and therein 4-sentence chunking [13], paragraph
chunking [19, 42], anomaly sections based on intrinsic plagiarism detection [21], 100-
word chunks [43], 5-sentence chunks [44], and combinations thereof. Note that chunks
typically are stated as non-overlapping. An interesting question could be to identify
the potential of overlapping chunks (except maybe in the cases of the whole-document
and TextTiling chunks). Typical plagiarism cases have no fixed length and overlapping
chunks would reduce the risk of, for instance, having more than one source in one
chunk of 50 lines or 100 words, etc. Furthermore, relying on the given document struc-
ture (e.g., chunking by lines or paragraphs) bears the risk of failing for some unseen
documents that are not as well-formatted as the ones in our evaluation corpus.

Keyphrase Extraction Given a chunk, keyphrases are extracted from it in order to
formulate queries with them. Rationale for keyphrase extraction is to select only those
phrases (or words) which maximize the chance of retrieving source documents match-
ing the suspicious document. Keyphrase extraction may also serve as a means to limit
the amount of queries formulated, thus reducing the overall costs of using a search en-
gine. This step is perhaps the most important one of a source retrieval algorithm since
the decisions made here directly affect the overall performance: the fewer keywords are
extracted, the better the choice must be or recall is irrevocably lost.

Phrasal search was provided by the Indri search engine. However, only Lee et al.
[19] made use of Indri. Some participants use single keywords while others extract
whole phrases. Most of the participants preprocessed the suspicious document by re-
moving stop words before the actual keyphrase extraction. In particular, Elizalde [3]
applies three different strategies. The first approach generates one query per 50-lines
chunk containing the top-10 words scored by tf · idf values; a word’s document fre-
quency is obtained from the external Brown corpus. The second approach uses ten
queries, each of which is formed by one of the ten longest named entities extracted
from the whole document using the Python Natural Language Toolkit NLTK. The third
approach uses 15 queries, each of which is formed by one of the top-15 noun phrases
extracted via Barker and Cornacchia’s head noun phrase extractor [1]. Haggag and El-
Beltagy [13] use KPMiner [2] to extract one keyphrase per topically related passage
and combine this phrase with the rarest word (frequency on document level) of each
4-sentence chunk within the passage until the query contains ten keywords. Kong et al.
[18] apply two different strategies. First, they use the top-20 words scored by tf · idf
values from the whole document; a word’s document frequency is obtained from the
external Wall Street Journal corpus. Second, they use a Pat Tree [10] to extract one
2-gram, one 3-gram, two 4-grams, and forty 5-grams with highest tf · idf scores that
contain at least one of the top-10 tf · idf terms. Lee et al. [19] use the most unique
8-gram from each paragraph (uniqueness determined via the Google Books n-grams)
that starts with a word that is not contained in any keyphrase obtained for a previous
paragraph. Nourian [21] use the first ten keywords of a chunk as one phrase (stopping



or keyword extraction method not specified any further). Suchomel et al. [42] apply
three different strategies. First, they use the top-5 words scored by tf · idf values from
the whole document; a word’s document frequency is obtained from an external web
crawl. These top-5 keywords are then also combined with their most frequent two or
three term collocations. Second they use a “representative” sentence of at least 6 words
length from passages in the document that an intrinsic plagiarism detector identified
as differing according to writing style; however, what makes a sentence representative
is not explained. Third, for a paragraph they extract the longest sentence. Veselý et al.
[43] use all the longest non-overlapping n-grams (n ≥ 5, n is odd) that return less than
300 but more than 0 results. To determine these keyphrases they basically employ the
open end query formulation [36] with a query-level version of the User-over-Ranking
hypothesis [39, 11]. Williams et al. [44] use a very similar and simplistic keyphrase ex-
traction strategy: the first three disjunct sequential 10-grams of each “reduced” chunk
(only nouns, adjectives and verbs) form the keyphrases. Note that this is very similar to
the winning approach from 2012, where Jayapal [15] used the first such 10-gram per
chunk only (also allowing pronouns).

Altogether, the participants’ approaches to keyphrase extraction can basically be
divided into four different categories. (1) Rather simplistic strategies that identify
keyphrases by chunking the whole document into some longer n-grams. This probably
conforms with the folklore human strategy of identifying some suspicious n-gram in a
suspicious document and submitting this n-gram to a search engine. Using all longer
n-grams probably also “hits” parts of the n-grams a human would have chosen. Thus,
it is interesting to analyze the final performance of approaches that use this kind of
keyphrases (cf. Section 2.5). (2) Another very common strategy is to use the tf · idf -
wise highest scoring words or phrases. (3) Notably, this year, for the first time, two
participants also use keyphrase extraction schemes obtained from the research com-
munity around this topic. (4) Some participants do not rely on one strategy alone but
combine different approaches for keyphrase extraction. This way, just as with chunk-
ing, the risk of algorithm error is further diminished and it becomes possible to exploit
potentially different sources of information that complement each other.

Query Formulation Given sets of keywords extracted from chunks, queries are for-
mulated which are tailored to the API of the search engine used. Rationale for this is
to adhere to restrictions imposed by the search engine and to exploit search features
that go beyond basic keyword search (e.g., Indri’s phrasal search). The maximum num-
ber of search terms enforced by ChatNoir is 10 keywords per query while Indri allows
for longer queries. Interestingly, most of the participants hardly combine keyphrases
into one query apart from merging, for instance, the top-5 tf · idf terms, then the next
five etc. This way, most participants explicitly try to formulate non-overlapping queries
(i.e., they do not use the same keyword in more than one query) except for some of
the participants that basically use all the longer n-grams in the suspicious document.
This non-overlap is in line with many query-by-document strategies but in contrast to
previous source retrieval strategies that were shown to better identify highly related
documents than non-overlapping queries [12]. Also note that none of the participants
made use of advanced search operators offered by Indri or ChatNoir, such as the facet



to search for web pages of at least 300 words of text, and the facet to filter search results
by readability.

Search Control Given a set of queries, the search controller schedules their submis-
sion to the search engine and directs the download of search results. Rationale for this
is to dynamically adjust the search based on the results of each query, which may in-
clude dropping queries, reformulating existing ones, or formulating new ones based on
the relevance feedback obtained from search results. Some teams did not implement a
search controller and simply submit all formulated queries. The ones who implemented
search contral applied the following ideas.

Haggag and El-Beltagy [13] drop a query when more than 60% of its terms are
contained in a previous downloaded document. Lee et al. [19] stop submitting queries
when most of the suspicious document is found as plagiarized or the number of queries
exceeds the number of paragraphs in the suspicious document. However, it remains
unclear what “most of a document” means and why paragraphs are a good upper bound
on the query budget. In practice, not all documents are well-formatted. A document
without paragraph breaks would then allow for a single query only. Suchomel et al.
[42] schedule queries dependent on the keyphrase extractor which extracted the words:
the order of precedence corresponds to the order in which they have been explained
above. Whenever later queries were formulated for portions of the suspicious document
that were already mapped to a source, these queries are not submitted and discarded
from the list of open queries.

