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Abstract. The rapid increase of CT scans and the limited number of ra-
diologists present a unique opportunity for computer-based radiological
Content-Based Image Retrieval (CBIR) systems. However, the current
structure of the clinical diagnosis reports presents substantial variabil-
ity, which significantly hampers the creation of effective CBIR systems.
Researchers are currently looking for ways of standardizing the reports
structure, e.g., by introducing uniform User Express (UsE) annotations
and by automating the extraction of UsE annotations with Computer
Generated (CoG) features. This paper presents an experimental evalu-
ation of the derivation of UsE annotations from CoG features with a
classifier that estimates each UsE annotation from the input CoG fea-
tures. We used the datasets of the ImageCLEF-Liver CT Annotation
challenge: 50 training and 10 testing CT scans with liver and liver lesion
annotations. Our experimental results on the ImageCLEF-Liver CT An-
notation challenge exhibit a completeness level of 95% and accuracy of
91% for 10 unseen cases. This is the second best result obtained in the
Liver CT Annotation challenge and only 1% away from the rst place.

1 Introduction

About 68 million CT scans are performed in the USA each year. Clinicians
are struggling under the burden of diagnosis and follow-up of such an immense
amount of scans. This phenomenon gave rise to a plethora of methods to improve
and assist clinicians with the diagnosis process.

Content based image retrieval (CBIR) is a growing and popular research
topic [8]. The goal of CBIR is to assist physicians with the diagnosis of tumors
or other pathologies by finding similar cases to the case at hand. Therefore,
CBIR requires efficient search capabilities in a huge database of medical images.
The matching criteria are based on image properties and features extracted from
image and pathology [1] and on searching in the clinical reports database.

Besides the known problem with diagnosis and follow-up of this huge number
of scans, there is substantial variability in the structure of the clinical reports
provided by the clinicians for each case. This variability hampers the ability to
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establish an efficient and consistent CBIR system, as uniform reports structure
is a major need for such an application.

The task of standardization the clinical reports for liver and liver lesions has
recently been proposed by Kokciyan et al. [1]. The ONLIRA ontology constitutes
a standard that is used to generate multiple-choice User Express (UsE) annota-
tions [9] consisting of features that clinically characterize the liver and the liver
lesion. Note that the UsE annotations are provided by the radiologist, as they
cannot be extracted automatically from the image itself. However, the image
descriptors, called Computer Generated (CoG) features, can be automatically
derived from the image with image processing algorithms [9].

The goal of this work is therefore to use the CoG features to automatically
generate the UsE annotations. A major part of this work deals with designing
and building a machine learning algorithm that link CoG features to UsE an-
notations. Training datasets provided by the ImageCLEF-Liver CT challenge
[6] which is part of the ImageCLEF-2014 evaluation campaign [7]. Additional
contributions of this work consist of extending the CoG available features and
optimal selection of the most relevant ones to the liver task. Experimental re-
sults on the ImageCLEF-Liver CT Annotation challenge exhibit estimation of
UsE annotations at a completeness level of 95% and accuracy of 91% for 10 un-
seen cases. This is the second best result obtained in the Liver CT Annotation
challenge [6] which is part of the ImageCLEF-2014 evaluation campaign [7] and
only 1% away from the first place.

2 Method

A major part of this work would deal with developing a machine learning algo-
rithm that would best link CoG features to UsE annotations based on training
data-sets. Developing a machine learning algorithm involves four main steps [2]:
(1) Data collection; (2) Feature extraction; (3) Model selection/Fitting classi-
fier parameters and; (4) Training the selected model. A diagram illustrating the
phases of the process is shown in Fig 1. We describe each step in detail below.

2.1 Data Collection

The input of our algorithm is a set of 50 datasets provided by the imageCLEF
2014 Liver Annotation Task data and has been collected by CaReRa Project
(TUBITAK Grant 110E264), Bogazici University, EE Dept., Istanbul, Turkey
(www.vavlab.ee.boun.edu.tr). Each dataset includes:

A CT scan that consists the liver region and liver tumors
A segmentation of the liver

The lesion’s bounding box

A set of 60 Computer Generated features (CoG) features
A set of 73 User Express (UsE) annotations

G o=
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1. Data Collection 2. Feature Extraction

CoG Usk CoG- selected UsE - selected
Features Descriptor features features

3. Model Selection 4. Training the Selected Model.

(c) (d)

Fig. 1. Four main steps in designing and building a machine learning algorithm for
the estimation of UsE from CoG and CT images: (a) Data collection: the input to
our system consists of CT scans and CoG features and UsE annotation ; (b) Feature
extraction: only the most informative CoG features are selected; (c) Model selection:
Estimating the most appropriate model for the UsE annotations from CoG features.
The model is selected after testing a variety of prediction models and; (d) Training the
selected model: The selected models parameters are trained using all 50 cases.

