A Simple Approach to Author Profiling in MapReduce
Notebook for PAN at CLEF 2014

Suraj Maharjan, Prasha Shrestha, and Thamar Solorio

University of Alabama at Birmingham
Department of Computer and Information Sciences,
Campbell Hall, 1300 University Boulevard,
Birmingham, Alabama 35294-1170
{suraj, prasha, solorio} @cis.uab.edu

Abstract Author profiling, being an important problem in forensics, security,
marketing, and literary research, needs to be accurate. With massive amounts of
online text readily available on which we might need to perform author profil-
ing, building a fast system is as important as building an accurate system, but
this can be challenging. However, the use of distributive computing techniques
like MapReduce can significantly lower processing time by distributing tasks
across multiple machines. Our system uses MapReduce programming paradigm
for most parts of the training process, which makes our system fast. Our sys-
tem uses word n-grams including stopwords, punctuations and emoticons as fea-
tures and TF-IDF (term frequency inverse document frequency) as the weighing
scheme. These are fed to the logistic regression classifier that predicts the age
and gender of the authors. We were able to obtain a competitive accuracy in most
categories and even obtained winning accuracy for two of the categories each in
both test corpus 1 and test corpus 2.

1 Introduction

The process of identifying age-group, gender, native language, personality and other
aspects that constitute the profile of an author, by analyzing his/her writings is called
author profiling. Since most of the text is now online and written behind a curtain of
anonymity, author profiling has become a very important problem. In fields like foren-
sic, security, literary research and marketing, finding out an author’s demographic and
personality information has proven to be very helpful. In literary research, author pro-
filing helps to resolve disputed authorship for unknown documents. In forensics, author
profiling can be used to shortlist potential suspects, given a piece of writing from them.
In marketing, ad campaigns can be directed towards the demographic of users that re-
view certain products the most.

The PAN’14 [1] author profiling task requires us to predict the author’s age-group
and gender. The PAN’ 14 corpus contains data collected from authors’ writings in En-
glish or Spanish. The data has been divided into different categories according to the
source of the data. For Spanish there are three categories: blogs, social media and twit-
ter. Whereas for English, there is one more category along with those three, namely

1121

reviews. The task is to create a system that can predict an author’s age and gender for
all these categories when we are given their writings.

Prior work has tackled the task of author profiling by employing a range of lexical,
stylistic, syntactic and readability measures. Schwartz et al. [10] used n-grams and LDA
topic features to profile gender and five personality traits on Facebook user’s data and
obtained 91.9% accuracy. Burger et al. [2] used word and character n-grams along with
Twitter user profile (full name, screen name and description) as features to determine
the gender of the users. They experimented with Naive Bayes, LIBSVM and balanced
Winnow?2 classification algorithms and found that Winnow was better in both accuracy
and speed. Likewise, Estival et al. [3], in addition to age and gender prediction, tried to
predict the first language and country of an author. They experimented with different
classification algorithms like SVM using SMO, Random forest and rule based learners
and concluded that SMO performed the best for both age and gender.

In this paper, we have experimented with word and character n-grams as features.
We also analysed the use of five different classification algorithms viz Naive Bayes, Co-
sine Similarity, Weighted Cosine Similarity, LIBLINEAR [4] Logistic Regression with
L2 regularization, and LIBLINEAR SVM with linear kernel. Since feature computa-
tion as well as classification can be very slow, we have implemented most our system
in MapReduce. All of the feature computation has been implemented in MapReduce,
which make our system very fast. We also implemented Naive Bayes, and weighted
as well as non-weighted Cosine Similarity in MapReduce. Our code is available for
use and extension for people who want to make use of the computing prowess of a
distributed system without having to go into much detail about MapReduce.