Note that none of the teams did try to reformulate existing queries or formulating
new ones based on the available number of search results, the search snippets, or the
downloaded documents, which leaves significant room for improvement.

Download Filtering Given a set of downloaded documents, a download filter removes
all documents that are probably not worthwhile being compared in detail with the sus-
picious document. Rationale for this is to further reduce the set of candidates and to
save invocations of the subsequent detailed comparison step.

In particular, Elizalde [3] focuses on the top-10 results of a query and downloads a
result document when at least 90% of the words in a 160-character snippet are contained
in the suspicious document. Haggag and El-Beltagy [13] only consider the top-ranked
result and download it when at least 50% of the query terms are contained in a 500 char-
acter snippet. It remains unclear whether checking not single words but phrases from
the snippets could be beneficial. Kong et al. [18] download a document when the cosine
similarity of the snippet (presumably 500 characters long) and the suspicious document
exceeds some threshold (not specified in the paper). Taking into account that Chat-
Noir’s snippets are centered around the passage of a search result that contains most
of the query’s terms, the cosine similarity should typically be rather high for all search
results (the query terms in the snippet are also contained in the suspicious document).
Lee et al. [19] download the top-k results of a query (k is not specified) and documents
that appear frequently in the results (frequency threshold not specified). Suchomel et al.
[42] download documents when more than 20% of the word 2-grams in the 500 char-
acter snippet also appear in the suspicious document. Veselý et al. [43] first compute



Table 1. Source retrieval results with respect to retrieval performance and cost-effectiveness.

Team Downloaded Total Workload to No Runtime
(alphabetical Sources Workload 1st Detection Detection
order) F1 Precision Recall Queries Downloads Queries Downloads
Elizalde 0.17 0.12 0.44 44.50 107.22 16.85 15.28 5 241.7 m
Gillam 0.04 0.02 0.10 16.10 33.02 18.80 21.70 38 15.1 m
Haggag 0.44 0.63 0.38 32.04 5.93 8.92 1.47 9 152.7 m
Kong 0.01 0.01 0.65 48.50 5691.47 2.46 285.66 3 4098.0 m
Lee 0.35 0.50 0.33 44.04 11.16 7.74 1.72 15 310.5 m
Nourian 0.10 0.15 0.10 4.91 13.54 2.16 5.61 27 25.3 m
Suchomel 0.06 0.04 0.23 12.38 261.95 2.44 74.79 10 1637.9 m
Veselý 0.15 0.11 0.35 161.21 81.03 184.00 5.07 16 655.3 m
Williams 0.47 0.55 0.50 116.40 14.05 17.59 2.45 5 1163.0 m

queries without submitting them and submit all queries computed when 20% of the
words in the suspicious document are contained in the queries without computing any
new query afterwards. The retrieval scores of ChatNoir are used to compute the sum
of these scores for a document over all queries and in the end the 15 documents with
highest sum are downloaded (however, this is not consistent with the overall workload
we measured, which is around 31 downloads per suspicious document). Williams et al.
[44] download the top-3 documents whose snippets share at least five word 5-grams
with the suspicious document.

2.5 Evaluation Results

Table 1 shows the performances of the nine plagiarism detectors that implemented
source retrieval. Since there is currently no formula to organize retrieval performance
and cost-effectiveness into an absolute order, the detectors are ordered alphabetically,
whereas the best performance value for each metric is highlighted. As can be seen,
there is no single detector that performs best on all accounts. Rather, different detec-
tors have different characteristics. The detector of Williams et al. [44] achieves the best
trade-off between precision and recall and therefore the best F1 value. This detector is
followed closely by that of Haggag and El-Beltagy [13], which achieves best precision
but mediocre recall, whereas the detector of Kong et al. [18] achieves best recall at
the cost of poor precision. It is not easy to decide which of these detectors solves the
task best, since each of them may have their justification in practice. For example, the
detector of Haggag and El-Beltagy downloads only about six documents on average
per suspicious document and minimizes the time to first detection. Despite the excel-
lent trade-off of Williams et al.’s detector, it incurs the second-highest costs in terms of
queries on average, which is more than thrice as much as the other mentioned detectors.
Kong et al.’s detector has highest download costs, but one may argue that downloads are
much cheaper than queries, and that in this task recall is more important than precision.

Interestingly, the ensemble of all submitted approaches would achieve an average
recall of 0.82 retrieving all sources for 23 topics. Only for eight topics the recall is



below 0.65 (which is the best individual average recall). For just three topics none of
the detectors detects a source (one of which actually has none).

3 Text Alignment

In text alignment, given a pair of documents, the task is to identify all contiguous pas-
sages of reused text between them. The challenge with this task is to identify passages
of text that have been obfuscated, sometimes to the extent that, apart from stop words,
little lexical similarity remains between an original passage and its plagiarized counter-
part. Consequently, for evaluators, the challenge is to provide a representative corpus of
documents that emulate this situation. To study this task, we employ a corpus construc-
tion methodology similar to that which has been used in previous evaluations of this
task, while fixing some of its deficiencies. We evaluate the performance of plagiarism
detectors based on the traditionally employed measures. Finally, we exploit the bene-
fits of software submissions for the first time and evaluate the detectors that have been
submitted last year on this year’s evaluation corpus and vice versa.

3.1 Evaluation Corpus

The evaluation corpus for text alignment is also based on the aforementioned Webis-
TRC-13. But instead of employing the documents of that corpus directly, pairs of docu-
ments that comprise reused passages have been constructed automatically, as was done
in previous years [28]. One frequent point of criticism about automatically generating
plagiarism is that it is difficult to ensure that documents between which text is plagia-
rized are about the same topic, so that plagiarism could be simply detected by analyzing
topic drift [32]. Using the documents that have been retrieved manually as sources for
the documents of the Webis-TRC-13 as a basis for constructing plagiarism cases, how-
ever, allows us to mitigate this problem.

Corpus Construction The corpus is constructed within eight steps:

1. Documents. The documents used for our corpus are web documents obtained from
the ClueWeb 2009 corpus. We have compiled a set of documents on 145 topics
which have been manually searched, browsed, and found relevant to a given topic.
For each topic, we collected a setDtopic that contains between 1 and 270 documents
for a total of 10 630 documents. The documents have been judged by the writers
who wrote documents on these topics for the aforementioned Webis-TRC-2012.

2. Pre-Processing. The HTML documents were converted to plain text, extracting
their main content using the BoilerPipe library. Passages of text with eight words
or less were discarded as well as documents with less than 100 words. In total,
6500 documents remained after pre-processing, divided into 144 remaining topics
with at least two and up to 170 documents.

