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ABSTRACT 
This paper defines 5 key dimensions of student models:  whether 
and how they model time, skill, noise, latent traits, and multiple 
influences on student performance.  We use this framework to 
characterize and compare previous student models, analyze their 
relative accuracy, and propose novel models suggested by gaps in 
the multi-dimensional space.  To illustrate the generative power of 
this framework, we derive one such model, called HOT-DINA 
(Higher Order Temporal, Deterministic Input, Noisy-And) and 
evaluate it on synthetic and real data.  We show it predicts student 
performance better than previous methods, when, and why. 
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1. Introduction 
Morphological analysis [1] is a general method for exploring a 
space of possible designs by identifying key attributes, specifying 
possible values for each attribute, and considering different 
combinations of choices for the attributes.  Structuring the space 
in this manner compares different designs in terms of which 
attribute values they share, and which ones differ.  Characterizing 
the space of existing designs in terms of these attributes exposes 
gaps in the space, suggesting novel combinations to explore. 

Some prior work on student modeling has used this approach to 
characterize spaces of possible knowledge tracing models.  
Knowledge tracing (KT) [2] generally has 4 or 5 parameters:  the 
probability slip of failing on a known skill; the probability guess 
of succeeding on an unknown skill; the probability knew of 
knowing a skill before practicing it; the transition probability 
learn from not knowing the skill to knowing it; and sometimes the 
transition probability forget from knowing the skill to not 
knowing it, usually assumed to be zero. 

Mostow et al. [3] defined a space of alternative parameterizations 
of a given KT model, based on whether they assigned each 
knowledge tracing parameter a single overall value, a distinct 
value for each individual student and/or skill, or different values 
for different categories of students and/or skills.  Thus the number 
of values to fit is 4 if using a single global value for each 
parameter, but with separate probabilities for each <student, skill> 
pair, the number of values to fit is 4 × # students × # skills.  This 
work ordered the space of possible parameterizations of a single 

model by the number of values to fit.  

Xu and Mostow [4] factored the space of different knowledge 
tracing models in terms of three attributes:  how to fit their 
parameters, how to predict students’ performance from their 
estimated knowledge, and how to update those estimates based on 
observed performance.  We will use this factoring in Section 3.2. 

Section 2 introduces the proposed framework.  Section 0 describes 
HOT-DINA, a novel knowledge tracing method that the 
framework inspired.  Sections 4 and 5 evaluate HOT-DINA on 
synthetic and real data, respectively.  Section 6 concludes. 

2. A Unified 5-Dimensional Framework 
We characterize student models in terms of these five dimensions: 

Temporal effect: skills time-invariant vs. time-varying. 
• Static, e.g. IRT [5] and PFA [6] 
• 2 or more fixed time points, e.g. at pre- and post-test  
• Dynamic, e.g. KT [2] 

Skill dimensionality:  single skill vs. multiple skills at a step. 
Credit assignment: how credit (or blame) is allocated among 
influences on the observed success (or failure) of a step.   Mostow 
et al. [3] define a space of KT parameterizations.  Corbett and 
Andersen [2] originally fit KT per skill. Pardos and Heffernan [7] 
individualized KT and fit parameters per student. Wang and 
Heffernan [8] simultaneously fit KT per student and per skill. In 
contrast, multiple-skills models require combination functions to 
assign credit or blame among the skills.  Product KT [9] assigns 
full responsibility to each skill and multiplies the estimates. 
Conjunctive KT [10] assigns fair credit or blame to skills and 
multiplies the estimates. Weakest KT [11] credits or blames the 
weakest skill and takes the minimum of the estimates. LR-DBN 
[12] apportions credit or blame and performs logistic regression 
over the estimates.  We summarize credit assignment methods as: 

• Contingency table 
o Per student 
o Per skill 
o Per <student, skill> 
o Per student + per skill 

• Binary or probabilistic 
o Conjunctive (min) 
o Independent (product) 
o Disjunctive (max) 

