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Abstract. We describe our method for automatic bird species classifica-
tion, which uses raw audio without segmentation and without using any
auxiliary metadata. It successfully classifies among 501 bird categories,
and was by far the highest scoring audio-only bird recognition algorithm
submitted to BirdCLEF 2014. Our method uses unsupervised feature
learning, a technique which learns regularities in spectro-temporal con-
tent without reference to the training labels, which helps a classifier to
generalise to further content of the same type. Our strongest submission
uses two layers of feature learning to capture regularities at two different
time scales.

1 Introduction

Automatic species classification of birds from their sounds has many potential
applications in conservation, ecology and archival [11, 6]. However, to be useful
it must work with high accuracy across large numbers of possible species, on
noisy outdoor recordings and at big data scales. The ability to scale to big
data is crucial: remote monitoring stations can generate huge volumes of audio
recordings, and audio archives contain large volumes of audio, much of it without
detailed labelling. Big data scales also imply that methods must work without
manual intervention, in particular without manual segmentation of recordings
into song syllables, or into vocal/silent sections. The lack of segmentation is a
pertinent issue for both remote monitoring and archive collections, since many
species of bird may be audible for only a minority of the recorded time, and
therefore much of the audio will contain irrelevant information.

In this paper we describe a method for dramatically improving the perfor-
mance of a supervised classifier for bird sounds, as submitted to the “BirdCLEF”
2014 evaluation contest. The method achieved the strongest performance among
audio-only methods (i.e. methods that did not use additional information such
as date or location).

Our method is the subject of a full-length article which can be read at [15].
In the following shorter presentation, we describe the method, which works on
raw audio with no segmentation. We describe how we evaluated variants of our
method and chose which variants to submit, and we consider the run-time of
different stages of the workflow.
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1.1 Spectral features and feature learning

For classification, audio data is often converted to a spectrogram-like represen-
tation, i.e. the magnitudes of short-time Fourier transformed (STFT) frames of
audio, around 10 ms duration per frame. It is common to transform the fre-
quency axis to a more perceptual scale, such as the Mel scale originally intended
to represent the approximately logarithmic sensitivity of human hearing. This
also reduces the dimensionality of the spectrum, but even the Mel spectrum has
traditionally been considered rather high-dimensional for automatic analysis. A
further convention, originating from speech processing, is to transform the Mel
spectrum using a cepstral analysis and then to keep the lower coefficients (e.g.
the first 13) which typically contain most of the energy. These coefficients, the
Mel frequency cepstral coefficients (MFCCs), became widespread in applications
of machine learning to audio, including bird vocalisations [13].

MFCCs have some advantages, including that the feature values are approx-
imately decorrelated from each other, and they give a substantially dimension-
reduced summary of spectral data. Dimension reduction is advantageous for
manual inspection of data, and also for use in systems that cannot cope with
high-dimensional data. However, as we will see, modern classification algorithms
can cope very well with high-dimensional data, and dimension reduction always
reduces the amount of information that can be made available to later process-
ing, risking discarding information that a classifier could have used. Further,
there is little reason to suspect that MFCCs should capture information optimal
for bird species identification: they were designed to represent human speech,
yet humans and birds differ in their use of the spectrum both perceptually and
for production. MFCCs aside, one could use raw (Mel-)spectra as input to a
classifier, or one could design a new transformation of the spectral data that
would tailor the representation to the subject matter. Rather than designing a
new representation manually, we consider automatic feature learning.

The topic of feature learning (or representation learning, dictionary learn-
ing) has been considered from many perspectives within the realm of statistical
signal processing [1][10][4] [5]. The general aim is for an algorithm to learn some
transformation that, when applied to data, improves performance on tasks such
as sparse coding, signal compression or classification. This procedure may be
performed in a “supervised” manner, meaning it is supplied with data as well as
some side information about the downstream task (e.g. class labels), or “unsu-
pervised”, operating on a dataset but with no information about the downstream
task. A simple example that can be considered to be unsupervised feature learn-
ing is principal components analysis (PCA): applied to a dataset, PCA chooses
a linear projection which ensures that the dimensions of the transformed data
are decorrelated [1]. It therefore creates a new feature set, without reference to
any particular downstream use of the features, simply operating on the basis of
qualities inherent in the data.

