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Abstract As plagiarisers become cleverer, plagiarism detection becomes harder.
Plagiarisers will find new ways to obfuscate the plagiarized passages so that hu-
mans and automatic plagiarism detectors are not able to point them out. So, a
plagiarism detection system needs to be robust enough to detect plagiarism, no
matter what obfuscation techniques have been applied. Our system attempts to
do the same by combining two different methods, one stricter to catch mildly ob-
fuscated passages and one more lenient to catch difficult ones. We use a machine
translation evaluation metric and n-gram matching to detect overlaps between
the source and suspicious documents. On the PAN’14 corpus, which contains
data with various types of obfuscation to mimic human plagiarisers, we obtained
plagdet scores of 0.84404 and 0.86806 on the two datasets.

1 Introduction

The first step in plagiarism detection is source retrieval, which finds the source docu-
ments from which a given document may have been plagiarised from. But we cannot
stop here because at this point we have no solid proof of plagiarism. In order to get this
proof, we need to find corresponding plagiarised passages in both the source and sus-
picious documents. This process, called text alignment is the focus of this paper. Text
alignment is important because without it, we will not be able to provide reasoning for
why we believe that the document has been plagiarised.

Text alignment may seem like simple text matching, but it is hardly so because a
plagiariser rarely copies the text verbatim. Instead it is more likely to have been changed
significantly in order to make it seem like an original piece of text. The task is now to
find the same as well as similar pieces of text between the two documents. Also, there
might be different levels of obfuscation applied to the text. A single system must be able
to catch all these passages, from those that are perfectly similar to each other to those
that only have a slight resemblance to one another. If the system is too strict, it might
only catch those passages that are very similar and if it is too lenient it might catch a lot
of false positives. This raises the difficulty level for the task.

In our system, we have tried to find a balance between a strict and a lenient system.
We used two different methods, one stricter and one more lenient and then combined
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the results obtained from them. Our strict system uses TER-p [4] and to capture the
matches between two sentences. TER-p is a machine translation evaluation metric that
finds the word edit distance from a hypothesis translation to a reference translation [4].
In TER-p along with matches, insertions, deletions, substitutions and shifts, it also con-
siders stem and synonym matches as well as phrasal substitutions as edits. The edit costs
in TER-p have been tuned to correlate with human judgments of how close an instance
of machine translation is to corresponding reference translations. Since, it measures the
edit distance, this metric can be used in tasks that need to measure similarity in text.
Some of the creators of the metric themselves used this measure for paraphrase detec-
tion [1]. In that work, they had also tried to use other machine translation metrics for
the same task, but TER-p produced the best results. Our TER-p method will produce a
detection only when the similarity between two sentences is high. So, it will not con-
sider similarity between fragments of sentences or between phrases. Our more lenient
system uses n-grams, more specifically bigrams, to generate matches. Bigrams are very
lenient and will more likely catch most of the plagiarised passages. But as in any lenient
system, it is also inclined to catch a lot of coincidental matches. But when we combine
the detections from these two methods, we merge those that are close to each other. So,
we will catch sentence fragments or phrases around the passage caught by the TER-p
method. Also, if the bigram detections are indeed from a plagiarised passage, there will
be a high density of bigram detections in that area of the text, which will form a large
passage. In the end, we will only keep large enough passages and throw out the rest.
So, the coincidental matches are likely to be removed and we will end up with only the
correct detections.

2 Methodology

Our system follows the same basic steps of any plagiarism detection system: seeding,
match merging and postprocessing. The two methods that we have used to generate
matches, produce different seeds: the method that uses TER-p scores finds matches
between sentences and the other method finds matches between n-grams. So, the natural
first step was to generate sentences and n-grams from the text.