The CoG features can be divided to global image descriptors and pathology
descriptors. The global image descriptors cover the basic and liver-wide global
statistical properties, such as the mean and variance of the gray-level values,
and the liver volume. They are extracted directly from the CT scans and the
associated segmentation. The pathology descriptors are computed for each liver
lesion. They reflect finer levels of visual information related to individual lesions.

UsE annotations are also divided into global and pathology descriptors.
Global descriptors are divided into Liver and Vessel groups. These two groups
include annotations about the liver itself and its hepatic vasculature. Pathol-
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Table 1. Example of the Computer Generated features (CoG) features. The CoG
can be divided into two main Descriptor type (a) Global - liver, vessel and all lesions
annotations. (b) Pathology - the selected annotated lesion

lDescriptors type‘ Group ‘Name ‘Type ‘Value
Liver LiverVolume double 12987.6

Global Vessel LiverVariance double 297.683
AllLesions|NumberofLesions |int 5

Pathology Lesion HaarWaveletCoef| VectorOfDouble|8.4, 3.9, 2.1,

ogy descriptors include two groups: Lesion and Lesion Component and contain
annotations about the selected lesion in the liver.

A complete list of all UsE and CoG features with their associated descriptor
type can be found at [6]. Representative examples of CoG and UsE are shown
in Table 2.1 and Table 2.1 respectively.

Table 2. Example of the User Express (UsE) annotations . The UsE can be divided
into two main groups (a) Global - liver and vessel annotations (b) Pathology - lesion
annotations

Descriptors Group|Concept Properties Values |Indices
Type

Liver |Right Lob Right Lobe Size Change|Normal |2
Global -

. Hepatic Artery Lumen
Vessel |Hepatic Artery|... normal 2
Diameter

Lesion |Lesion is Close to Vein Other 8

Pathology Lesion |Lesion Segment Segmentl, ,2
Segmentll
Lesion [Capsule Is Calcified?(Capsule) |True 1

2.2 Feature Extraction

In this step we aim at extracting the optimal set of CoG features for the estima-
tion of each UsE annotation. Note that due to the diversity of lesions between
and within patients, estimating pathology descriptors is a much more challenging
task than estimating global descriptors. Thus, our analysis includes developing
two distinct classification models: one for the global CoG features and one for
the CoG pathology descriptors.

First, we reduce problem dimensionality by omitting 21 high dimension fea-
tures from the 60 provided CoG (e.g. FourierDescriptors, BoundaryScaleHis-
togram, Boundary WindowHistogram etc.). Thus, our analysis includes only CoG
features with scalar values. This results in 39 features divided between global
and pathology related features.
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The 18 global CoG features are: LiverVolume , LiverMean, LiverVariance,
VesselRatio, VesselVolume, MinLesionVolume, MaxLesionVolume, LesionRatio,
AllLesionsMean, AllLesionsVariance, AllLesionsSkewness, AllLesionsKurtosis,
AllLesionsEnergy, AllLesionsSmoothness, AllLesionsAbcssia, AllLesionsropy, Al-
[Lesions Threshold, NumberofLesions

The 21 pathology related CoG features are: LesionMean, Lesion Variance,
LesionSkewness, LesionKurtosis, Lesionnergy, Lesionmoothness, Lesionbcssia,
LesionEntropy, LesionThreshold, Lesion2VesselMinDistance,
Lesion2VesselTouchRatio, VesselTotalRatio, VesselLesionRatio, Volume,
SurfaceArea, MaxFExtent, AspectRatio, Sphericity, Compactness, Convexity, So-
lidity

We added 9 features to the 21 pathology features to describe the statistics
of the lesion itself. The new features are derived from a refined segmentation of
the liver obtained by thresholding the given lesion bounding box with its mean
gray level followed by morphological operations. The added CoG features are:

1. The average gray level intensity values of the healthy part of the liver.
(LiverGrayMean)

2. The standard deviation of gray level intensity values of the healthy part of
the liver. (LiverGrayStd)

3. The average gray level intensity values of the lesion. (LesionGrayMean)

4. The standard deviation of gray level intensity values of the lesion. (Le-
sionGrayStd)

5. The lesion’s contour mean gray levels. (LesionBounderyGrayMean)

6. The standard deviation of the lesion’s contour gray levels.
(LesionBounderyGrayStd)

7. The average gray level difference between the healthy part of the liver and
the lesion. (LesionLiverGrayDiff)

8. The average gray level difference between the healthy part of the liver and
the lesion’ contour. (BounderyLiverGrayDiff)

9. The average gray level difference between the the lesion and its contour.
(lesionBounderyGrayDiff)

The result is a modified CoG list with 18 global image descriptors and 30
pathology descriptors.