Recent work in machine learning has shown that unsupervised feature learn-
ing can lead to representations that perform very strongly in classification tasks,
despite their ignorance of training data labels that may be available [4, 1]. This
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Fig. 1. Example of spherical k-means applied to a simple two-dimensional dataset. We
generated synthetic 2D data points by sampling from three clusters which were each
Gaussian-distributed in terms of their angle and log-magnitude (coloured dots), and
then applied our online spherical k-means algorithm to find 10 unit vectors (crosses).
These unit vectors form an overcomplete basis with which one could represent this toy
data, projecting two-dimensional space to ten-dimensional space.

rather surprising outcome suggests that feature learning methods emphasise pat-
terns in the data that turn out to have semantic relevance, patterns that are not
already made explicit in the basic feature processing such as STFT.

Birdsong often contains rapid temporal modulations, and this information
should be useful for identifying species-specific characteristics. From this per-
spective, a useful aspect of feature learning is that it can be applied not only
to single spectral frames, but to short sequences (or “patches”) of a few frames.
The representation can then reflect not only characteristics of instantaneous fre-
quency patterns in the input data, but characteristics of frequencies and their
short-term modulations, such as chirps sweeping upwards or downwards. This
bears some analogy with the “delta-MFCC” features sometimes used by taking
the first difference in the time series of MFCCs, but is more flexible since it can
represent amplitude modulations, frequency modulations, and correlated mod-
ulations of both sorts. In our study we tested variants of feature learning with
different temporal structures: either considering one frame at a time (which does
not capture modulation), multiple frames at a time, or a variant with two layers
of feature learning, which captures modulation across two timescales.
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2 Method

As discussed in Section 1.1, the aim of unsupervised feature learning is to find
some transformation of a dataset, driven only by the characteristics inherent in
that dataset. For this we use a method that has has shown promise in previous
studies, and can be run effectively at big data scales: spherical k-means, described
by [4] and first applied to audio by [5]. Spherical k-means is related to the well-
known k-means clustering algorithm, except that instead of searching for cluster
centroids which minimise the Euclidean distance to the data points, we search for
unit vectors (directions) to minimise their angular distance from the data points.
This is achieved by modifying the iterative update procedure for the k-means
algorithm: for an input data point, rather than finding the nearest centroid by
Euclidean distance and then moving the centroid towards that data point, the
nearest centroid is found by cosine distance,

cosine distance = 1− cos(θ) = 1− A ·B
‖A‖‖B‖

, (1)

where A and B are vectors to be compared, θ is the angle between them, and
‖ · ‖ is the Euclidean vector norm. The centroid is renormalised after update so
that it is always a unit vector. Fig. 1 shows an example of spherical k-means
applied to synthetic data. Spherical k-means thus finds a set of unit vectors which
represent the distribution of directions found in the data: it finds a basis (here
an overcomplete basis) so that data points can in general be well approximated
as a scalar multiple of one of the basis vectors. This basis can then be used
to represent input data in a new feature space which reflects the discovered
regularities, in the simplest case by representing every input datum by its dot
product with each of the basis vectors [4, 5]:

x′(n, j) =

M∑
i=1

bj(i)x(n, i) , (2)

where x represents the input data indexed by time frame n and feature index i
(with M the number of input features, e.g. the number of spectral bins), bj is
one of the learnt basis vectors (indexed by j ∈ [1, k]), and x′ is the new feature
representation. In our case, the data on which we applied the spherical k-means
procedure consisted of Mel spectral frames (M = 40 dimensions), which we first
normalised and PCA-whitened as in [5].

We also tested configurations in which the input data was not one spectral
frame but a sequence of them—e.g. a sequence of four spectral frames at a
time—allowing the clustering to respond to short-term temporal patterns as
well as spectral patterns. We can write this as

x′(n, j) =
∆∑
δ=0

M∑
i=1

bj(δ, i)x(n+ δ, i) , (3)

where ∆ is the number of frames considered at a time, and the b are now indexed
by a frame-offset as well as the feature index. Alternatively, this can be thought of
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as “stacking” frames, e.g. stacking each sequence of four 40-dimensional spectral
frames to give a 160-dimensional vector, before applying (2) as before. In all our
experiments we used a fixed k = 500, a value which has been found useful in
previous studies [5].