2 Methodology

Most of our training takes place in Hadoop and uses MapReduce. For our training pro-
cess, we started by randomly dividing the available data into training and cross valida-
tion dataset in a ratio of 70:30. The training data was then preprocessed to filter out all
the HTML and XML tags. The plain text files thus obtained were then combined into se-
quence files because MapReduce jobs run faster when we use a small number of large
files rather than when using a large number of small files. We then used MapReduce
jobs to compute feature vectors.

2.1 Features Vector Creation

Since most of the training data was from some sort of social media, we used Ark-
Tweet-NLP tokenizer [5] to tokenize the document because it is well adapted for online
text. We retained all the stopwords, punctuations and emoticons as these are important
features for the author profiling task. Since any MapReduce job requires key and value,
the tokenizer job uses the filename with all the class information as the key and the
file content as its value. After tokenizing with Ark-Tweet-NLP, this job generates the
necessary n-grams.

After obtaining the n-grams, we compute the inverse document frequency (IDF)
count for each token. Based on these counts, we filter out the tokens that have not

1122

even been used by at least two authors. We have an idf MapReduce job to compute
the idf. The mapper computes the partial count of each individual ngram and passes
them to the reducer, which sums these partial counts to produce the final idf counts.
The filter job takes the idf counts and a threshold and filters out all the tokens whose idf
score is less than the threshold. Also, this job creates a dictionary file that contains all
the unique tokens mapped to integer ids. After the tokens are filtered out, our TF-IDF
vector creation job takes in the idf counts and dictionary file to compute the tf-idf scores
for the remaining tokens. This map only job outputs a tf-idf vector for each document.

2.2 Training

For training, we tried five different classification algorithms. For Naive Bayes, cosine
similarity, and weighted cosine similarity, we created another MapReduce job that com-
putes all the statistics needed for classification. The weighted cosine similarity algo-
rithm multiplies the cosine similarity score by prior probability score for each class.
The mapper emits class label as key and tf-idf vector as value. Instead of building
separate models for age groups and gender, we considered the problem as a 10-class
problem by combining the age and gender classes. The class labels were extracted from
the document names and were mapped to unique integer ids. The mapper also emits a
special key -1 and a vector that contains partial counts of number of documents with
that class label. We used VectorSumReducer provided by Mahout as reducer, which
groups vectors by their class id and sums them. For both logistic regression and SVM,
we first transformed the tf-idf score vectors into a format as expected by LIBLINEAR.
Then we trained on these feature vectors by using the LIBLINEAR command utility.

2.3 Testing

The PAN’ 14 shared task organizers provided us with a Virtual Machine(VM) with 4GB
of memory. We could have deployed Hadoop in pseudo distributive mode and ran the
MapReduce version of our application for testing. However, it would not have given
us any advantage, as the process would run on just that machine, which did not even
have multiple cores. Running the tests on Hadoop would thus only add overhead and
would make our system slower. So, for testing, we created a normal java application
(not MapReduce), that would read the trained models and predict class labels for the test
documents. For testing, we need to create test vectors similar to trained vectors. Hence,
we applied the same steps as we did for the training data. After the test document was
preprocessed to removed HTML tags and tokenized using Ark-Tweet-NLP tokenizer,

we generated word or char n-grams by using Lucene .

3 Experiments and Results

We setup a local Hadoop 2 cluster with a master node and 7 slave nodes, each node
having 16 cores and 12GB memory. We are running Hadoop version 1.0.4 and Mahout

! http://lucene.apache.org/
2 http://hadoop.apache.org/

1123

version 0.7. Since the data is large, MapReduce is ideal for feature extraction from this
data. We were able to finish training in a short amount of time even though the data is
large. We were also able to train five different models because we did not need to spend
a lot of time for feature extraction. In order to find the best model, we tried different
classification algorithms and also compared the use of word vs character n-grams. We
also performed experiments to find out if building separate models for different cate-
gories: blogs, social media, twitter and reviews produce better results than building a
single, combined model for all categories. The test was performed in cross validation
dataset, which was obtained by randomly separating 30% of the training data.