The next step is to find matches between sentence pairs and n-gram pairs. Given a
hypothesis and a reference file, TER-p gives the number of edits required to transform
the sentences in the hypothesis file to the sentences in the reference file. It also provides
scores per sentence, which we have used. TER-p score ranges from 0 to 1, with 0 being
completely similar and 1 being most dissimilar. We considered the source document as
the reference file and the suspicious document as the hypothesis file. We obtained TER-
p scores for each sentence in the source compared with each sentence in the suspicious
document. We then considered two sentences to be plagiarised if their TER-p score is
above a certain value, which in our final system is set at 0.9. For n-grams, we performed
exact matching. We used bigrams and thus there were a lot of false matches. To remove
false positives we merged the detections from bigrams separately before combining it
with results from the TER-p system and took only 1 matching bigram in source for each
bigram in the suspicious document.
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After we obtained matches from both methods, we merged them to obtain passages.
First we merged all the matches that were close to each other by a certain threshold in
both the source and the suspicious documents. We had tried to set this threshold accord-
ing to the length of the matching passages to be merged. The longer the passages, the
larger would be the threshold. But we ended up using a fixed threshold of 80 characters
because it produced better results. We repeated this merging process until the passages
could not be merged anymore.

We also performed a postprocessing step after we found the matching passages.
We kept our postprocessing step very simple by just removing the passages that were
shorter than 200 characters. Although this reduced the recall by a small amount, we
were able to obtain better granularity. The values for all the parameters and thresholds
were chosen empirically as those that produce a good balance between precision and
recall, while keeping the granularity as close to 1 as possible.

3 Results and Discussion

Our results on the PAN’14 text alignment corpus for the training and test datasets are
shown in Tables 1 and 2 respectively. The evaluation metrics used are macro-averaged
precision and recall, granularity and plagdet [2]. The plagiarised passages in the data
have different levels of obfuscation.

Table 1. Evaluation results for the training corpus

Plagiarism Type Plagdet Precision Recall Granularity
No Obfuscation 0.88009 0.80287 0.97374 1.00000
Random Obfuscation 0.86150 0.89992 0.83358 1.00642
Translation Obfuscation 0.85427 0.85322 0.86086 1.00447
Summary Obfuscation 0.15853 0.98171 0.08975 1.05263

Table 2. Evaluation results for the test corpus

Dataset Plagdet Precision Recall Granularity
PAN’14 Test Corpus 2 0.84404 0.85906 0.83782 1.00701
PAN’14 Test Corpus 3 0.86806 0.84418 0.89839 1.00381

Our method performs the best when there is no obfuscation, which is what we ex-
pected. But even with random and translation obfuscations, we are very close to the
plagdet we obtain for no obfuscation. We also have a good balance between precision
and recall. When we participated last year, we had used larger values of n [3] while
this year we used bigrams. When we use just the bigrams and leave out results from
the part of the system that uses TER-p, we get plagdet of 0.92880, 0.74728, 0.67112,
0.09335 for the different levels of obfuscation in order on the training data. Our last
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year’s system had obtained plagdet scores of 0.89040, 0.67649, 0.62194, 0.12174 for
respective levels of obfuscation on the same data. Even with just bigrams we get better
results than last year’s system. This shows that smaller n is better when trying to find
matches between two texts. This might be because smaller n-gram matches can always
be merged to get larger n-grams but the reverse is not possible.

The part of the dataset where our method fails to catch plagiarised passages is sum-
mary obfuscation. Here, the plagiarised passages have been summarized and then in-
serted into the suspicious document. We have not used any summarizer in our system,
which might be why we are not able to catch these. Since several sentences are summa-
rized into one, the TER-p method is unable to find exact matching sentences. Also, the
bigram method catches some of the matching bigrams but since they are too far apart
in the source document, they are not merged. They remain as short passages and are
subsequently removed in the postprocessing step.

The postprocessing step did help to lower our granularity. Without this step, granu-
larity was high and this brought down our plagdet significantly, although we had good
values for precision and recall. So, this step helped lower the granularity considerably
and in turn increase the plagdet score. But for summary obfuscation even after this post-
processing step, granularity is close to 2. This is because the detected passages, even
when they are long enough to not be removed by the postprocessing step are the too
sparse and too far between.

All in all, we were able to get good results as well as balanced precision and recall
for all the obfuscation levels except for summary obfuscation. For the obfuscations on
which we did perform well, we have similar plagdet scores that show that our system is
equally capable of detecting these varieties of obfuscations.

4 Conclusion and Future Work

Our idea of using one strict and one lenient method did work in catching most types of
obfuscations. We also improved on our results from last year although we used a sig-
nificantly different system. We were able to use TER-p, which is a machine translation
metric for a task that it was not designed for but was definitely suitable for. This also
opens the doors to explore other similar metrics that can be used for similarity detection,
which we plan to add to our system.
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