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Abstract. In this working note, we describe details of our method in
ImageCLEF2014 Scalable Concept Image Annotation task. We are given
images from the Web and some additional information, including web
pages, in which images exist. Using this information, we must construct
an annotation system that has high performance and scalability. To as-
sign labels to each image, we use the page title and attributes of an im-
age tag extracted from the web page. As visual features, we propose the
use of the combination of two complementary features, which are Fisher
Vector and deep convolutional neural network based feature. They are
generative and discriminative feature respectively. We then train linear
classifiers using Passive–Aggressive with Averaged Pairwise Loss. Af-
ter training, we calculate the score of each concept for test data and
label some concepts having the best scores. Results show that the com-
bination of two features contributes to the improvement of recognition
performance.

Keywords: ImageCLEF, deep convolutional neural network, Fisher vec-
tor, Image annotation

1 Introduction

For the ImageCLEF2014 Scalable Concept Image Annotation task [1][2], our
task is to construct an image annotation system that yields high-performance
with scalability.

As visual features, we use a convolutional neural network (CNN) based fea-
ture as well as the Fisher Vector (FV) [3]. For scalability, our method of assigning
labels to training images is simple. We use only the page title and attributes of
the image tag extracted from the web page. To train linear classifiers, we use
Passive–Aggressive with Averaged Pairwise Loss (PAAPL) [4] because of its
scalability and robustness to noise of label assignment.

In our experiment, we combine two types of features, which are FV and CNN-
based features. Actually, FV is often used in image recognition tasks because of
its recognition performance. However, many results of recent studies show that
deep CNN achieves high performance on many tasks. Therefore, we expect that
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the feature, which is the neuron activation pattern in the hidden layers of the
network, has high-representational ability.

These two features are extracted in completely different ways. We obtain FV
by coding local descriptors considering their probabilistic distribution. Therefore
FV can be regarded as the feature expressing generative information of an image.
In contrast to FV because deep CNN based feature is extracted from the network
trained for recognition task, we can regard it as a discriminative feature.

Assuming that these two types of features, which represent different kinds
of information, mutually compensate for representational ability, we propose
their combined use. Our contribution is the usage of a combination of features
that have complementary properties to improve the performance of annotation
systems.

The remainder of this working note is structured as follows. Section 2 presents
a description of two types of visual features: FV and deep CNN based features.
In Section 3, we explain details of how we obtain labels from training data.
Then, in section 4, we introduce a multi-label linear classifier training method:
PAAPL. In section 5, we present the results of experiments, using either or both
of these visual features. Finally, in section 6, we discuss the analysis of the results
obtained in our experiment.

2 Visual Feature

2.1 Fisher Vector

As a visual feature, we use Fisher Vector (FV) because FV can achieve better
recognition performance than Bag of Visual Words with a linear classifier. In
general, the linear classifier is less costly than a nonlinear one such as kernel-
SVM when the amount of the training sample increases. Therefore, FV is suitable
for this task, which requires scalability.

In our experiments, we extract four local descriptors: SIFT, GIST, LBP,
and C-SIFT. The dimensions of all these local descriptors are reduced to 64
dimensions using Principal Component Analysis (PCA). These local descriptors
are densely extracted from five scales of patches (squares 16, 25, 36, 49, 64 pixels
on a side) sliding with a step of six pixels. Using some of the obtained local
descriptors, we train a Gaussian Mixture Model (GMM) with 256 components,
which have diagonal matrices as covariance matrices. After training GMM, we
extract FV from each image by calculating the gradient of log-likelihood of local
descriptors with respect to parameters of GMM. Then we normalize it using
the Fisher information matrix. Power normalization and L2 normalization are
applied to the extracted FVs. To include spatial information, we divide images
into 1×1, 2×2, and 3×1 cells, extract features from each region and concatenate
them into one vector. The final dimension of FV is 262,144 (64× 256× 2× 8).

As described above, FV is obtained by coding local descriptors considering
their probabilistic distribution. Therefore FV can be regarded as a feature ex-
pressing generative information of the image.
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2.2 Deep CNN based feature

In addition to FV, we use a deep convolutional neural network (CNN) based fea-
ture extracted from a deep CNN model that had been pre-trained with ImageNet
dataset.