3.1 Separate Word N-gram Models for Each Category

Table 1 shows the result for word ngram experiments (unigrams, bigrams and trigrams
combined) for cross validation set. Here, we built separate models for the different
categories and different languages. So, we ended up with 14 models total. The results
show that different classifiers perform better for different categories. Also, if we are to
choose a classifier, either Naive Bayes or logistic regression seems to be more promising
across different categories.

Table 1. Accuracy for word n-grams for cross validation dataset.

English (%) Spanish (%)
Classification Algorithm Blog|Reviews|Social Media|Twitter| Blog|Social Media|Twitter
Naive Bayes 27.50] 21.55 20.62| 28.89|55.00 20.48| 34.78
Cosine Similarity 20.00| 23.64 19.72| 27.78|35.00 26.33| 36.96
Weighted Cosine Similarity 30.00| 23.16 19.97| 26.67|40.00 22.07| 32.61
Logistic Regression 27.50] 23.08 20.62| 33.33|35.00 25.80] 32.61
SVM 25.00| 22.28 19.80| 32.22|30.00 26.33| 34.78

3.2 Separate Character N-gram Models for each Category

Table 2 shows the results for character ngram experiments (bigrams and trigrams com-
bined) for the cross validation set. We again built separate models for different cate-
gories and different languages. The results show that word ngrams are better features
than character ngrams. In all experiments, we found that the word ngram method beats
the character ngram method. One possible reason for this might be that we just consid-
ered character bigrams and trigrams. If we had considered higher character n-grams, we
might have achieved similar results for both experiments. In addition, different people
may have used different spelling for same words when using social media. This might
have caused character n-gram not be able to capture the style of authors.

1124

Table 2. Accuracy for character n-grams for cross validation dataset.

English (%) Spanish (%)
Classification Algorithm Blog|Reviews |Social Media|Twitter| Blog|Social Media| Twitter
Naive Bayes 25.00{ 18.99 18.33| 24.44]40.00 19.68| 23.91
Cosine Similarity 20.00| 21.63 17.90| 30.00{50.00 21.81] 26.09
Weighted Cosine Similarity 20.00| 21.15 16.78| 23.33]|40.00 19.68| 28.26
Logistic Regression 22.50| 21.71 16.78| 25.56|35.00 23.67| 17.39
SVM 20.00] 20.83 15.92| 24.44|35.00 23.14| 17.39

3.3 Single Word N-gram Model for all Categories

Since we already figured out that word n-grams are better at predicting the profile of
an author, we decided to use them as features rather than character n-grams. The next
decision we needed to make was either to build a separate model for each category
or to build a single, combined model for all the categories. Since we had already run
experiments for separate models, we built a single combined model next. But we still
built two separate models for English and Spanish. Table 3 tabulates the accuracy ob-
tained by running combined model and separate model for the cross validation set. It is
clear from the table that having a single model is better than using separate ones. This
might be because since all the data has been obtained from some sort of social media,
authors might use similar writing styles across all of them. So, having a model trained
on all categories or genres performs better than when separate models are trained on
each category. We also found logistic regression to be the best classification algorithms
for this task. So, our final model uses word n-grams trained on data from all categories
as features and logistic regression as the classification algorithm.

Table 3. Accuracy for separate and combined models.

English (%) Spanish (%)
Classification Algorithm Separate| Combined |Separate| Combined
Naive Bayes 21.21 20.13 23.53 21.04
Cosine Similarity 19.89 17.34 27.83 27.6
Weighted Cosine Similarity 21.32 18.18 23.98 24.89
Logistic Regression 21.83 21.92 26.92 28.96
SVM 20.99 20.48 27.37 28.05

3.4 Test Results

Table 4 shows accuracy along with runtimes when our final system was run on test cor-
pus 1 and 2 for both languages. Despite using simple word n-gram features, our system
achieved competitive results both in terms of accuracy and speed. We ranked first in

1125

spanish-socialmedia and spanish-twitter for test corpus 1 and in english-socialmedia
and spanish-twitter for test corpus 2. We were ranked in the top three for most of the
other categories as well. This might even indicate that some problems are better suited
by simple solutions. For english-socialmedia, which has largest number of test docu-
ments, we ranked second in runtime for both test corpora. Our system took 26 minutes
to complete the classification. Whereas, some of the other participants took from around
30 to 69 hours to complete the testing. Although even for other test corpora, our runtime
performances are quite fast, we could not obtain equally high ranking because we have
a huge model that takes a lot of time to load.