3. Withheld Documents. For each topic, one document is withheld in order not to be
used for plagiarism.



4. Source Set Formation. Each of the suspicious documents that are generated in a
later step has a set of source documents Dsrc. In this step, these sets are formed by
randomly choosing a topic from which to draw documents, a targeted size |Dsrc|
between 5 and 75 documents, and documents from Dtopic until the targeted size is
reached or no further documents are available: in each iteration, a document is cho-
sen at random from Dtopic and added to Dsrc, unless a duplicate of the chosen doc-
ument is already present in Dsrc. In this connection, we consider two documents
duplicates if their n-gram cosine similarity is above 0.6 for n = 1, above 0.25
for n = 3, and above 0 for n = 8. These thresholds were experimentally deter-
mined with respect to the documents used.7 A total of 520 source sets were created
this way.

5. Withheld Source Sets. In addition to the above source sets, for each topic one source
set was created similarly but ensuring that no sentence of a source document has
a duplicate sentence in the withheld document of that topic chosen in Step 3. Two
sentences are considered duplicates if their 1-gram cosine similarity is above 0.9.

6. Passage Extraction. Assuming a log-normal distribution of document lengths, we
estimate its parameters based on the documents withheld in Step 3. For a given
source setDsrc created in Step 4, we extract a set of passages from its documents, so
that each passage is at least 50 words long, and every source document contributes
at least one passage. Given these constraints, we sample the number of passages to
be extracted per source document from a Poisson distribution with λ = 3, favoring
lesser but larger passages. Further, passages are drawn so they are no duplicates
of previously drawn passages (1-gram cosine similarity above 0.9), so they are not
adjacent to previously drawn passages, and so that at least one passage is drawn per
document. The resulting 520 passage sets contained between 5 and 134 passages.

7. Obfuscation. Every passage from the passage sets extracted in Step 6 is obfuscated
in order to emulate plagiarist behavior based on the following four strategies: no
obfuscation, random obfuscation, and, for the first time, cyclic translation obfusca-
tion and summary obfuscation. With the exception of summary obfuscation which
was constructed independently of the rest of the corpus, the strategies are applied
uniformly distributed ensuring that only one strategy is applied in a suspicious doc-
ument. Details about these strategies can be found below.

8. Suspicious Document Generation. In this step, a suspicious document dplg is gener-
ated by randomly concatenating an (obfuscated) passage set. Special care is taken
with regard to their formatting so that paragraph breaks are no easy predictor of
boundaries of reused passages.

Finally, the resulting suspicious documents are paired with their respective source docu-
ments, and the withheld documents are paired with the withheld source sets from Step 5
to form examples of document pairs that do not contain plagiarism. The corpus contains
in total 3653 suspicious documents and 4774 source documents, which are grouped into

7 Note that the duplicate detector differs from that applied in source retrieval. In source re-
trieval, we adjusted the duplicate detector to maximize precision and therefore false positive
detections, whereas in text alignment, we maximize recall for the same reason (i.e., to make
sure that no unintended duplication is found between pairs of documents that may lead text
alignment algorithms astray).



10000 pairs, so that there are 6000 pairs containing plagiarism (i.e., 2000 for each of
the mentioned obfuscation strategies), 2000 containing unobfuscated plagiarism, and
2000 without plagiarism. Half of this corpus has been released as training corpus, and
the other half was used as test corpus.

Random Obfuscation Random obfuscation is a naïve approach to obfuscation in that
the resulting passages are not human-readable and bear no semantics. The purpose of
this type of obfuscation is to test whether text alignment algorithms are capable of
identifying reused passages from a bag-of-words model point of view. The obfuscation
strategy itself is a sequence of random text operations such as shuffling, adding, delet-
ing, and replacing words or short phrases at random. Replacing words is done based on
a synonym database such as WordNet, and phrases are shuffled while maintaining the
original part-of-speech sequence. Moreover, some sentences may be shuffled randomly.
The longer the sequence of random operations, the more an obfuscated passage differs
from its original, and presumably the more difficult it is to identify them automatically.
This kind of obfuscation has been used in all previous evaluation corpora that have been
employed to evaluate this task.

Cyclic Translation Obfuscation A new kind of obfuscation strategy we introduce this
year is cyclic translation obfuscation. Here, a plagiarized passage of text is run through
a sequence of translations, so that the output of one translation forms the input of the
next one while the last language of the sequence is the same as the passage’s original
language. Rationale of this strategy is to exploit the fact that translating a text inherently
involves paraphrasing it, so that translating a text back and forth between languages is
a way ob obtaining alternative versions of a text without changing its semantics.

We employ the APIs of three different translation web services for this task, namely
Google Translate,8 Microsoft Translator,9 and MyMemory.10 In every cyclic translation
sequence, all three services are employed, since preliminary experiments revealed that
employing only one of the services yield little to no difference of the obfuscated text to
its unobfuscated counterpart. An explanation for this may be found in the fact that the
language models used for translation appear to deterministically favor one alternative
translation over others, even across many languages, while different translation services
are based on independently trained models which introduce more variation in a cyclic
translation sequence.

A cyclic translation sequence is constructed randomly. The intermediate languages
of a sequence—start and end are always English—are drawn at random from two sets
of languages, namely the Indo-European languages French, German, Italian, Spanish,
and Swedish, and a mixture of different language families such as Arabic, Chinese,
Hebrew, Hindi, and Japanese. First, one of the two sets is chosen and then up to three
intermediate languages are employed as intermediate languages.

Summary Obfuscation Another new kind of obfuscation strategy we introduce this
year is summary obfuscation. Its rationale is that including an unattributed summary

8 http://translate.google.com
9 http://www.microsoft.com/translator

10 http://mymemory.translated.net



of another’s document in one’s own text can be considered a case of plagiarism since
the main ideas of the document are maintained in condensed form. Presuming that the
summary is not based on a simple concatenation of some sentences from the original
document, the lexical and syntactic similarities between summary and original docu-
ment may be very restricted. Actually, summary obfuscation can be viewed as a form
of plagiarism of ideas rather than the simple case of reusing exact phrases or sentences.

To build a corpus of plagiarism cases based on this idea, we used existing resources
from the research field of automatic text summarization. In more detail, the set of orig-
inal documents was taken from the Document Understanding Conference (DUC) 2001
corpus for text summarization.11 These are newswire stories and newspaper articles
originally published in Wall Street Journal, Associated Press, San Jose Mercury News,
Financial times, LA Times, and FBIS. For each such document there are two sum-
maries of approximately 100 words created by human assessors. To produce plagiarism
cases, these summaries were planted into documents of the DUC 2006 text summa-
rization corpus.12 This corpus also comprises newswire stories and newspaper articles
originally published in Associated Press, New York Times, and Xinhua News Agency.
Hence, for each original document, we produced two plagiarism cases based on sum-
mary obfuscation. In addition, for each original document, eight more documents from
DUC 2006 corpus were used as suspicious documents.