• Other 
o Compensatory (+) 
o Mixture (weighted average) 
o Logistic regression (sigmoid) 

Higher order:  treat static student properties as latent traits or not. 
We say IRT [5] models “higher order” effects because it estimates 
static student proficiencies independent of skill properties such as 
skill difficulty in 1PL (1 Parameter Logistic), skill discrimination 
in 2PL, and skill guess rate in 3PL. De la Torre [13] first 
combined IRT with static Cognitive Diagnosis Models such as 

 

 



NIDA (Noisy Inputs, Deterministic And Gate) [14-16] and DINA 
(Deterministic Inputs, Noisy And Gate), and proposed higher 
order latent trait models (HO-NIDA and HO-DINA). Xu and 
Mostow [17] used IRT to estimate the probability of knowing a 
skill initially in a higher order knowledge tracing model (HO-KT).  
Noise: how to represent errors in model, or discrepancies between 
what a student knows versus does.  KT assumes students may 
guess a step correctly even though they don’t know its underlying 
skill(s), or slip at a step even though they know its skill(s). Such 
“noise” is also characterized in other models, including single-
skill KT variants such as PPS (Prior Per Student) [7] and SSM 
(Student Skill Model) [8], and IRT models such as 3PL. NIDO 

and DINO respectively add noise either before or after combining 
estimates of multiple skills.  We refer to these noise modeling 
methods as: 

• None 
• Slip/Guess 
• NIDO (noisy input, deterministic output) 
• DINO (deterministic input, noisy output)  

Table 1 summarizes student models in the proposed unified 5-
dimensional framework. Note that we only discuss known 
cognitive models (e.g. Q-matrix) in this paper, so we omit 
methods that discover unknown cognitive models [18, 19]. 

Table 1. A unified 5-dimensional framework for student models 

Student models Temporal 
effect 

Skill 
dimensionality 

Credit 
assignment 

Higher order 
effect Noise model 

IRT 1PL (Rasch model) [5] 
IRT 2PL (2 Parameter Logistic) [5] 

Static 

Single skill Per student + 
per skill Latent trait None 

IRT 3PL (3 Parameter Logistic) [5] Slip/Guess 
LLM (Linear Logistic Model) [16] 

Multiple skills 

Sigmoid 
No latent trait 

None LFA (Learning Factor Analysis) [20]  
PFA (Performance Factor Analysis) [6] 
NIDA [14-16] Product NIDO 
DINA [14-16] DINA 
LLTM (Linear Logistic Test Model) [21] Sigmoid 

Latent trait 
None 

HO-NIDA [13] Product NIDO 
HO-DINA [13] DINO 
KT [2] 

Dynamic 

Single skill 

Per skill 
No latent trait 

Slip/Guess 
PPS (Prior Per Student) [7] Per student 
SSM (Student Skill Model) [8] 

Per student + 
Per skill HO-KT [17] Latent trait 

DIR (Dynamic IRT 1PL) [22] None 
KT+NIDA [23] 

Multiple skills 

Product 

No latent trait 
NIDO Product KT [9] 

CKT [10] 
Weakest KT [11] Minimum 
KT+DINA [23] Product DINO LR-DBN [12] Sigmoid 
HOT-NIDA [Section 0] Product Latent trait NIDO 
HOT-DINA [Section 0] DINO 

Table 2. Comparative framework to train, predict and update multiple-skills models   

Student models Train Predict Update 

CKT 

Train skills separately. 
Assign each skill full 

responsibility. 

Multiply skill estimates. 
Update skills together. Bayes’ 
equations assign responsibility. 

Product KT 

Update skills separately, each with 
full responsibility. 

Weakest KT 
(Blame weakest, 

credit rest) Minimum of skill 
estimates. 

Weakest KT 
(Update weakest 

skill) Update only the weakest skill. HOT-NIDA 
HOT-DINA 
[Section 3.2] 

Train skills together. 
Assign each skill full 

responsibility. 
Multiply skill estimates. 