2.3 Model Selection

In this section the classification algorithm to be evaluated is presented: Predic-
tive models can be characterized by two properties: parametric/non-parametric
and generative/discriminative. Parametric models have a fixed number of pa-
rameters and have the advantage of often being faster to use. However, they
tend to rely on stronger assumptions about the nature of the data distributions.
In non-parametric classifiers, the number of parameters grows with the size of
the training data. Non-parametric classifiers are more flexible but are often com-
putationally intractable for large datasets.
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Table 3. Four classifiers examined

Generative Discriminative

Parametric|Linear Discriminant Analysis (LDA) Logistic Regression (LR)

Non-Parametric K-Nearest Neighbors (KNN), Support Vector Machine (SVM)

As to the generative/discriminative property, the main focus of generative
generative models, is not the classification task but to correctly model the prob-
abilistic model. They are called generative since sampling can generate synthetic
data points. Discriminative models, however, do not attempt to model the un-
derlying probability distributions, but rather focus on the given task, i.e. the
classification itself. Therefore, they may achieve better performance in terms
of overall accuracy of the classification task. In general, when the probabilistic
distribution assumptions made are correct, the generative model requires less
training data than discriminative methods to provide the same performance,
but if the probabilistic assumptions are incorrect, discriminative methods will
do better [4]. Table 2.3 shows the characteristics of each classifier.

For real world datasets, so far there is no theoretically correct, general crite-
rion for choosing between the different models. Therefore, we examined four clas-
sifiers, representative of the 4 different families of models [3]: K-Nearest Neigh-
bors (KNN), Linear Discriminant Analysis (LDA), Logistic Regression (LR),
Support Vector Machine (SVM). Note that for each UsE annotation, the out-
come of each predictive model consists of classification and subset selection of
the optimal CoG features. Therefore, the selection of the CoG features is unique
for each model.

We used the Python scikit-Learn Machine learning tool [5] to examine the
four selected classifiers. For each UsE descriptor, the best predicting classifier and
its features was based on leave-one-out cross validation with exhaustive search
— i.e. systematically enumerating all possible Combinations CoG features. Note
that since we develop two distinct classication models, one for the 18 global CoG
features and one for the 30 CoG pathology descriptors, the exhaustive search
was performed for each CoG group separately. Three UsE features (Cluster size,
Lobe and Segment) were estimated from the image itself and were not part of
the learning process (Section 2.6).

For simplicity, each model was tested with a set of default parameters as
define by scikit-learn package [5]. The parameters for each model are:

— KNN: K=5, Distance: euclidean distance with no threshold for shrinking.
— LDA: Euclidean distance, regularization strength of 1.0.

— LR: L2 penalty, regularization strength of 1.0, tolerance for stopping criteria
is 0.0001.

SVM: Penalty parameter of 1.0, RBF kernel with degree of 3 and gamma of
0, tolerance for stopping criteria is 0.0001.
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2.4 Training

Once the classifier which produced the highest classification was found in the
previous step, we trained it using all 50 cases. As a result, for each UsE, we
obtain a trained model, consisting of classifier along with optimized sets of CoG
features (i.e. the selected features)

2.5 Evaluation

The evaluating phase of the challenge consists of the estimation of UsE anno-
tation from the given CoG features and the images. Unlike the training phase,
UsE annotation are not given here to examine our accuracy.

To apply the resulting classifier in the testing phase on an unseen dataset,
we first extract and extend the CoG features according to a scheme described in
Section 2.3. Then, for each test case, we apply the prediction model — the one
with the highest score — according to the training phase results. The result is a
UsE annotation for each unseen case.

2.6 Estimation of the Lesion Lobe, Lesion Segment, and Cluster
Size

As noted in Section 2.3, the Cluster Size (i.e. the number of lesions inside the
lesion bounding box), the Lesion Lobe and the Lesion Segment containing the
lesion were not part of the general learning process but were rather estimated
from the image itself. The estimation of these fields was performed as follows:

For the Lesion Lobe: we measure the center of the lesion and the liver. The
lesion lobe is estimated as the right lobe if the lesion center is on the right part
of the liver, and as the left lobe if the lesion center is on the left part of the liver.
In case they were overlapping we estimated it to be the Caudate Lobe.

The Lesion Segment is estimated as follows: If at a previous stage the esti-
mation was that the lesion is on the right lobe, we assessed that the lesion is
located on the fourth segment. Alternatively, if at the previous stage the esti-
mation was that the lesion is on the left lobe, we analyzed whether the lesion is
located above or below the center of the liver. If it is located above the center of
the liver, we assessed that the lesion is in segment 5-6; and if it is located below
the center of the liver - we assessed that the lesion is on segment 7-8.