Given the genre of the DUC 2001 and DUC 2006 corpora, the similarity between an
original document and its summary may be easily identified by using named-entity oc-
currences. That is, both the original document and its summary will talk about the same
persons, locations, organizations, etc. To weaken this kind of similarity, we introduced
some noise in the DUC 2006 documents by replacing some of their named-entities with
the named-entities of the original document or the named-entities of the summaries.
In particular, we randomly selected some parts of the suspicious documents of similar
length to the summaries (e.g., 100 words) and transformed them to noisy areas by re-
placing their named-entities with those of the original text. That way, a suspicious doc-
ument appears similar to the original since it refers to the same proper names, locations,
organizations, etc. The popular Stanford Named Entity Recognizer13 was used to detect
time, location, organization, person, money, percent, and date entities in original and
suspicious documents. In total, there are 237 original documents and 2607 suspicious
ones in this part of our corpus. 474 of the suspicious documents contain plagiarized
summaries, and 1896 are noisy documents.

3.2 Performance Measures

To assess the performance of the submitted detailed comparison approaches, we em-
ploy the performance measures used in previous evaluations. For this paper to be self-
contained, we summarize the definition found in [28]: let S denote the set of plagia-
rism cases in the corpus, and let R denote the set of detections reported by a plagia-
rism detector for the suspicious documents. To simplify notation, a plagiarism case

11 http://www-nlpir.nist.gov/projects/duc/data/2001_data.html
12 http://www-nlpir.nist.gov/projects/duc/data/2006_data.html
13 http://nlp.stanford.edu/software/CRF-NER.shtml



s = 〈splg, dplg, ssrc, dsrc〉, s ∈ S, is represented as a set s of references to the char-
acters of dplg and dsrc, specifying the passages splg and ssrc. Likewise, a plagiarism
detection r ∈ R is represented as r. Based on this notation, precision and recall of R
under S can be measured as follows:

prec(S,R) =
1

|R|
∑
r∈R

|
⋃

s∈S
(s u r)|
|r|

, rec(S,R) =
1

|S|
∑
s∈S

|
⋃

r∈R
(s u r)|
|s|

,

where s u r =

{
s ∩ r if r detects s,
∅ otherwise.

Observe that neither precision nor recall account for the fact that plagiarism detectors
sometimes report overlapping or multiple detections for a single plagiarism case. This
is undesirable, and to address this deficit also a detector’s granularity is quantified as
follows:

gran(S,R) =
1

|SR|
∑
s∈SR

|Rs|,

where SR ⊆ S are cases detected by detections in R, and Rs ⊆ R are detections of s;
i.e., SR = {s | s ∈ S∧∃r ∈ R : r detects s} andRs = {r | r ∈ R∧r detects s}. Note
further that the above three measures alone do not allow for a unique ranking among
detection approaches. Therefore, the measures are combined into a single overall score
as follows:

plagdet(S,R) =
F1

log2(1 + gran(S,R))
,

where F1 is the equally weighted harmonic mean of precision and recall.

3.3 Survey of Text Alignment Approaches

Nine of the 18 submitted detectors implement text alignment, and for six of them also a
notebook describing their approach has been submitted. An analysis of these notebooks
reveals a number of building blocks that are commonly used to build text alignment
algorithms: (1) seeding, (2) extension, and (3) filtering. Text alignment is closely related
to gene sequence alignment in bioinformatics, of which the terminology is borrowed:
all of this year’s approaches to text alignment implement the so-called seed and extend-
paradigm which is frequently applied in gene sequence alignment. In what follows, we
describe them in detail.

Seeding Given a suspicious document and a source document, matches (so-called
„seeds”) between the two documents are identified using some seed heuristic. Seed
heuristics either identify exact matches or create matches by changing the underlying
texts in a domain-specific or linguistically motivated way. Rationale for this is to pin-
point substrings that altogether make up for the perceived similarity between suspicious
and source document. By coming up with as many reasonable seeds as possible, the
subsequent step of extending them into aligned passages of text becomes a lot easier.

A number of seed heuristics have been applied by this year’s participants: Rodríguez
Torrejón and Martín Ramos [34] use sorted word 3-grams and two kinds of sorted word



1-skip-3-grams. Kong et al. [18] use sentence pairs as seeds which exceed a given sim-
ilarity threshold. Suchomel et al. [42] use sorted word 4-grams and unsorted stop word
8-grams (the latter having been introduced in [38]). Shrestha and Solorio [37] also use
stop word 8-grams in addition to named entity 5-grams (i.e., word 5-grams that contain
at least one named entity) as well as all other word 5-grams. The latter, however, are
processed separately from the former, since otherwise they would subsume the named
entitiy n-grams. Also, at the expense of runtime, they introduce inexact n-gram match-
ing (i.e., the n-grams need not overlap entirely but their Jaccard similarity must be above
a given threshold). Palkovskii and Belov [24] use sorted word 5-grams. Before comput-
ing seeds, some participants choose to collapse whitespace, reduce cases, remove stop
words, and stem the remaining words, if applicable to their respective seed heuristics.

Extension Given seed matches identified between a suspicious document and a source
document, they are extended into aligned text passages between the two documents of
maximal length, which are then reported as plagiarism detections. Rationale for merg-
ing seed matches is to determine whether a document contains plagiarized passages at
all rather than just seeds matching by chance, and to identify a plagiarized passage as a
whole rather than only its fragments.

Most of the participants’ extension heuristics are rule-based, merging seeds into
aligned passages if they are adjacent in both suspicious and source document and the
size of the gap between them is below some threshold. The exact rule depends on the
seeds used, and instead of using just one rule, many participants develop sets of con-
straints that have to be fulfilled by aligned passages in order to be reported as plagiarism
detections. Since the rules are usually highly involved with their respective setup, we
exemplify only one rule set here in order to give an idea of what they may look like:
Suchomel et al. [42] employ a 2-step merge heuristic, where in the first step, adjacent
seed matches that are no more than 4000 chars apart are merged. The resulting pas-
sages from the first step are then merged again, considering pairs of adjacent passages
in turn, and checking if the gap between them contains at least four seeds so that there is
at least one seed per 10 000 chars of gap length between them. To be merged, adjacent
passages further have to fulfill the constraints that their gap is smaller than 30 000 chars,
that their combined size is bigger than twice the gap size, and that the ratio of seeds per
chars of the adjacent passages does not drop by a factor of more than three in the po-
tentially merged passage. The only participants who go beyond rule-based merging are
Palkovskii and Belov [24], who employ clustering for unsupervised merging.

Filtering Given a set of aligned passages, a passage filter removes all aligned passages
that do not meet certain criteria. Rationale for this is mainly to deal with overlapping
passages and to discard extremely short passages.

Kong et al. [17] discard passages whose word overlap under a modified Jaccard co-
efficient is below a threshold. Suchomel et al. [41] discard overlapping passages that are
shorter than 300 chars, and keep only the passages longer than 300 chars. Palkovskii
and Belov [23] discard passages shorter than 190 chars. Gillam et al. [8] discard pas-
sages shorter than 50 words that have less than 0.75 cosine similarity under a vector
space model. Other participants do not apply passage filtering.



