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Abstract. In this paper, we describe our participation in the Image-
CLEF 2014 Scalable Concept Image Annotation task. In this partici-
pation, we propose a novel approach of automatic image annotation by
using ontology at several steps of supervised learning. In this regard,
we construct tree-like ontology for each annotating concept of images
using WordNet and Wikipedia as primary source of knowledge. The con-
structed ontologies are used throughout the proposed framework includ-
ing several phases of training and testing of one-vs-all SVMs classifier.
Experimental results clearly demonstrate the effectiveness of the pro-
posed framework.
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1 Introduction

Due to the explosive growth of digital technologies, collections of images are
increasing tremendously in every moment. The ever growing size of the image
collections has evolved the necessity of image retrieval (IR) systems; however,
the task of IR from a large volume of images is formidable since binary stream
data is often hard to decode, and we have very limited semantic contextual
information about the image content.

To enable the user for searching images using semantic meaning, automati-
cally annotating images with some concepts or keywords using machine learning
is a popular technique. During last two decades, there are a large number of
researches being lunched using state-of-the-art machine learning techniques [1–
4] (e.g. SVMs, Logistic Regression). In such efforts, most often each image is
assumed to have only one class label. However, this is not necessarily true for
real world applications, as an image might be associated with multiple semantic
tags. Therefore, it is a practical and important problem to accurately assign
multiple labels to one image. To alleviate above problem i.e. to annotate each
image with multiple labels, a number of research have been carried out; among
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them adopting probabilistic tools such as the Bayesian methods is popular [5–7].
More review can be found in [8, 9]. However, accuracy of such approach depends
on expensive human labeled training data.

Fortunately, some initiatives have been taken to reduce the reliability on man-
ually labeled image data [10–13] by using cheaply gathered web data. Although
the ”semantic gaps” between low-level visual features and high-level semantics
still remain and accuracy is not improved remarkably.

In order to reduce the dependencies of human-labeled image data, Image-
CLEF [14] has been organizing the photo annotation and retrieval task for the
last several years, where training data is a large collection of Web images without
ground truth labels. Despite the proposed methods in this task shown encour-
aging performance on a large scale dataset, unfortunately none of them utilizes
the sematic relations among annotating concepts. In this paper, we describe the
participation of KDEVIR at ImageCLEF 2014 Scalable Concept Image Annota-
tion Task [15], where, we proposed a novel approach, ontology based supervised
learning that exploits both low-level visual features and high-level semantic in-
formation of images during training and testing. The evaluation results reveal
the effectiveness of proposed framework.

The rest of the paper is organized as follows: Section 2 describes the pro-
posed framework. Section 3 describes our submitted runs to this task as well
as comparison results with other participants’ runs. Finally, Concluded remarks
and some future directions of our work are described in Section 4.
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Fig. 1: Proposed Framework
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2 Proposed Framework

In this section, we describe our method for annotating images with a list of se-
mantic concepts. We divide our method into four steps: 1) Constructing Ontol-
ogy, 2) Pre-processing of Training Data, 3) Training Classifier, and 4) Generating
Annotations. An overview of our proposed framework is depicted in Fig. 1.

2.1 Constructing Ontology

Ontologies are the structural frameworks for organizing information about the
world or some part of it. In computer science and information science, ontology
is defined as an explicit, formal specification of a shared conceptualization [16,
17] and it formally represents knowledge as a set of concepts within a domain,
and the relationships between those concepts. To utilize these relationships in
image annotation, we construct ontology for each concept of a predefined list of
concept used to annotate images.

In real world, an image might contain multiple objects (aka concepts) in a sin-
gle frame, where concepts are inter-related and maintain a natural way of being
co-appearance. We use these hypotheses to construct ontologies for concepts.
In this regard, we utilize WordNet [18] and Wikipedia as primary sources of
knowledge. However, WordNet and Wikipedia themselves have some limitations
which cause obstacles to construct ontology using its. For example, WordNet
considers very small number of conceptual relations and very few cross-POS
(Parts of Speech) pointers among words; on the other hand, Wikipedia contains
wide range of semantic information, however, is not structured as WordNet and
prone to contain noises, as of being free to edit for all expert and non-expert
contributor. As, both of the sources have some limitations, during knowledge
extraction we choose those parts of both sources which are less prone to noise
and semantically more confident. Thus, take the advantage of both structured
representation of WordNet and wide diversity of semantic relations of Wikipedia.