The standard implementation of k-means clustering requires an iterative
batch process which considers all data points in every step. This is not feasible for
high data volumes. Some authors use “minibatch” updates, i.e. subsamples of the
dataset. For scalability as well as for the potential to handle real-time streaming
data, we instead adapted an online streaming k-means algorithm, “online Har-
tigan k-means” [12, Appendix B]. This method takes one data point at a time,
and applies a weighted update to a selected centroid dependent on the amount
of updates that the centroid has received so far. We adapted the method of [12,
Appendix B] for the case of spherical k-means. K-means is a local optimisation
algorithm rather than global, and may be sensitive to the order of presentation
of data. Therefore in order to minimise the effect of order of presentation for the
experiments conducted here, we did not perform the learning in true single-pass
streaming mode. Instead, we performed learning in two passes: a first streamed
pass in which data points were randomly subsampled (using reservoir sampling)
and then shuffled before applying PCA whitening and starting the k-means pro-
cedure, and then a second streamed pass in which k-means was further trained
by exposing it to all data points. Our Python code implementation of online
streaming spherical k-means is available on request.

As a further extension we also tested a two-layer version of our feature-
learning method, intended to reflect detail across multiple temporal scales. In
this variant, we applied spherical k-means feature learning to a dataset, and then
projected the dataset into that learnt space. We then downsampled this projected
data by a factor of 8 on the temporal scale (by max-pooling, i.e. taking the max
across each series of 8 frames), and applied spherical k-means a second time. The
downsampling operation means that the second layer has the potential to learn
regularities that emerge across a slightly longer temporal scale. The two-layer
process overall has analogies to deep learning techniques, most often considered
in the context of artificial neural networks [1], and to the progressive abstraction
believed to occur towards the higher stages of auditory neural pathways.

2.1 Classification workflow

Our full classification workflow started by converting each audio file to a standard
sample-rate of 44.1 kHz. We then calculated Mel spectrograms for each file, using
a frame size of 1024 frames with Hamming windowing and no overlap. We filtered
out spectral energy below 500 Hz, a common choice to reduce the amount of
environmental noise present, and then normalised the root-mean-square (RMS)
energy in each spectrogram.

For each spectrogram we then optionally applied the noise-reduction proce-
dure that we had found to be useful in our NIPS4B contest submission [14], a
simple and common median-based thresholding. The Mel spectrograms, either
noise-reduced or otherwise, could be used directly as features. We also tested
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Fig. 2. Summary of the classification workflow, here showing the case where single-layer
feature learning is used.

their reduction to MFCCs (including delta features, making 26-dimensional
data), and their projection onto learned features, using the spherical k-means
method described above. For the latter option, we tested projections based on
single frame as well as on sequences of 2, 3, 4 and 8 frames, to explore the benefit
of modelling short-term temporal variation. We also tested the two-layer version
based on the repeated application to 4-frame sequences across two timescales.

The feature representations thus derived were all time series. In order to
reduce them to summary features for use in the classifier, we used the simple
approach of summarising each feature dimension independently by its mean and
standard deviation. These are widespread but are not designed to reflect any
temporal structure in the features; however, note that our multi-frame learnt
features intrinsically capture some fine-scale temporal information.

To perform classification on our temporally-pooled feature data, then, we
used a random forest classifier [2]. Random forests and other tree-ensemble clas-
sifiers perform very strongly in a wide range of empirical evaluations [3], and
were used by many of the strongest-performing entries to the SABIOD evalu-
ation contests [8, 7]. For this experiment we used the implementation from the
Python scikit-learn project. Note that scikit-learn v0.14 was found to have
a specific issue preventing training on large data, so we used a pre-release v0.15
after verifying that it led to the same results with our smaller datasets. We did
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Fig. 3. MAP statistics, summarised for each feature-type tested. Each column in the
boxplot summarises the crossvalidated scores attained over many combinations of the
other configuration settings tested (for the full multi-class classifier only). The ranges
indicated by the boxes therefore do not represent random variation due to training
data subset, but systematic variation due to classifier configuration.

not manually tune any parameters of the classifier. Fig. 2 summarises the main
stages of the workflow described.