Table 2. Text alignment results with retrieval performance and runtime.

Team PlagDet Recall Precision Granularity Runtime
R. Torrejón 0.82220 0.76190 0.89484 1.00141 1.2 m
Kong 0.81896 0.81344 0.82859 1.00336 6.1 m
Suchomel 0.74482 0.76593 0.72514 1.00028 28.0 m
Saremi 0.69913 0.77123 0.86509 1.24450 446.0 m
Shrestha 0.69551 0.73814 0.87461 1.22084 684.5 m
Palkovskii 0.61523 0.53561 0.81699 1.07295 6.5 m
Nourian 0.57716 0.43381 0.94707 1.04343 40.1 m
Baseline 0.42191 0.34223 0.92939 1.27473 30.5 m
Gillam 0.40059 0.25890 0.88487 1.00000 21.3 m
Jayapal 0.27081 0.38187 0.87901 2.90698 4.8 m

Remarks Since six of this year’s participants took part in previous years as well, many
of them simply reuse their earlier solutions. While there is no problem with doing so,
innovative ideas become less frequent compared to parameter tuning and small adjust-
ments to an algorithm. However, this year’s best performing approach submitted by
Rodríguez Torrejón and Martín Ramos [34], has been evaluated for the fourth time in a
row, showing that persistent development may eventually yield good results. A number
of new ideas could be observed:

– Palkovskii and Belov [24] continue their development of obfuscation-specific de-
tection approaches by targeting summary obfuscation in particular.

– Suchomel et al. [42], Rodríguez Torrejón and Martín Ramos [34], and Shrestha and
Solorio [37] employ more than one seed heuristic at the same time. In particular, the
seed heuristic of Stamatatos [38] based on stop word n-grams is used more often.

– Shrestha and Solorio [37] employ inexact seed matching (i.e., in order for a pair
of seeds to be linked across documents, they need not be exactly equal but only
approximately equal according to some similarity measure). This approach may
lead to more relaxed seeding heuristics, but also introduces runtime overhead.

3.4 Evaluation Results

In this section, we report on the evaluation of this year’s submissions on the aforemen-
tioned evaluation corpus. Moreover, we conduct the first cross-year evaluation of all
softwares submitted last year and this year on the evaluation corpora of both years. We
further differentiate performance with regard to obfuscation strategies to provide in-
sights into how the softwares deal with different strengths of obfuscation. In addition to
that, we reveal how the changes made to softwares that have been submitted in different
versions in both years affect performance, and whether or not they improved. We also
shed light on the question of corpus difficulty and find that last year’s evaluation corpus
was more difficult than this year’s corpus.

Overall Results of 2013 Table 2 shows the overall performances of the nine plagiarism
detectors that implement text alignment and were submitted this year. The overall best
performing approach is that of Rodríguez Torrejón and Martín Ramos [34], closely



followed by that of Kong et al. [18]. The former detector has unbalanced precision
and recall, while the latter does, but with worse granularity. The three new approaches
submitted this year from Saremi and Yaghmaee [35], Shrestha and Solorio [37] and
Nourian [21] achieve mid-range performances. Two detectors’ performances do not
exceed the baseline. In terms of precision and granularity, almost all detectors perform
well, whereas recall sets them apart. In terms of runtime, all detectors are in the range of
minutes, one requiring only 1.2 minutes, while two others lag far behind because they
employ resource-intensive named entity recognition algorithms.

Cross-Year Evaluation of 2012 and 2013 Tables 3 to 6 show the performances of all
18 plagiarism detectors submitted last year and this year that implement text alignment
on both years’ respective evaluation corpora. The overall performance of the detectors
with regard to the plagdet score can be found in Table 3. As can be seen, the best per-
forming detectors across both years are those of Oberreuter et al. [22] and Kong et al.
[17], both of which have been first evaluated in 2012. This year’s best performing de-
tectors from Rodríguez Torrejón and Martín Ramos [34] comes close to them, however,
only when evaluated on the 2013 evaluation corpus. On the 2012 corpus it is far off,
which suggest this detector may be overfitted to the 2013 corpus.

Regarding different obfuscation strategies, it appears the detectors’ performances on
the 2012 corpus correlate mostly with their overall performance, but on the 2013 cor-
pus this is not the case. Especially for summary obfuscation, the two best performing
detectors are from Suchomel et al. [41, 42] which otherwise achieve mid-range per-
formance only. The detector of Oberreuter et al. [22] fails on summarized plagiarism,
while that of Kong et al. [17] achieves third-best performance on this kind of obfusca-
tion. It is unfortunate that the detector of Palkovskii and Belov [24], which implements
a detection approach that targets summary obfuscation, does not compete with the oth-
ers. Regarding unobfuscated plagiarism (column “None” in the tables), it is interesting
to observe that many detectors detect this kind of plagiarism with scores above 0.9 on
the 2012 corpus but less so in the 2013 corpus where the scores are mostly below that
number. It is unclear why this is the case, since unobfuscated plagiarism is not changed
when inserted into a suspicious document with the exception of text formatting.

Table 4 shows the detectors’ performances with regard to precision. In general,
achieving a high precision appears to be less of a problem compared to achieving a
high recall. This is underpinned by the fact that our basic baseline approach outper-
forms almost all detectors in precision. However, the detectors that perform best in
precision typically have deficiencies in terms of recall, but not the other way around:
the aforementioned overall best performing detectors achieve mid-range precision. The
only obfuscation strategy that poses a comparably higher challenge in terms of precision
is random high obfuscation, which has been adjusted to emulate extreme obfuscation.
Table 5 shows the detectors’ performances with regard to recall. The best performing
detectors are the two versions submitted by Kong et al. [17, 18]. They dominate all
others in terms of recall, but not each other; the 2013 version performs best on the
2012 corpus and vice versa. By contrast, this year’s best performing detector by Ro-
dríguez Torrejón and Martín Ramos [34] achieves only mid-range recall. The best per-
forming approaches with regard to precision from Gillam et al. [8, 7] performs poor with
regard to recall, suggesting that the implemented approach is too conservative for this



Table 3. Cross-year evaluation of text alignment software submissions for 2012 and 2013 with
respect to plagdet. The darker a cell, the better the performance compared to the entire column.