Let C be a set of concepts. We will construct a tree-like [19] ontology for each
concept cc ∈ C. In order to build ontologies, first of all, we select some types of
relations including: 1) taxonomical Rt, 2) bionomical Rb, 3) food habitual Rfh,
and 4) weak hierarchical, Rwh. The first and fourth types of relations define
relations among any types of concepts, where second and third types define
relations among concepts which are biological living things. The relations are
extracted empirically according to our observations on WordNet and hundreds
of Wikipedia articles. According to the semantic confidence, the order of relation
types is: Rt > Rb > Rfh > Rwh. For each type of relations, we extract a set of
relations as listed below:

- Rt = {inHypernymPathOf, superClassOf }
- Rb ={habitat, inhabit, liveIn, foundOn, foundIn, locateAt, nativeTo}
- Rfh ={liveOn, feedOn}
- Rwh ={kindOf, typeOf, representationOf, methodOf, appearedAt, appearedIn,
ableToProduce}
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Finally, we apply some “if-then” type inference rules to add an edge from a
parent-concept to a child-concept by leveraging the above relations as illus-
trated in Fig. 2. In addition, for some concepts, especially adjectives (e.g. in-
door, outdoor), which have neither much lexical information in WordNet, nor
any Wikipedia articles, we manually determine the relations to other concepts.

!"!

!#!

$% & '%!

Parent-concept 

Child-concept 

Fig. 2: Connecting concepts cc and cd ∈ C according to relation, r∗ ∈ R∗

2.2 Pre-processing of Training Data

For a given list of concepts, we select the most weighted images for each concept
from the noisy training images by exploiting their metadata (details about meta-
data are given in [15]) and pre-constructed concept ontologies. In this regards,
first of all, we detect the nouns and adjectives from metadata using WordNet
followed by singularizing with Pling Stemmer1. Secondly, detected terms from
metadata: Web text (scofeat), keywords, and URLs are weighted by BM25 [20],
mean reciprocal rank (MRR), and a constant weight,ϑ ∈ (0, 1) respectively,
which is followed by detecting concepts from the weighted sources on appear-
ance basis. Thus, we have three lists of possible weighted concepts from three
different sources of metadata for each image.

We take the inverted index of image-wise weighted concepts, thus generate
the concept-wise weighted images. To aggregate the images for a concept from
three sources, we normalize the weight of images, and linearly combine the nor-
malized BM25 (nBM25) weight, normalized MRR (nMRR), and constant weight
ϑ to generate the final weight of images. From the resultant aggregated list of
images, top-m images are primarily selected for each concept.

Finally, in order to increase the recall, we merge the primarily selected train-
ing images of each concept with its predecessor concepts of highest semantic
confident (i.e. predecessors connected by rt ∈ Rt) by leveraging our concept
ontologies. Thus, we enhance training images per-concept as well as number of
annotated concepts per-image.

2.3 Training Classifier

This subsection is partially inspired by the winner of ImageCLEF 2013 [21].

1 http://www.mpi-inf.mpg.de/yago-naga/javatools/index.html
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Image annotation is a multi-class multi-label classification problem; current
state-of-the-art classifiers are not able to solve this problem in their usual for-
mat. Towards this problem, we propose a novel technique of using ontologies
during different phases of learning a classifier. In this regard, we choose Support
Vector Machines (SVMs) as a classifier for its robustness of generalization. We
subdivide the whole problem into several sub-problems according to the num-
ber of concepts, i.e. train SVMs for each concept separately, since using a large
dataset at a time is not rational in terms of memory and time.

highway 

road 

(a) 

