
Proof of Concept Framework for Author
Profiling

Notebook for PAN at CLEF 2014

Christopher Ian Baker

pan@ctac.me.uk

Abstract. A proof-of-concept basic prediction framework able to read the PAN
author profiling data and be adaptable to accept multiple classification and
training functions. The framework was used to investigate system resource
usage and to experiment with data sub-setting techniques to enable efficient
creation of the base model and convergence of the training functions.

1 Introduction

The PAN [1] author profiling task [2] is designed to evaluate algorithms that can read
text from blogs, twitter, social media and on-line reviews and classify the author's
gender and age bracket. The task provided a training corpus in two languages, English
and Spanish, comprising a total of 7 categories together with a defined execution and
output specification that would be used in an automated testing environment (TIRA).
The objective was to achieve the highest success rate in predicting age group and
gender on an undisclosed test corpus, “corpus2”.

2 Methodology

The project broke down into 4 main sub-tasks:

1. Load text from supplied XML whilst dealing gracefully with bad data rejection;
2. Design and creation of data structures for internal representation of the training

corpus;
3. Optimization of use of machine resources using data sub-setting;
4. Iterative refinement of the prediction model.

1110

Development of the Framework

The algorithm was developed using the Perl programming language with functions,
particularly for reading XML, from the Comprehensive Perl Archive Network
(CPAN) [3].

A separate dictionary was created for each of the seven input media types. Each
XML data frame had the text extracted and sanitised (extracted from HTML, case
converted, invalid character removal, multiple white space suppression etc.). This
clean text was then tokenised using 4 token extraction functions: single words, word
pairs, word triples and meta tokens based on other text features. The meta token
function attempts to extract information based on language features such as:

 The ratio of white space to non-white space, indicative of average word length;
 The ratio of punctuation to text;
 The ratio of numeric data in the text;
 The ratio of capital letters to lower case.

Each of these categories had a scaling factor assigned by manual observation to
ensure the data was collected and spread across a small number of token buckets,
approximately 10 each in this instance. During text load, each time a token was found
it was added to the dictionary and a running count of the gender and age group of the
text was kept with the token in the dictionary. Each time the total dictionary memory
size passed 500MB the dictionary was pruned to the 20,000 most frequent tokens in
each of the 4 token function categories. This typically reduced the memory
requirement to under 100MB. Once the full dictionary load was complete each
dictionary was pruned to the 3,000 most frequent tokens in each of the 4 token
function categories.

The base counts for each token token were then converted to a frequency for each
of the 7 input type categories being measured (2 gender, 5 age groups) based on the
frequency of that token in the corpus relative to the total number of texts of that type.
E.g. If we load a total of m texts with the “male” gender attribute, and the word “w”
has a gender/male hit count of h, then the male frequency for w is h/m. The
frequencies for each word/gender and word/age group were then converted to model
weighting factors by normalizing so that they sum to 1.0. E.g. for word “w”:

 weight(male) = frequency(male) / (frequency(male)+frequency(female))

Some early tests were conducted with a simple “majority wins” weighting rather than
a proportional weighting but initial testing suggested this was less effective.

1111

Scoring a Text

A text was scored by loading, tokenising, and accumulating these proportional
weights for each token matched in the dictionaries. Further, a multiplicative second
weighting factor was generated by counting the frequency of hits in each of the 7
dictionaries and using that as a bias to create a dynamic dictionary selector function.
The highest accumulated score for gender and for age group were the selected
prediction for that text.

Scoring a Corpus Document

Each test corpus document could have one or many texts. The document had its
attributes predicted by running each text in the document through this weighting
algorithm and then picking the most frequently predicted gender and age group.

Model Refinement

It was recognized that the prediction function is fundamentally frequency based and
the more hits a token has the higher the contribution to accumulation scoring. Given
that there may be tokens which, while of relatively low frequency, are strong selectors
for gender or age group, the code was designed so that an iterative post processing
phase could hunt for these “key deciders” and adjust their weights so they would
become dominant in the prediction process. The refinement process follows the same
basic process:

 Load the existing model;
 Score the test corpus as though it were new data.

Iterate as follows:

 Change some of the weighting factors using the selected refinement plug-in;
 Re-score the test corpus with the new weighting factors;
 Keep the highest scoring set of weighting factors, new or previous and repeat.

Three different refiners were tested:

 Random variation (within a defined scope) of weighting factors;
 Negative reinforcement – adjust each of the found token weights towards truth

for every mis-identified text;
 Positive and negative reinforcement – adjust each of the found token weights

towards truth for every text both correctly and incorrectly predicted.