Software Submission Obfuscation Strategies of the 2012 Evaluation Corpus Entire Corpus
Team Year None Random low Random high Translation Man. paraphrase

Oberreuter 2012 0.92552 0.84416 0.40671 0.78128 0.71728 0.74575

Kong 2012 0.89899 0.82258 0.39652 0.77121 0.75884 0.73846

Kong 2013 0.87815 0.81645 0.39764 0.77576 0.73973 0.72576

Suchomel 2013 0.88169 0.81143 0.33546 0.71113 0.64713 0.68542

R. Torrejón 2012 0.93248 0.71393 0.12761 0.69631 0.67367 0.67078

R. Torrejón 2013 0.94516 0.71251 0.14697 0.73955 0.68047 0.66816

Suchomel 2012 0.93875 0.80181 0.15376 0.63538 0.61104 0.66532

Palkovskii 2012 0.82442 0.76691 0.31273 0.73679 0.62232 0.64630

Nourian 2013 0.86535 0.51824 0.06977 0.55013 0.49950 0.53270

Kueppers 2012 0.80950 0.26609 0.02645 0.48362 0.29958 0.40494

Palkovskii 2013 0.54280 0.33422 0.10561 0.46256 0.42080 0.38150

Gillam 2012 0.92933 0.04741 0.00917 0.00050 0.12409 0.31109

Gillam 2013 0.92736 0.04735 0.00917 0.00050 0.12253 0.31034

Sánchez-Vega 2012 0.60305 0.25388 0.04202 0.39758 0.26400 0.30857

Baseline 0.87712 0.06382 0.00023 0.04440 0.06137 0.20210

Jayapal 2013 0.11483 0.06265 0.01075 0.07336 0.02950 0.05753

Jayapal 2012 0.10272 0.05059 0.01349 0.05211 0.04394 0.05085

Software Submission Obfuscation Strategies of the 2013 Evaluation Corpus Entire Corpus
Team Year None Random Cyclic translation Summary

Kong 2012 0.87249 0.83242 0.85212 0.43635 0.83679

Oberreuter 2012 0.94170 0.74955 0.84618 0.13208 0.82678

R. Torrejón 2013 0.92586 0.74711 0.85113 0.34131 0.82220

Kong 2013 0.82740 0.82281 0.85181 0.43399 0.81896

Palkovskii 2012 0.88161 0.79692 0.74032 0.27507 0.79155

R. Torrejón 2012 0.88222 0.70151 0.80112 0.44184 0.78767

Suchomel 2013 0.81761 0.75276 0.67544 0.61011 0.74482

Suchomel 2012 0.89848 0.65213 0.63088 0.50087 0.73224

Saremi 2013 0.84963 0.65668 0.70903 0.11116 0.69913

Shrestha 2013 0.89369 0.66714 0.62719 0.11860 0.69551

Kueppers 2012 0.81977 0.51602 0.56932 0.13848 0.62772

Palkovskii 2013 0.82431 0.49959 0.60694 0.09943 0.61523

Nourian 2013 0.90136 0.35076 0.43864 0.11535 0.57716

Sánchez-Vega 2012 0.52179 0.45598 0.44323 0.28807 0.45923

Baseline 0.93404 0.07123 0.10630 0.04462 0.42191

Gillam 2012 0.87655 0.04723 0.01225 0.00218 0.41373

Gillam 2013 0.85884 0.04191 0.01224 0.00218 0.40059

Jayapal 2013 0.38780 0.18148 0.18181 0.05940 0.27081

Jayapal 2012 0.34758 0.12049 0.10504 0.04541 0.20169



Table 4. Cross-year evaluation of text alignment software submissions for 2012 and 2013 with
respect to precision. The darker a cell, the better the performance compared to the entire column.

Software Submission Obfuscation Strategies of the 2012 Evaluation Corpus Entire Corpus
Team Year None Random low Random high Translation Man. paraphrase

Gillam 2012 0.92606 0.91764 0.73913 0.99999 0.91521 0.89843

Gillam 2013 0.92156 0.91764 0.77273 0.99999 0.91525 0.89041

Suchomel 2012 0.88525 0.94855 0.79336 0.84107 0.91570 0.87214

Baseline 0.79534 0.88055 0.04444 0.85048 0.99794 0.86793

Oberreuter 2012 0.86141 0.95761 0.87900 0.83994 0.90922 0.86458

R. Torrejón 2013 0.91286 0.96042 0.54365 0.84533 0.97519 0.84503

R. Torrejón 2012 0.89876 0.89604 0.76443 0.83487 0.81161 0.82722

Kong 2012 0.83488 0.92876 0.75043 0.82079 0.90062 0.82389

Nourian 2013 0.79599 0.89959 0.46519 0.89704 0.94958 0.81174

Kong 2013 0.80075 0.91286 0.71982 0.81206 0.86175 0.79273

Kueppers 2012 0.81703 0.93022 0.27662 0.84225 0.96319 0.78973

Suchomel 2013 0.79102 0.82890 0.71409 0.78851 0.76546 0.74912

Palkovskii 2012 0.71048 0.86228 0.68476 0.83246 0.72824 0.69522

Jayapal 2012 0.98878 0.53703 0.24240 0.74551 0.48731 0.67591

Palkovskii 2013 0.38351 0.88968 0.70396 0.82905 0.64334 0.58447

Jayapal 2013 0.78382 0.44834 0.17098 0.72738 0.26708 0.56798

Sánchez-Vega 2012 0.59216 0.57682 0.18661 0.83989 0.84231 0.53753

Software Submission Obfuscation Strategies of the 2013 Evaluation Corpus Entire Corpus
Team Year None Random Cyclic translation Summary

Nourian 2013 0.92921 0.96274 0.95856 0.99972 0.94707

Jayapal 2012 0.98542 0.95984 0.89590 0.83259 0.94507

Baseline 0.88741 0.98101 0.97825 0.91147 0.92939

R. Torrejón 2013 0.90060 0.90996 0.89514 0.90750 0.89484

Oberreuter 2012 0.89037 0.87921 0.90328 0.98983 0.89443

Gillam 2012 0.88128 0.95572 0.97273 0.99591 0.88532

Gillam 2013 0.88088 0.95968 0.97273 0.99591 0.88487

Jayapal 2013 0.91989 0.92314 0.85653 0.68832 0.87901

Shrestha 2013 0.80933 0.92335 0.88008 0.90455 0.87461

Kueppers 2012 0.83258 0.89889 0.89985 0.86239 0.86923

Saremi 2013 0.82676 0.91810 0.84819 0.94600 0.86509

Kong 2012 0.80786 0.89367 0.85423 0.96399 0.85297

Suchomel 2012 0.81678 0.87581 0.85151 0.87478 0.84437

Kong 2013 0.76077 0.86224 0.85744 0.96384 0.82859

R. Torrejón 2012 0.81313 0.83881 0.81159 0.92666 0.82540

Palkovskii 2012 0.79219 0.84844 0.83218 0.94736 0.82371

Palkovskii 2013 0.79971 0.93137 0.82207 0.67604 0.81699

Suchomel 2013 0.69323 0.82973 0.68494 0.67088 0.72514

Sánchez-Vega 2012 0.40340 0.49524 0.37300 0.45184 0.39857



Table 5. Cross-year evaluation of text alignment software submissions for 2012 and 2013 with
respect to recall. The darker a cell, the better the performance compared to the entire column.