unpaved 

soil 

nighttime 

Fig. 3: This figure illustrates examples of images (taken from Flickr) and their
social tag links. Areas surrounded by dashed line represents five different com-
munities, “highway”, “road”, “unpaved”, “soil”, and “nighttime”. Here, black
solid-lines represent contextual connections, where, red dashed-lines represent
semantic connections emerged from ontological information. Even though image
(a) is in “highway” community, it should also belong to “nighttime” community
as its one of the tag is “moon”, which is semantically related to nighttime. At the
same way, all the images of “unpaved” should also belong to “road” and “soil”
as unpaved is a characteristic of a kind of road and unpaved-road contains soil.
Likewise, “highway” community also belongs to “road” community, as highway
is a kind of road.
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Another problem is that, along with the different parameters, the classifica-
tion accuracy of SVMs depends on the positive and negative examples which
are used to train the classifier. It is obvious that if classifiers are trained with
wrong examples, the prediction will be wrong. However, selecting appropriate
training example is formidable without any semantic clues. For example, if we
train a classifier about “soil” without taking into account semantic inter-links
with other concepts, one might choose only the “soil” community of Fig. 3
as positive examples, and the remaining are as negative examples. However, it
might result in wrongly trained model, since semantically “unpaved” contains
soil, which should not be in negative example. To handle this issue, we use our
pre-constructed concept ontologies. We randomly select with replacement n-folds
positive image examples for each concept from its image list and negative exam-
ples from image lists of other concepts which are not its successor of strong or
weak semantic confident in its ontology.

From the n-folds positive and negative examples, we train n probabilistic
one-vs-all SVM models for each concept, where n ∈ [1, 10]. We use LIBSVM [22]
to learn the SVM models. As kernel, two hybrid kernels are plugged in, instead
of using the default choice linear kernel or Gaussian kernel, since image clas-
sification is a nonlinear problem and distribution of image data is unknown.
We choose histogram intersection kernel (HIK) [23] as primary kernel which is
further used to generate two other hybrid kernels. The HIK is defined as:

kHI(h
(a), h(b)) =

l∑

q=1

min(h(a)
q , h(b)

q ) (1)

where h(a) and h(b) are two normalized histograms of l bins; in context of image
data, two feature vectors of l dimensions.

One of the hybrid kernels is convex combination of HIKs (CCHIK) generated
from low level visual features of image defined as:

K(0) =
1

|F |

|F |∑

s=1

KHI(fs) (2)

where KHI(fs) is a HIK matrix, computed from feature vector type fs ∈ F ; F is
a set of visual feature types (details about used visual features are given in [15]);
and |F | is the number of elements in F . In this task |F | = 7.

Another hybrid kernel is context dependent kernel (CDK) [21, 24], defined
as:

K(t+1) = K(0) + γPK(t)P
′

(3)

where K(0) is the CCHIK kernel, P is the left stochastic adjacency matrix be-
tween images with each entry proportional to the number of shared labels, and
γ ≥ 0. Unlike the original CDK, here, we consider semantic links emerged from
ontological information along with contextual links (as shown in Fig. 3). These
kernels are plugged into the SVMs for training and testing.
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2.4 Generating Annotations

The trained models generated in the previous subsection are used to predict
annotations. Given a test image with its visual features (which are similar types
of training images’ visual features) and URLs as metadata, the system finds out
the concepts from URLs on appearance basis as did before for URLs of training
images. The visual features and detected concepts are used to calculate kernel
values mentioned in previous subsection, which are in turn used for predicting
annotations. For the given test image, if a model of particular concept responds
positively, the image is considered as voted by current model i.e. the correspond-
ing concept is primarily selected for annotation. At the same time, the tracks of
predicted probability and vote are kept. This process is repeated for all learned
models of all concepts. The concept-wise predicted probabilities and votes are
accumulated for n-models. In second level selection, empirical thresholds for ac-
cumulated probabilities and votes are used to select more relevant annotations.
In third level, we take top-k weighted concepts, and finally, the test image is
annotated with the selected concepts along with their predecessor concepts in
concept ontologies.

3 KDEVIR Runs and Comparative Results

We submitted total ten runs, which are differ from each other in terms of: use
of ontology or not, if used, then in terms of used relation types of different
semantic confident during final stage of generating annotation; used kernel (e.g.
CCHIK, CDK); number of primarily selected training images, m; and number
of trained models for each concept, n. The configurations of all runs are given
in Table 1, where, runs are arranged according to their original name to ease
the flow of description. All the parameters used in our proposed framework
were set empirically to obtain optimal F-measure based on sample (MF-samples)
of corresponding run on development set. Details about all the performance
measures are given in [15].