Prior to the contest, we did not have access to the held-out testing data, so for
evaluation we split the training dataset into two equal partitions and performed
two-fold crossvalidation. We also tested model averaging: namely, we tested a
meta-classifier which simply averaged over the outputs from up to 16 different
configurations of our main system.

3 Results

Figure 3 illustrates the cross-validated MAP scores we obtained from six non-
learnt feature representations (based on simple MFCC and Mel spectra) and from
six learnt feature representations. The learnt representations consistently and
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Fig. 4. As Figure 3, but for the model-averaging runs that we tested. Each column
represents a different set of models included in the averaging.

strongly outperformed the other approaches. The difference between the learnt
representations was small in terms of performance, although for this data it is
notable that the two-layer variant (rightmost column) consistently outperformed
the single-layer variants. Even though the BirdCLEF challenge is a single-label
classification challenge, we found that training the random forest as a multilabel
classifier gave slightly better results.

Model averaging yielded improved performance in general (Figure 4), al-
though it was not clear from our own tests whether model averaging or a single
classifier would achieve the highest point performance.

We measured the total time taken for each step in our workflow, to determine
the approximate computational load for the steps (Fig. 5). The timings are
approximate—in particular because our code was modularised to save/load state
on disk between each process, which impacted particularly on the “classify” step
which loaded large random forest settings from disk before processing. Single-
layer feature learning was efficient, taking a similar amount of time as did the
initial feature extraction. Double-layer feature learning took more than double
this, because of the two layers as well as performing max-pooling downsampling.
Training the random forest classifier took longer on the learned features due to
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Fig. 5. Times taken for each step in the process. Note that these are heuristic “wall-
clock” times measured on processes across two compute servers. Each measurement is
averaged across the two folds and across two settings (noise reduction on/off) across
the runs using the multilabel classifier and no decision-pooling.

the higher dimensionality. However, once the system was trained, the time taken
to classify new data was the same across all configurations.

We submitted decisions from our system to the LifeCLEF 2014 bird iden-
tification challenge [9]. In that evaluation, our system attained the strongest
audio-only classification results, with a MAP peaking at 42.9% (Table 1, Figure
6), ten percentage points stronger than other audio-only classifiers that were
submitted. (Only one system outperformed ours, peaking at 51.1% in a vari-
ant of the challenge which provided additional metadata as well as audio.) We
submitted the outputs from individual models, as well as model-averaging runs
using the simple mean of outputs from multiple models. Notably, the strongest
classification both in our own tests and the official evaluation was attained not
by model averaging, but by a single model based on two-layer feature learning.
Also notable is that our official scores, which were trained and tested on larger
data subsets, were substantially higher than our crossvalidated scores, corrob-
orating our observation that the method works particularly well at high data
volumes.
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System variant submitted Cross-val MAP (%) Official MAP (%)

melspec-kfl3-ms, noise red., binary relevance 30.56 36.9
Average from 12 single-layer models 32.73 38.9
melspec-kfl4pl8kfl4-ms, noise red., binary relevance 35.31 42.9
Average from 16 single- and double-layer models 35.07 41.4

Table 1. Summary of MAP scores attained by our system in the public LifeCLEF
2014 Bird Identification Task [9]. The first column lists scores attained locally in our
two-fold split. The second column lists scores evaluated officially, using a classifier(s)
trained across the entire training set.

Fig. 6. Official plot of evaluation scores. Ours are the four labelled “QMUL”.

4 Conclusions

Current interest in automatic classification of bird sounds is motivated by the
practical scientific need to label large volumes of data coming from sources such
as remote monitoring stations and sound archives. Unsupervised feature learning
is a simple and effective method to boost classification performance by learning
spectro-temporal regularities in the data. It does not require training labels or
any other side-information, it can be used within any classification workflow, and
once trained it imposes negligible extra computational effort on the classifier. The
principal practical issue with unsupervised feature learning is that it requires
large data volumes to be effective. However, this exhibits a synergy with the
large data volumes that are increasingly becoming standard.

In our experiments, learnt features strongly outperformed MFCC and Mel
spectral features. In the BirdCLEF 2014 contest, our system was by far the
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strongest audio-only submission, outperforming even some systems which made
use of auxiliary metadata.
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