Software Submission Obfuscation Strategies of the 2012 Evaluation Corpus Entire Corpus
Team Year None Random low Random high Translation Man. paraphrase

Kong 2013 0.97212 0.77942 0.28378 0.74257 0.65001 0.67971

Kong 2012 0.97376 0.77716 0.27710 0.72727 0.65768 0.67877

Oberreuter 2012 0.99994 0.78029 0.26646 0.73028 0.59226 0.66072

Suchomel 2013 0.99582 0.79682 0.21922 0.64758 0.56048 0.63205

Palkovskii 2012 0.99897 0.75036 0.20687 0.66084 0.54329 0.61864

R. Torrejón 2013 0.97983 0.61697 0.08888 0.65729 0.52734 0.56609

R. Torrejón 2012 0.96883 0.59335 0.06961 0.59719 0.57758 0.56468

Suchomel 2012 0.99912 0.69438 0.08513 0.51053 0.45850 0.53778

Palkovskii 2013 0.96086 0.51128 0.08881 0.49045 0.44202 0.49151

Nourian 2013 0.95057 0.47997 0.04437 0.39671 0.36408 0.43694

Sánchez-Vega 2012 0.84717 0.28239 0.03033 0.43377 0.24522 0.34798

Kueppers 2012 0.93472 0.19246 0.01389 0.43943 0.24407 0.34535

Baseline 0.99888 0.04571 0.00011 0.03894 0.08176 0.21593

Gillam 2012 0.93503 0.02785 0.00709 0.00025 0.06656 0.19210

Gillam 2013 0.93562 0.02782 0.00709 0.00025 0.06566 0.19190

Jayapal 2013 0.55421 0.10837 0.00998 0.10898 0.05298 0.15126

Jayapal 2012 0.25459 0.06208 0.01148 0.05322 0.04942 0.08162

Software Submission Obfuscation Strategies of the 2013 Evaluation Corpus Entire Corpus
Team Year None Random Cyclic translation Summary

Kong 2012 0.94836 0.77903 0.85003 0.29892 0.82449

Kong 2013 0.90682 0.78682 0.84626 0.30017 0.81344

Saremi 2013 0.95416 0.68877 0.80473 0.10209 0.77123

Oberreuter 2012 0.99932 0.65322 0.79587 0.07076 0.76864

Suchomel 2013 0.99637 0.68886 0.66621 0.56296 0.76593

R. Torrejón 2013 0.95256 0.63370 0.81124 0.21593 0.76190

Palkovskii 2012 0.99379 0.75130 0.66672 0.16089 0.76181

R. Torrejón 2012 0.96414 0.60283 0.79092 0.29007 0.75324

Shrestha 2013 0.99902 0.71461 0.63618 0.09897 0.73814

Suchomel 2012 0.99835 0.51946 0.50106 0.35305 0.64667

Sánchez-Vega 2012 0.74452 0.43502 0.58133 0.22161 0.56225

Palkovskii 2013 0.85048 0.36420 0.49667 0.08082 0.53561

Kueppers 2012 0.83854 0.36865 0.42427 0.09265 0.51074

Nourian 2013 0.87626 0.23609 0.28568 0.07622 0.43381

Jayapal 2013 0.86040 0.18182 0.19411 0.07236 0.38187

Baseline 0.99960 0.04181 0.08804 0.03649 0.34223

Gillam 2012 0.87187 0.02422 0.00616 0.00109 0.26994

Gillam 2013 0.83788 0.02142 0.00616 0.00109 0.25890

Jayapal 2012 0.51885 0.11148 0.09195 0.04574 0.22287



Table 6. Cross-year evaluation of text alignment software submissions for 2012 and 2013 with
respect to granularity. The darker a cell, the better the performance compared to the entire column.

Software Submission Obfuscation Strategies of the 2012 Evaluation Corpus Entire Corpus
Team Year None Random low Random high Translation Man. paraphrase

Suchomel 2012 1.00000 1.00000 1.00000 1.00000 1.00000 1.00000

Suchomel 2013 1.00000 1.00190 1.00000 1.00000 1.00000 1.00040

R. Torrejón 2012 1.00000 1.00000 1.00000 1.00000 1.00249 1.00084

Oberreuter 2012 1.00000 1.02602 1.00763 1.00000 1.00000 1.00610

Kong 2012 1.00000 1.04024 1.02899 1.00000 1.00251 1.01105

Kong 2013 1.00000 1.04192 1.03318 1.00000 1.00248 1.01172

Palkovskii 2012 1.01005 1.06526 1.02232 1.00000 1.00000 1.01809

R. Torrejón 2013 1.00000 1.07692 1.05556 1.00000 1.00828 1.02050

Gillam 2013 1.00177 1.20455 1.88889 1.00000 1.00000 1.02429

Gillam 2012 1.00178 1.20455 1.88889 1.00000 1.00000 1.02436

Nourian 2013 1.00175 1.30997 1.23636 1.00000 1.07590 1.09426

Kueppers 2012 1.10980 1.29514 1.00000 1.28818 1.46228 1.27635

Sánchez-Vega 2012 1.22826 1.81558 1.36471 1.71117 1.71099 1.58308

Palkovskii 2013 1.01386 2.84501 1.81579 1.51816 1.37062 1.63842

Baseline 1.01340 1.57021 1.00000 2.19824 4.51313 2.27432

Jayapal 2012 14.36813 3.59490 2.08333 2.74925 3.11826 6.28323

Jayapal 2013 49.36929 5.89810 2.37129 4.99491 6.98626 16.78476

Software Submission Obfuscation Strategies of the 2013 Evaluation Corpus Entire Corpus
Team Year None Random Cyclic translation Summary