KT+NIDA/DINA Update skills together, each with 
full responsibility. 

LR-DBN Train skills together. Logistic 
regression assigns responsibility. 

Logistic regression on 
skill estimates. 

Update skills together. Logistic 
regression assigns responsibility. 



Table 2 (adapted from [4]) expands Credit assignment in terms 
of how to train, predict and update skills, e.g. to assign full 
responsibility to every skill, blame the weakest skill and credit 
the rest, update only the weakest skill, or use logistic function. 

The tables suggest transformations of models along the 
dimensions in the framework. For example, Dynamic IRT [22] 
varies student proficiency by time, transforming static IRT to 
dynamic.  KT+NIDA/DINA [23] varies skill estimates by time, 
transforming static NIDA/DINA to dynamic. HO-
NIDA/DINA/KT adds latent traits, transforming 
NIDA/DINA/KT to higher order.  LLM [16] and LLTM [21] 
change the combination function, transforming conjunctive 
models to logistic models.  In Section 0 we generate a novel 
student model by transforming HO-KT to a multi-skill model. 

3. A Higher-Order Temporal Student Model 
to Trace Multiple Skills: HOT-DINA 
Xu and Mostow [17] extended the static IRT model into HO-KT 
(Higher Order Knowledge Tracing), which accounts for skill-
specific learning by using the static IRT model to estimate the 
probability Pr(knew) of knowing a skill before practicing it. By 
generalizing to steps that require conjunctions of multiple skills, 
we arrive at a combined model we call HOT-DINA (Higher 
Order Temporal, Deterministic Input, Noisy-And). Note we can 
transform it into HOT-NIDA simply by changing its noise type. 

3.1 HOT-DINA = IRT + KT + DINA 
Let {Y(0), Y(1) , …, Y(t), …} denote a sequential dataset recorded 
by an intelligent tutor system, where Ynj

(t) = 1 iff student n 
correctly performs a step that requires skill j at time t. KT is a 
Hidden Markov Model (HMM) that models a binary hidden 
state K(t) indicating if the student knows the skill at time t. The 
probability of knowing the skill is knew at time t = 0, and then 
changes based on the student’s observed performance on the 
skill, according to the standard KT parameters slip, guess, learn, 
and forget (usually set to zero). 

KT can fit these four parameters (taking forget = 0) for each 
<student, skill> pair, but the resulting large number of values to 
fit is likely to cause over-fitting. Thus, Corbett and Andersen [2] 
originally proposed to estimate knew per student, and learn, 
guess and slip per skill. IRT assumes a latent trait that represents 
a student’s underlying proficiency in all the skills. For example, 
the Two Parameters Logistic (2PL) IRT model assumes that the 
probability of a student’s correct response is a logistic function 
of a unidimensional student proficiency θ with two skill-specific 
parameters: discriminability a and difficulty b (see Equation 1). 

𝑃 𝑌   =   1   =     
1

1 + exp  (−1.7𝑎(𝜃 − 𝑏))
 

Equation 1. The logistic function of 2PL model 
The two skill parameters determine the shape of the IRT curve. 
As a student’s proficiency increases beyond the skill difficulty, 
the student’s chance of performing correctly surpasses 50%. The 
skill discriminability reflects how fast the logit (log odds) 
increase or decrease when the proficiency changes. Thus IRT 
fits parameters individually on each dimension, without losing 
the information from the other. HO-KT uses 2PL to estimate 
knew in KT, by fitting student specific proficiency θn, skill 
discriminability aj and skill difficulty bj. It then uses KT to trace 
each skill, by fitting skill-specific learnj, guessj and slipj. Thus, 
HO-KT models students’ initial overall knowledge before they 
practice any skills; then it updates its estimates of students’ 

knowledge of each individual skill by observing additional 
practice on the skill. It also models two attributes of the skills, 
difficulty and discriminability, which are assumed to be 
constants that do not change over time. 