1112

For useful improvement it was required that the refiner ran hundreds to thousands of
iterations. To speed up the process the corpus was sub-setted. Each text in the corpus
was sequentially numbered and then the refiner used a “modulus selector” to break
the corpus into 1% interleaved slices and refine on a subset percentage “p” of the test
corpus. Assuming a text with sequence number “s”, the text could be processed if:

s mod 100 == p Selects a particular slice of the corpus

s mod 100 < p Selects multiple percent slices

Shortly before final submission, a bug was identified in the text scorer that meant the
model that had been refined had numeric integrity issues and there wasn't time to re-
train so the version of the model submitted to TIRA for evaluation was the base
statistical model with no iterative refinement.

Optimisation

Machine resource limitations were a key factor in designing the algorithm. Corpus
tokenisation was a significant processing load and too expensive to run from scratch
for each iteration of the refiner. The whole tokenised training corpus could be stored
internally at a memory cost of around 10GB, but as this was a proof of concept
designed to investigate resource issues a token cache was used that could store
tokenised percentage “p” corpus slices and be flushed any time it's memory usage got
too high.

The refiner was modified to train on the same “p” slice for n iterations (typically
n=3 to 10) before moving onto a new “p” slice getting re-use from the token cache
and speeding processing up significantly. Similarly, the model was split into 7
dictionaries for data management reasons. As each text was tokenised and stored in
the dictionary we found dictionary processing started to slow down noticeably above
500MB dictionary memory load (circa 1 million total tokens) and as 1 GB was
approached load speed slowed to a crawl.

3 Results

The results from TIRA of the previously unseen “corpus2” tests are shown below.
There were 5 age groups, so random chance was 0.2000 for age group prediction.
There were 2 gender categories, so random chance was 0.5000 for gender.

1113

Table 1. Results from TIRA assessment on unseen data corpus2.

Test Corpus:
 pan14-author-profiling-test-

Age Group Gender

corpus2-english-blogs-2014-05-15 0.2949 0.5000

corpus2-english-reviews-2014-05-15 0.2594 0.5292

corpus2-english-socialmedia-2014-05-15 0.2494 0.5012

corpus2-english-twitter-2014-05-15 0.3377 0.5065

corpus2-spanish-blogs-2014-05-15 0.4464 0.5000

corpus2-spanish-socialmedia-2014-05-15 0.3445 0.5000

corpus2-spanish-twitter-2014-05-15 0.4889 0.5000

Based on the published results, this algorithm was not as successful as hoped, but as a
proof of concept and test-bed it served its purpose well.

The age classifier had some reasonable success, though far from the results of the
best, but the gender predictor was little better than tossing a coin. This was not a
surprise as this had been observed in testing with corpus1. Prior experimentation
showed that iterative refinement had improved both categories but it was necessary to
submit what was available at the deadline and there was never any expectation this
test-bed would be class competitive.

4 Future Work

This project was developed from scratch without reference to existing research
material or any particular subject matter experience. This was deliberate for the
purposes of focusing on the proof-of-concept work and thinking through the problem
from scratch. Having reached this point, I would consider the following for future
work:

 Run the refiner and see how much better a refined model would have done over
the base statistics model submitted;

 Experiment further with plug-in classifier and refiner functions;
 Research existing literature to discover best practice and current state-of-the-art

before deciding whether to adapt this existing framework or start from scratch for
future work.

1114

References

1. TIRA and PAN: Tim Gollub, Martin Potthast, Anna Beyer, Matthias Busse,
Francisco Rangel, Paolo Rosso, Efstathios Stamatatos, and Benno Stein.
Recent Trends in Digital Text Forensics and its Evaluation. In Pamela
Forner, Henning Müller, Roberto Paredes, Paolo Rosso, and Benno Stein,
editors, Information Access Evaluation meets Multilinguality, Multimodality, and
Visualization. 4th International Conference of the CLEF Initiative (CLEF 13),
September 2013. Springer. ISBN 978-3-642-40801-4.

2. Author profiling task: Francisco Rangel, Paolo Rosso, Moshe Koppel,
Efstathios Stamatatos, and Giacomo Inches. Overview of the Author
Profiling Task at PAN 2013. In Pamela Forner, Roberto Navigli, and Dan Tufis,
editors, Working Notes Papers of the CLEF 2013 Evaluation Labs,
September 2013. ISBN 978-88-904810-3-1.

3. Comprehensive Perl Archive Network, http://www.cpan.org/

1115