In recent years, many studies that specifically examine deep CNN have shown
that such models can perform better than conventional feature representation in
object recognition and other tasks. On ImageNet Large Scale Visual Recognition
Challenge, one system [5] dramatically outperformed all other methods including
a state-of-the-art method using FV.

However, training deep architecture of CNN requires large-scale data to pre-
vent overfitting and to ensure generalization ability. Trained models will have
low recognition performance if the training data are few.

For this task, because we must label training data automatically, the number
of reliably labeled data we can obtain using our method is roughly 100,000 on
the development set and about 200,000 on the test set. This fact implies that the
approximate number we can use in training models is only 1,000 per concept,
on average. Therefore, because of limitations in the amount of data in the given
dataset, it is difficult to train deep CNN models to produce high recognition
performance.

According to [6], features extracted from the activation of a CNN pre-trained
in supervised fashion can be re-purposed to generic tasks. In his experiment, he
shows that such feature representation has such high generality that it out-
performs conventional methods in several tasks despite their simple training
algorithm.

In consideration of the discussion presented above, we use feature representa-
tions extracted from a deep CNN model pre-trained with the ImageNet dataset.
Following the method of [6], we extract features from sixth and seventh layers
of the network having architecture that is the same as that proposed by [5],
which won ILSVRC2012 and which includes five convolutional and three fully
connected layers. In some layers, the Hinge function is used as the activation
function. It is designated as ReLU.

Contrary to FV, because deep CNN-based features are extracted from the
network, which is trained for recognition task, we can regard it as a feature that
expresses discriminative information of an image.

In our experiment, we use DeCAF, an open source library produced by [6], to
extract deep feature representation. We use features of four types. The feature
vector dimensions are 4,096.

3 Label Assignment

Because no explicit labels are assigned to training images, we must label them
using additional information or external sources. In this section, we describe how
to assign labels to images. The pipeline of label assignment is shown in Fig.1.
We label images in the following two steps.
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Fig. 1. Pipeline of label assignment.

In the first step, we parse the xml files of the web page, in which an image
exists. Then we extract page titles and attributes of the image tag, which include
src, title, and alt. The hope is that these attributes include important information
about what the image represents. Then we split them into a set of single words
T . For example, if there is an image tag in an xml file shown in Fig.2, then we
obtain

T = {Queen,Prince, corgi, family, abroad}.
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Fig. 2. Attributes of image tag.

In the second step, we collect a set of synonyms and hyponyms for each
concept C using WordNet [7]. We denote the collected sets by WC , which is
expressed as

WC = {C, synonym(C),hyponym(C)}
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where synonyms (C) and hyponyms (C) respectively represent sets of synonyms
and hyponyms of the concept C. For example, given a target concept “dog”, we
obtain

Wdog = {dog,puppy, corgi, ...}.

We assign the concept C as the label to the image if at least one word in WC

appears in T .

4 Training Classifier

In this section, we introduce the multi-label linear classifier training method
Passive–Aggressive with Averaged Pairwise Loss (PAAPL) [4]. Because PAAPL
is based on Passive–Aggressive (PA) [8] method, which is known to be robust
to outliers, PAAPL also has robustness to outliers. In addition, PAAPL has
scalability because the trained classifier is linear. Such properties of PAAPL are
suitable for our task, in which it is necessary to construct a scalable system that
handles data including some outliers.

First, we describe the model update rule of PA. Given the t-th training
sample, we designate the visual feature by xt. We define Yt as the set of labels
assigned to the t-th sample, and Ȳt as the set of labels not assigned. The model
(weight) of the linear classifier corresponding to concept label C before updating
by the t-th sample is denoted by wC

t .

1. Fetch the t-th training sample. Then compute scores for each label using
current models. Because classifiers we are training are linear, scores are given
by simple calculation of the inner product of weight and feature.

2. Based on scores, find a combination of labels rt ∈ Yt and st ∈ Ȳt in the
following way.

rt = arg min
r∈Yt

wr
t · xt

st = arg max
s∈Ȳt

ws
t · xt

3. For a combination of rt and st, compute the hinge-loss l

l(wrt
t ,wst

t ; (xt, Yt)) =

{
0 if wrt

t · xt −wst
t · xt > 1

1− (wrt
t · xt −wst

t · xt) otherwise

4. Update models using hinge-loss according to the following rule.

wrt
t+1 = wrt

t +
l

2|xt|2 + 1
D

xt

wst
t+1 = wst

t −
l

2|xt|2 + 1
D

xt

Therein, D is a Passive–Aggressive parameter that reduces the negative in-
fluence of noisy labels.
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Then we describe the method of training classifiers with PAAPL.