To incorporate DINA into HO-KT, we still model a hidden 
binary state in each step to indicate whether a student knows the 
overall skill used in the step, denoted as ηnj

(t) for student n with 
skill j at time t.  However, we also model a hidden binary state 
αnk

(t) to indicate whether student n knows skill k at time t. Given 
a matrix Q = {Qjk}, indicating whether the overall skill j 
requires skill k, we conjoin the skills as follows: 

𝜂!"
!   =    (𝛼!"

! )!!"
!

!  !  !

 

Equation 2. Conjunction of skills in HOT-DINA 
This formula gives us the DINA (Deterministic Input, Noisy-
And gate) structure [15], with the conjunction as the “and” gate 
and guess and slip as the noise. Thus by combining HO-KT with 
DINA, we obtain the HOT-DINA higher order temporal model 
to trace multiple skills.  Figure 1 shows how the plate diagram 
for HOT-DINA integrates IRT, KT, and DINA. 

 

 
Figure 1. Graphical representation of Higher-Order 

Temporal DINA (HOT-DINA) to trace multiple skills 
 



Equation 3 shows the formula for using 2PL to estimate the 
probability knew of a student knowing a skill at time t = 0: 

𝑃 𝑘𝑛𝑒𝑤!"   =     𝑃 𝛼!"
(!)   =   1   

=   
1

1 + exp  (−1.7  𝑎!(𝜃! − 𝑏!))
 

Equation 3. 2PL to estimate knew in HOT-DINA 
Equation 4 shows the formula for tracing the skills with skill-
specific learn and zero forget:  

𝑃 𝛼!" !   =   1 𝛼!" !!!   =   0   =     𝑙𝑒𝑎𝑟𝑛! 

𝑃 𝛼!" !   =   0 𝛼!" !!!   =   1   =     𝑓𝑜𝑟𝑔𝑒𝑡!   =   0 

Equation 4. Knowledge tracing of skills in HOT-DINA 
Equation 5 shows the likelihood of a student’s performance 
given the hidden state η(t) and the skill-specific guess and slip: 

𝐿 𝑌!"
!   =   1|  𝜂!"

!   =   𝑔𝑢𝑒𝑠𝑠!
!!!!"

!
×(1 − 𝑠𝑙𝑖𝑝!)

!!"
!

 

𝐿 𝑌!"
!   =   0|  𝜂!"

!   =    (1 − 𝑔𝑢𝑒𝑠𝑠!)
!!!!"

!
×𝑠𝑙𝑖𝑝!

!!"
!

 

Equation 5. Likelihood in HOT-DINA 

3.2 How to Train, Predict, and Update 
Following the organization of Table 2, Section 3.2.1 details how 
HOT-DINA trains the skills together and assigns each skill full 
responsibility; Section 3.2.2 specifies how HOT-DINA predicts 
student performance by using a product of skill estimates; and 
Section 3.2.3 shows how HOT-DINA updates the weakest skill. 

3.2.1 Training the model with MCMC 
We estimate the parameters of HOT-DINA using Markov Chain 
Monte Carlo (MCMC) methods, which require that we specify 
the prior distributions and constraints for every parameter. We 
assume that student general proficiency θn is normally 
distributed with mean 0 and standard deviation 1. The skill 
discrimination an is positive and uniformly distributed between 0 
and 2.5, while the skill difficulty bn is also normally distributed 
with mean 0 and standard deviation 1. Learn has prior Beta 
(1,1), whereas guess and slip have uniform prior from 0 to 0.4.  