In Fig. 4, and 5, comparisons of our runs (denoted KDEVIR-*) and other par-
ticipants’ runs are illustrated. It reveals the most effectiveness of our proposed
approach over other participants’ runs. Among the our submitted runs, in Run 1
and 7, we did not exploit semantic information from ontology to compare the ef-
fectiveness of our proposed ontology-based approach over ontology-free ordinary
one-vs-all SVMs setting with CCHIK and CDK respectively. The comparison
results depict that proposed approach tremendously outperform the ordinary
one-vs-all SVMs setting.

4 Conclusion

In this paper, we described the participation of KDEVIR at ImageCLEF 2014
Scalable Concept Image Annotation task, where, we proposed a novel approach
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Fig. 4: These figures illustrate a comparison (as released by the ImageCLEF 2014
organizers in http://www.imageclef.org/2014/annotation/results) of our runs
(denoted KDEVIR-*) and other participants’ runs on the test set. Acronyms
stand for RUC: Renmin U. of China, DISA-MU: Masaryk U. in Czech Re-
public, MIL: Tokyo U., MindLab: National U. of Colombia, MLIA: Kyushu
U. in Japan, IPL: Athens U. of Economics and Business, IMC-FU: Fudan U.
in China, NII: National Institute of Informatics in Japan, FINKI: Ss.Cyril and
Methodius U. in Macedonia, INAOE: National Institute of Astrophysics, Optics
and Electronics in Mexico. (a) mean F-measures for samples (MF-samples), (b)
mean F-measures for concepts (MF-concepts), and (c) mean average precision
for samples (MAP-samples)
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Fig. 5: These figures illustrate a comparison (as released by the ImageCLEF
2014 organizers in http://www.imageclef.org/2014/annotation/results) of our
runs (denoted KDEVIR-*) and other participants’ runs on three different sub-
sets of the test set in terms of mean F-measures for samples (MF-samples).
Acronyms stand for RUC: Renmin U. of China, DISA-MU: Masaryk U. in
Czech Republic, MIL: Tokyo U., MindLab: National U. of Colombia, MLIA:
Kyushu U. in Japan, IPL: Athens U. of Economics and Business, IMC-FU:
Fudan U. in China, NII: National Institute of Informatics in Japan, FINKI:
Ss.Cyril and Methodius U. in Macedonia, INAOE: National Institute of As-
trophysics, Optics and Electronics in Mexico. (a) for the subset of test set seen
during development, (b) for the subset of test set unseen during development,
and (c) for the subset of test set, which contains both seen and unseen samples
during development
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Table 1: Configurations of submitted runs. The run pairs Run {1, 2} and Run
{7, 8} were conducted to show the effectiveness of using ontology (proposed
method) for CCHIK and CDK respectively; while, the run pairs Run {5, 6}
and Run {8, 9} were conducted to show the effect of considering most semantic
confident relation type Rt over all relation types (Rt, Rb, Rfh, Rwh) for CCHIK
and CDK respectively. Run 3 and 4 were conducted to show the effect of select-
ing different number of training images during primary selection. We aggregated
the decision of models from Run 3 and 6 at Run 10.

Run Ontology? Relation type Kernel m n

Run 1 (KDEVIR-01) No - CCHIK 800 1
Run 2 (KDEVIR-02) Yes Rt Ditto 800 1
Run 3 (KDEVIR-05) Yes Ditto Ditto 2000 4
Run 4 (KDEVIR-06) Yes Ditto Ditto 800 4
Run 5 (KDEVIR-04) Yes All Ditto 800 6
Run 6 (KDEVIR-03) Yes Rt Ditto 800 6
Run 7 (KDEVIR-07) No - CDK 800 1
Run 8 (KDEVIR-08) Yes All Ditto 800 1
Run 9 (KDEVIR-09) Yes Rt Ditto 800 1
Run 10 (KDEVIR-10) Yes Ditto CCHIK 2000, 800 10

for annotating images using ontologies at several phases of supervised learning
from large scale noisy training data.

The evaluation result reveals that our proposed approach achieved the most
effective and best performance among 58 submitted runs in terms of MF-samples
and MF-concepts. Moreover, according to the MAP-samples it produced com-
parable result, although we did not prioritize the annotated concepts came from
semantic relation (i.e. we assigned the same weights of originally predicted con-
cepts to their corresponding semantically emerged concepts in annotation of a
particular image). In future, we will consider fuzzy relations among concepts
in ontologies to facilitate more robust ranking of annotation, thus increase the
MAP, and incorporate distributed framework to ensure scalability.
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