1. Pick the t-th training sample, compute scores for target labels using current
models.

2. For a randomly selected combination of labels rt ∈ Yt and st ∈ Ȳt, hinge-
loss is calculated as PA and remove rt and st from Yt and Ȳt. Continue this
process until |Yt| = 0 or |Ȳt| = 0.

3. For combinations satisfying the condition that the hinge-loss is not 0, update
the models according to the update rule of PA.

In PAAPL, convergence of models is faster than in PA because PAAPL up-
dates multiple pairs of models for one sample, whereas PA updates only one pair
of models.

5 Results

At the training phase, we first extract visual features and assign labels. Then,
linear classifiers are trained. At the test phase, we calculate scores for test im-
ages using the linear classifiers we trained. The concepts are labeled on those
images. When training classifiers, the number of iterations is set to 5 and Pas-
sive Aggressive parameter D is set to 1.0 × 105. After the training process, we
average scores from different models trained using different visual features. Also,
we decide concepts by selecting those with scores in the top 4% of all given con-
cepts to each test sample. In our experiments, we compare two types of visual
features. The settings, except for the combinations of visual features, are fixed
throughout all of our experiments.

First, for each type of feature, we respectively search for the best combi-
nation. For FV, we use four local descriptors, SIFT, C-SIFT, GIST, and LBP.
Because the respective properties of these four features differ, we try all possible
combinations of them. As for deep CNN-based features, we extract them from
sixth and seventh layers. From each layer, we obtain features of two types, such
as activations and outputs of each unit. Therefore we also obtain four types of
visual features. In contrast to the case of FV, we need not try all possible combi-
nations because combinations of features from the same layer do not make sense
theoretically: they are expected to have similar properties. As shown in Tables
Table 1 and Table 2, in both cases, the results of combining all features achieves
higher performance than the others. These results respectively correspond to our
Run 1 and Run 2.

Finally, we combine these two types of visual features. Using the information
presented above, we combine all four FVs and four deep CNN based features.
The final results are presented in a Table in Table 3, which correspond to all
Runs we submitted. We achieved better performance using both features than
by using either one.

As a result, we achieved the second score among all participants with our
best run.
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Table 1. Results of score combi-
nations (FV).

C-SIFT GIST LBP SIFT MF-samples

X - - - 0.286
- X - - 0.292
- - X - 0.284
- - - X 0.294
X X - - 0.329
X - X - 0.325
X - - X 0.330
- X X - 0.328
- X - X 0.332
- - X X 0.324
X X X - 0.347
X X - X 0.350
X - X X 0.348
- X X X 0.344
X X X X 0.356

Table 2. Results of score combi-
nations (deep CNN).

sixth (ReLU) sixth seventh (ReLU) seventh MF-samples

X - - - 0.325
- X - - 0.348
- - X - 0.346
- - - X 0.360
X - X - 0.358
- X - X 0.371
X - - X 0.356
- X X - 0.366
X X X X 0.373

Table 3. Score combinations of two types of visual feature. Each row corresponds to
results we submitted on this task.

Run 4 FVs 4 CNNs MF-samples (devel) MF-samples (test)

1 X - 0.356 0.240

2 - X 0.373 0.265

3 X X 0.394 0.275

6 Conclusion

In this working note, we described our annotation method for the ImageCLEF
2014 Scalable Concept Image Annotation task. As visual features, we used FV
and deep CNN based feature. Assuming that these two types of features mutu-
ally express different kinds of information complementarily, we tried combining
them. In our experiment, we showed how the combination of features contributes
to the improvement of recognition performance. Results show that the combina-
tion of generative features and discriminative features proved effective in image
recognition tasks.

References

1. Barbara Caputo, Henning Müller, Jesus Martinez-Gomez, Mauricio Villegas, Burak
Acar, Novi Patricia, Neda Marvasti, Suzan Üsküdarlı, Roberto Paredes, Miguel
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