Table 4. Accuracy on test corpus.

Test 1 Test 2
Language|Category Both| Age|/Gender|Runtime| Both| Age|Gender Runtime
Blog 16.67(25.00| 54.17{00:01:50|23.08/|38.46| 57.69|00:01:56

Reviews 20.12]28.05| 62.80|00:01:46(22.23|33.31| 66.87|00:02:13
Social Media|20.09{36.27| 53.32| 00:07:18|20.62|36.52| 53.82|00:26:31
Twitter 40.00/143.33| 73.33]00:02:01|30.52|44.16| 66.88| 00:02:31
Blog 28.57|42.86| 57.14|00:00:35(25.00|146.43| 42.86| 00:00:39
Spanish |Social Media|30.33/40.16| 68.03| 00:01:13|28.45|42.76] 64.49|00:03:26
Twitter 61.54/69.23| 88.46|00:00:43(43.33|61.11| 65.56| 00:01:10

English

3.5 PAN’13 Result

Since PAN’13 [8] had nearly double the amount of data than PAN’ 14, we also tested
our system on PAN’13 data to see how we do in terms of both accuracy and speed.
Table 5 shows the accuracy obtained when we ran our system was on PAN’13 test
dataset. Here, we used word n-grams (unigrams, bigrams and trigrams combined) as
features, TF-IDF as weighing scheme and Naive Bayes for classification. We had nearly
3 million features for English and Spanish languages. We ran everything from training
to testing on our local Hadoop cluster. For English, we obtained better accuracy than
that obtained by the contestants of the PAN’13 competition. For Spanish, our accuracy
was only lower than that of two of the contestants. For Spanish dataset, when we trained
a logistic regression model with L2 regularization with the same features and obtained
an accuracy of 44.28% which was higher than that those in the competition. But this was
not done with MapReduce. Also we were able to train and test nearly 2.4 GB of data in
just 72.12 minutes, which when compared with PAN’13 participants’ test runtimes, is
a lot less. The total testing time is 2.86 minutes which is faster than the fastest PAN’13
system which took 10.26 minutes to run. These accuracy and runtimes show that our
system performs better in both fronts when compared to the systems in the PAN’13
author profiling task.

1126

Table 5. PAN’13 Results.

Accuracy (%)

Language|System Both| Age|Gender
PAN 2013 English Best [7][38.94|59.21| 64.91
English |PAN 2013 Overall Best [6] |38.13|56.90| 65.72
Ours 42.57/65.62| 61.66
PAN 2013 Spanish Best [9]/42.08|64.73| 64.30
Spanish |[PAN 2013 Overall Best [6] [41.58(62.99| 65.58
Ours 40.32|161.73| 64.63

4 Discussion and Conclusion

In the end, we were able to produce a system that performs the author profiling task with
good accuracy. We also observed that analyzing word usage seems to be promising for
this task. But character n-grams were not as good of features. This might be because
people tend to use their own version of spelling for words especially when the writing
is informal as in this dataset. Also, stopwords, punctuation and emoticons proved to be
predictive features as well. The fact that we produced good results even with such sim-
ple features might indicate that some problems are better suited for simple solutions.
Due to our model’s load time, we were not able to obtain very high rankings for run-
time. But this will not be of concern in a practical system because we need to load the
model only once. Also, all of the systems in the competition are likely to be supervised
classification systems and all of them must have trained a model, which takes a lot more
time than testing. But, there is no mention of the training runtimes so we cannot make
a comparison. But, since we used MapReduce for feature extraction, our training time
was significantly shortened. So, our system is very likely to have less training runtime.
Because of MapReduce, we were able to play with different threshold parameter set-
tings in a reasonable amount of time and thus we can say that MapReduce is ideal for
the task of feature extraction.