For the Cluster Size: We define the Cluster Size to the number of lesion — the
value listed in the CoG field NumberofLesions. Except in cases when the value
listed in number of lesion is higher than 6, and then we define that the number
of lesions to be 6. For the Cluster Size: We define the Cluster Size to the number
of lesion — the value listed in the CoG field NumberofLesions. Except in cases
when the value listed in number of lesion is higher than 6, and then we define
that the number of lesions to be 6.
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Table 4. Training and test results for each of the classifiers. The values indicate the
percentage of accuracy of the leave-out-out for each UsE. For convenience, results are
grouped s.t. UsE annotations that exhibit the same results are shown in one line in the
table.

Training Results Test
Results
lGroup [UsE Annotations [KNN[ LR[LDA[SVM[AverageHAverage
Liver All 0.92 |0.92]| 0.92 | 0.92 0.92 0.92
Vessel All 1 1 1 1 1 1
Lesion-Lesion|Contrast Uptake 0.7 10.62/0.79| 0.66
Lesion-Lesion|Contrast Pattern 0.75 | 0.7] 0.58 | 0.67
Lesion-Lesion|Others 0.92 [0.92] 0.92 | 0.92 0.8 0.68
Lesion-Area |is contrasted 0.74 |10.75/0.79| 0.76
Lesion-Area |Density 0.9 [0.9]0.92| 0.9
Lesion-Area |Density Type 0.75 |0.76| 0.8 | 0.76
Lesion-Area |Is Peripherical Localized| 0.8 [0.76| 0.72 | 0.74
Lesion-Area |Is Central Localized 0.8 (0.76] 0.72 | 0.74 0.83 0.74
Lesion-Area [Others 0.91 |0.91] 0.91 | 0.91 ’ ’
Lesion All 0.93 0.93| 0.93 | 0.93 0.93 0.93
Component
3 Results

Experimental results of applying our method to the ImageCLEF-Liver CT An-
notation challenge datasets results with estimation of UsE annotations at a com-
pleteness level of 95% and accuracy of 91% for 10 unseen cases.

Training and test results for each of the classifiers are shown in Table 2.6.
Due to the simplicity of estimating the global UsE annotations, we present their
result per group. A detailed presentation is provided for the pathology related
features, which is indeed a much more challenging task. It can be seen that all
classifiers successfully estimated the global features.

As mentioned, three additional features were estimated from the images and
were not part of the learning process. These features are: ClusterSize, Lesion-
Lobe, LesionSegment and their accuracy on the training datasets was 0.75, 0.9,
0.7 respectively. The completeness level of our method is 0.95 due to omitting 3
UsE annotations from the analysis: LesionComposition, Shape and the Margen-
Type.

The optimized sets of CoG features (i.e. the selected features) that were
obtained by the model with the highest score after the leave-one-out procedure
are shown in Table 5. Note that the set of added features (Section 2.2) were
indeed selected by the model, which proves their necessity.
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Table 5. The optimized sets of CoG features selected, as a result of the exhaustive
procedure, for the classifier that exhibits the highest score by the leave-one-out cross
validation . For convenience, results are grouped s.t. UsE annotations that exhibit the
same results are shown in one line in the table.

. Selected Selected CoG
Group UsE Annotations Classifier Features
Liver All Any All
Vessel All Any All
BounderyLiverGrayDiff,
Lesion-Lesion Contrast Uptake LDA LesionGrayStd, Entropy,
SurfaceArea
LesionGrayMean,
Lesion-Lesion Contrast Pattern |KNN gijggi;y;i::%fg;%ﬁﬁan’
LesionBounderyGrayStd,
Lesion-Lesion Other Any All
Lesion-Area Is Contrasted LDA LesionLiver GrayDiff, Solidity,

Entropy, Kurtosis,
Lesion-Area Density LDA lesionBoundryGrayMean
LesionBounderyGrayMean,

Lesion-Area Density Type LDA Solidity, LesionGrayStd
. . LiverGrayStd,

Lesion-Area isoi’aelrilzpelzerlcal KNN LesionGrayStd,
lesionBounderyGrayStd
LiverGrayStd,

Lesion-Area Is Central Localized KNN LesionGrayStd,
LesionBounderyGrayStd

Lesion-Area Other Any All

Lesion-Component |All Any All

4 Conclusion and future work

We have presented an approach to estimate UsE annotations from CoG features
and associated CT scans. We extended the CoG features with 9 additional fea-
tures to enhance the learning process. In the ImageCLEF-Liver CT Annotation
challenge. Our approach provides an average accuracy level of 91% with com-
pleteness level of 95% when applied on 10 unseen test cases. This work provides
reliable estimation of uniform clinical report from imaging features and therefore
it constitutes another step toward automatic CBIR system by enabling efficient
search in clinical reports. Future work consists of examining an additional set
of classifiers and extending the completeness of our algorithm to estimate the
full UsE annotations set and values (e.g. estimating segment 1-3 of the Lesion
Segment feature )
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