Thus, the priors on each parameter are: 

𝜃!    ~    𝑁𝑜𝑟𝑚𝑎𝑙(0,1) 

𝑏!      ~  𝑁𝑜𝑟𝑚𝑎𝑙(0, 1) 

𝑎!      ~  𝑈𝑛𝑖𝑓𝑜𝑟𝑚(0, 2.5) 

𝑙𝑒𝑎𝑟𝑛!      ~  𝐵𝑒𝑡𝑎(1, 1) 

𝑔𝑢𝑒𝑠𝑠!     ~  𝑈𝑛𝑖𝑓𝑜𝑟𝑚(0, 0.4) 

𝑠𝑙𝑖𝑝!     ~  𝑈𝑛𝑖𝑓𝑜𝑟𝑚(0, 0.4) 

We use the following conditional distributions for each node:  

𝛼!"
! |𝜃!    ~  𝐵𝑒𝑟𝑛𝑜𝑢𝑙𝑙𝑖({1 + exp −1.7  𝑎! 𝜃! − 𝑏! }!!  ) 

𝛼!"(!)|  𝛼!" !!!   =   0  ~  𝐵𝑒𝑟𝑛𝑜𝑢𝑙𝑙𝑖(𝑙𝑒𝑎𝑟𝑛!) 

𝛼!"(!)|  𝛼!" !!!   =   1  ~  𝐵𝑒𝑟𝑛𝑜𝑢𝑙𝑙𝑖(1) 

𝑌!"
(!)|𝜂!" !   =   0    ~  𝐵𝑒𝑟𝑛𝑜𝑢𝑙𝑙𝑖(𝑔𝑢𝑒𝑠𝑠!) 

𝑌!"
(!)|𝜂!" !   =   1    ~  𝐵𝑒𝑟𝑛𝑜𝑢𝑙𝑙𝑖(1 − 𝑠𝑙𝑖𝑝!) 

Given η as a conjunction of α, the likelihood of Y given η, the 
conditional independence of α(0) given θ, and of α(t) given α(t-1), 
the posterior distribution of θ, a, b, α, η, learn (l), guess (g) and 
slip(s) given Y is 

𝑃 𝜽,𝒂,𝒃,𝜶,𝜼, 𝒍,𝒈, 𝒔 𝒀 ∝ 𝐿 𝒀 𝒈, 𝒔,𝜼,𝜶 𝑃 𝜶 ! 𝜽,𝒂,𝒃  

( 𝑃 𝜶 ! 𝜶 !!! , 𝒍 )𝑃 𝜽 𝑃 𝒂 𝑃 𝒃 𝑃 𝒍 𝑃 𝒈 𝑃(𝒔)
!

!  !  !
 

3.2.2 Predicting student performance 
For inference, we introduce uncertainty to ηnj, and rewrite the 
Equation 2 as follows:    

𝑃 𝜂!"
!   =   1   =     

1
exp −1.7𝑎! 𝜃! − 𝑏!

!!"!

!  !  !

 

𝑃 𝜂!"
!   =   1   =    (𝑃(𝛼!"

!   =   1))!!")!
!  !  !  for t = 1,2,3… 

Equation 6. Conjunction of skills in HOT-DINA inference 

Then we predict student performance by using Equation 7: 

𝑃 𝑌!"
!   =   1   =    1 − 𝑠𝑙𝑖𝑝! 𝑃 𝜂!"

!   =   1 + 𝑔𝑢𝑒𝑠𝑠!(1

− 𝑃 𝜂!"
!   =   1 ) 

Equation 7. Prediction in HOT-DINA 

3.2.3 Updating estimated skills 
We update the estimates of latent states η and α after observing 
actual student performance. The estimate of knowing a skill or a 
subskill should increase if the student performed correctly at the 
step. It is easy to update a skill by using Bayes’ rule, as shown in 
Equation 8. The posterior P(ηnj

(t) = 1|Ynj
(t) = 1) should be higher 

than P(ηnj
(t) = 1) if and only if (1-slipj) > guessj. 

𝑃 𝜂!"
!   =   1 𝑌!"

!   =   1   

=   
𝑃 𝑌𝑛𝑗

𝑡   =   1 𝜂𝑛𝑗
𝑡   =   1)  𝑃 𝜂𝑛𝑗

𝑡   =   1

𝑃 𝑌𝑛𝑗
𝑡   =   1

 

  =     
(!!!"#$!)  ! !!"