Gillam 2012 1.00000 1.00000 1.00000 1.00000 1.00000

Gillam 2013 1.00000 1.00000 1.00000 1.00000 1.00000

Oberreuter 2012 1.00000 1.00000 1.00000 1.00000 1.00000

Palkovskii 2012 1.00000 1.00000 1.00000 1.00000 1.00000

R. Torrejón 2012 1.00000 1.00000 1.00000 1.00000 1.00000

Suchomel 2013 1.00000 1.00000 1.00000 1.00476 1.00028

Suchomel 2012 1.00000 1.00000 1.00000 1.00610 1.00032

R. Torrejón 2013 1.00000 1.00000 1.00000 1.03086 1.00141

Kong 2012 1.00000 1.00000 1.00000 1.06452 1.00282

Kong 2013 1.00000 1.00000 1.00000 1.07742 1.00336

Sánchez-Vega 2012 1.00394 1.02200 1.03533 1.04523 1.02196

Kueppers 2012 1.02687 1.01847 1.01794 1.31061 1.03497

Nourian 2013 1.00092 1.11558 1.00485 1.34234 1.04343

Palkovskii 2013 1.00000 1.06785 1.02825 1.73596 1.07295

Shrestha 2013 1.00083 1.30962 1.26184 1.83696 1.22084

Saremi 2013 1.06007 1.29511 1.24204 2.15556 1.24450

Baseline 1.00912 1.18239 1.86726 1.97436 1.27473

Jayapal 2012 2.87916 2.15530 2.00578 2.75743 2.45403

Jayapal 2013 3.90017 2.19096 2.34218 3.60987 2.90698



task; the authors reveal their primary concerns up to now has been near-duplicate texts
instead of paraphrases. In general, a visible correlation of recall performance on the en-
tire 2012 corpus with the performances for each obfuscation strategy can be observed,
and to a lesser extent on the 2013 corpus. Table 6 shows the detectors’ performances
with regard to granularity. Many detectors achieve perfect granularity on almost all ob-
fuscation strategies, which may indicate that the problem of fragmented detections of a
contiguous plagiarism case is under control, however, especially obfuscated plagiarism
naturally poses a higher challenge with regard to this performance measure, which can
be seen looking at random obfuscation as well as summary obfuscation. The only ap-
proaches that apparently do not do anything about granularity appear to be the ones of
Jayapal [15, 16]. In general, however, these numbers must be taken with a grain of salt,
since participants often resort to post-retrieval filtering in order to optimize granularity
only for the sake of achieving a good ranking instead, while some admit that they would
not do this in practice.

Comparing Detector Versions between 2012 and 2013 Since six of nine teams sub-
mitted versions of their detectors in both 2012 and 2013, this allows for an analysis of
performance changes across versions of the same detector, and whether the adjustments
made pay off in terms of improved performance. Such analyses are a novelty for evalu-
ation labs such as ours and they yield insights into task design. Figure 3 shows the per-
formance differences of each of the six detector pairs when subtracting their respective
2012 performance values from their 2013 ones for each of our four performance mea-
sures and both years’ evaluation corpora. Regarding plagdet, half of the participants
achieve a performance improvement and the other half decreased the performance of
their detectors. The highest performance gain of about 0.08 plagdet performance was
achieved by Jayapal and Goswami [16], but only on the 2013 corpus, while Palkovskii
and Belov [24] suffer a significant performance loss of at least 0.2 plagdet on both cor-
pora. Clearly, the modifications made on the latter detector should be carefully reviewed
or even reverted.

Precision and recall are related measures in that one can typically be traded for the
other. Regarding them, it can be seen that all but one detector decrease in precision
performance, but only Jayapal and Goswami [16] and Suchomel et al. [42] materialize
a return in terms of increased recall. The modifications made by Gillam [7] and Kong
et al. [18] result in a slight decrease of recall, and those of Palkovskii and Belov [24] in a
big loss of recall. The detector of Rodríguez Torrejón and Martín Ramos [34] improves
a lot in terms of precision but only slightly in terms of recall. Finally, all but one detector
suffer losses in terms of granularity. Most of these losses are rather small, except for
that of Jayapal and Goswami [16] which amounts to more than 10 granularity loss.

Comparing Corpus Versions between 2012 and 2013 Software submissions not only
allow for more sustainable evaluations and assessing software versions in terms of per-
formance changes, but also for measuring the difficulty of different evaluation corpora.
By evaluating every detector on the evaluation corpora of both 2012 and 2013, a distri-
bution of comparable performance values is obtained that sheds light on how difficult it
is to identify cases of plagiarism in the two corpora relative to each other. Figure 4 shows
the performances of all detectors on both corpora for each of our four performance mea-
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Figure 3. Performance differences of detectors of which two versions have been submitted, one
last year and one this year. The differences reveal the performance changes which result from
further development on these detectors both on the 2012 evaluation corpus and the 2013 corpus.

sures, ordered from high to low performance. In terms of plagdet, the 2013 evaluation
corpus is consistently easier than the 2012 corpus. While the recall curve difference is
comparable to that of the plagdet curves, the precision curves are closer to each other,
which indicates that precision difficulty is similar across both corpora. In terms of gran-
ularity, more than half of the detectors achieve almost equal performance. The remain-
der perform better on the 2013 corpus because their granularity values are smaller. As
a result, our revised corpus construction process outlined above yields plagiarism cases
that are more easily detected in general.

Besides these differences, the obfuscation-specific performances shown in Tables 3
to 6 show that the random obfuscation strategy employed in 2013 compares to that
of random low obfuscation of 2012; despite other intentions, we did not accomplish
to hit the middle ground between random low and random high obfuscation, which
contributes to the 2013 corpus being less difficult. The cyclic translation obfuscation
appears to be on a level of difficulty similar to that of random (low) obfuscation, since
most detectors achieve similar performances on them. The most difficult portions of
the 2012 corpus is random high obfuscation, and that of the 2013 corpus is summary
obfuscation, which can be seen particularly when considering recall performance.
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Figure 4. Performance value distribution on both the 2013 evaluation corpus and the 2012 corpus.
The differences in performance across the resulting curves indicate corpus difficulty relative to
each other. The bigger—smaller, in case of granularity—the area under a curve, the easier the
corresponding corpus.

4 Conclusion and Outlook

With this fifth international competition on plagiarism detection at PAN 2013 we in-
troduced a number of improvements to the evaluation methodology for plagiarism de-
tectors. (1) By calling for software submissions instead of run submissions, we further
automated the organization of evaluation labs in general. Similarly, we improved both
the reproducibility and the comparability of the evaluation results. (2) We extended the
evaluation setup for plagiarism source retrieval, which now is a task built on top of two
search engines that index the ClueWeb corpus, a search proxy API, and a source oracle
service, all of which are running on a cluster computer at our site. Moreover, by in-
troducing performance measures that are robust against near-duplicate retrieval results
we improved the task at a conceptual level. (3) For the plagiarism text alignment task
we presented a new evaluation corpus that is based on manually written essays so as to
further increase its realism. (4) We introduced two new forms of plagiarism obfuscation
strategies, which implement new paradigms of emulating a real plagiarist’s behavior



when modifying a copied passage. The two strategies are: cyclic translations, which
provide for more realistic automatic paraphrasing compared to previously employed
methods, and summaries, which have been obtained from a third-party data source.

This year, we collected a total of 18 plagiarism detectors from 14 teams, half of
which implement source retrieval and the other half text alignment. For the task of text
alignment, this is the second year in which we ask for software submissions instead
of run submissions, which gives us the opportunity to conduct a cross-year evaluation
of all detectors submitted in both years on all evaluation corpora available. Our cross-
year evaluation reveals that this year’s best performing detector cannot keep up with
the best performing detectors of last year. Moreover, considering the six detectors that
have been submitted in both years, we analyzed whether their retrieval performance has
been improved. In fact, for three of the detectors this is not the case; i.e., the adjust-
ments should be carefully reviewed or even reverted. Finally, we used the submitted
softwares to compare the difficulty of our corpora, and we found out that this year’s
evaluation corpus is significantly easier than the last year’s corpus in terms of detecting
the contained plagiarism cases.

Altogether, we see a lot of room for further improvement with respect to both the
methodology of plagiarism detection evaluation and the organization paradigm of soft-
ware submissions.
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