Acknowledgments

We want to thank PAN’ 14 organizers and committee members for organizing the author
profiling task. This research was partially funded by The Office of Naval Research under
grant NO0O14-12-1-0217 and National Science Foundation under grant 1350360.

References

1. Cappellato, L., Ferro, N., Halvey, M., and Kraaij, W., editors (2014). CLEF 2014 Labs and
Workshops, Notebook Papers. CEUR Workshop Proceedings (CEUR-WS.org), ISSN
1613-0073 http://ceur-ws.org/ Vol-1180/.

2. Burger, J.D., Henderson, J., Kim, G., Zarrella, G.: Discriminating gender on twitter. In:
Proceedings of the Conference on Empirical Methods in Natural Language Processing. pp.
1301-1309. EMNLP ’11, Association for Computational Linguistics, Stroudsburg, PA,
USA (2011), http://dl.acm.org/citation.cfm?id=2145432.2145568

1127

10.

. Estival, D., Gaustad, T., Pham, S.B., Radford, W., Hutchinson, B.: Author profiling for

english emails. In: Proceedings of the 10th Conference of the Pacific Association for
Computational Linguistics. pp. 263-272 (2007)

. Fan, R.E., Chang, K.W., Hsieh, C.J., Wang, X.R., Lin, C.J.: LIBLINEAR: A library for

large linear classification. Journal of Machine Learning Research 9, 1871-1874 (2008)

. Gimpel, K., Schneider, N., O’Connor, B., Das, D., Mills, D., Eisenstein, J., Heilman, M.,

Yogatama, D., Flanigan, J., Smith, N.A.: Part-of-speech tagging for twitter: Annotation,
features, and experiments. In: Proceedings of the 49th Annual Meeting of the Association
for Computational Linguistics: Human Language Technologies: Short Papers - Volume 2.
pp. 42-47. HLT ’11, Association for Computational Linguistics, Stroudsburg, PA, USA
(2011), http://dl.acm.org/citation.cfm?id=2002736.2002747

. Lopez-Monroy, A.P., Montes-Y-Gomez, M., Escalante, H.J., Villasenor-Pineda, L.,

Villatoro-Tello, E.: INAOE’s participation at PAN’13 : Author profiling task. In: Notebook
Papers of CLEF 2013 LABs and Workshops, CLEF-2013, Valencia, Spain, September
(2013)

. Meina, M., Brodzinska, K., Celmer, B., Czokéw, M., Patera, M., Pezacki, J., Wilk, M.:

Ensemble-based classification for author profiling using various features. In: Notebook
Papers of CLEF 2013 LABs and Workshops, CLEF-2013, Valencia, Spain, September
(2013)

. Rangel, F.,, Rosso, P., Koppel, M., Stamatatos, E., Inches, G.: Overview of the author

profiling task at pan 2013. Notebook Papers of CLEF pp. 23-26 (2013)

. Santosh, K., Bansal, R., Shekhar, M., Varma, V.: Author profiling: Predicting age and

gender from blogs. In: Notebook Papers of CLEF 2013 LABs and Workshops, CLEF-2013,
Valencia, Spain, September (2013)

Schwartz, H.A., Eichstaedt, J.C., Kern, M.L., Dziurzynski, L., Ramones, S.M., Agrawal,
M., Shah, A., Kosinski, M., Stillwell, D., Seligman, M.E.P., Ungar, L.H.: Personality,
gender, and age in the language of social media: The open-vocabulary approach. PLoS
ONE 8(9), 73791 (09 2013),

1128