!   !  !

(!!!"#$!)  ! !!"
!   !  ! !!"#$$! !!  ! !!"

!   !  !
      

Equation 8. Bayes’ rule to update η in HOT-DINA 
Although we could update HOT-DINA by assigning full 
responsibility to each skill, it would be interesting to update the 
weakest (or say hardest) skill since HOT-DINA fits the 
parameter ‘difficulty’ for each skill. Thus, we update the skill 
that is the hardest among all the required skills in a step: 

𝑃 𝜂!"
!   =   1 𝑌!"

!   =   1   

=   𝑃 𝛼!"!
!   =   1|𝑌!"

!   =   1 𝑃(𝛼!"
!   

!!!!
=   1) 

for 𝑘   =   argmax!:  !!"  !  ! 𝑏!. 

Equation 9. Update the hardest skill in HOT-DINA 
In short, we extend HO-KT to the HOT-DINA higher order 
temporal model, which traces multiple skills. We use the 
MCMC algorithm to estimate the parameters, and update the 
estimates of a student knowing a skill given observed student 
performance. How well does the HOT-DINA model work?  To 



evaluate it, we performed a simulation study.  Section 4 now 
describes the study and reports its results. 

4. Simulation Study 
To study the behavior of HOT-DINA, we generated synthetic 
training data for it according to the priors and conditional 
distributions defined in Section 3.2.1.  Section 4.1 describes the 
synthetic data.  One purpose of this experiment was to test how 
accurately MCMC can recover the parameters of HOT-DINA, 
as Section 4.2 reports.  It is important not only to test how well a 
method works, but to analyze when and why.  Thus another 
purpose was to determine how many students and observations 
are needed to estimate the difficulty and discriminability of a 
given number of skills, as Section 4.3 explains. 

4.1 Synthetic Data 
We use the following procedure to generate the synthetic data, 
with all the variables as defined in Section 3.2: 

1. We chose K = 4 and J = 14, which results in a 14 × 4 Q 
matrix. The Q matrix, as shown below, indicates that we 
generate the skills by combining all the possible skills. 
𝐐!   

=   

1 0 0
0 1 0

0 1 1
0 1 0

1 0 0 0 1 1 1 0
0 1 1 0 1 0 1 1

0 0 1
0 0 0

0 0 1
1 0 0

0 1 0 1 1 1 0 1
1 0 1 1 0 1 1 1

 

 

2. We randomly generated θn from Normal (0,1) for n = 1,..,N. 

3. We chose a, b and l as shown in Table 3. 

Table 3. True value of skill-specific discrimination, difficulty 
and learning rate in synthetic data simulation 

k 1 2 3 4 
a 1.5 1.2 1.9 1.0 
b -0.95 1.42 -0.66 0.50 

learn 0.8 0.6 0.5 0.3 
 
4. We randomly generated g and 1-s from Unif(0,0.4) and 

Unif (0.6,1) respectively, as shown in Table 4. 

Table 4. True value of skill-specific guess and not slip 
parameters in synthetic data simulation 

j 1 2 3 4 5 6 7 
guess 0.35 0.40 0.13 0.15 0.29 0.39 0.10 
1-slip 0.67 0.66 0.67 0.90 0.65 0.60 0.61 

j 8 9 10 11 12 13 14 
guess 0.40 0.15 0.16 0.38 0.11 0.26 0.35 
1-slip 0.81 0.74 0.76 0.73 0.83 0.89 0.85 

5. We chose N = 100, T = 100, randomly picked one skill at 
each step, and simulated sequential data with size of 10,000. 

4.2 Results 
We used OpenBUGS [24] to implement the MCMC algorithm 
of HOT-DINA. We chose 5 chains starting at different initial 
points. We monitored the estimates of skill discrimination 𝒂 and 
difficulty 𝒃 to check their convergence, when all the chains 
appear to be overlapping each other. As a result, we ran the 
simulation for 10,000 iterations with a burn-in of 3000.  

Table 5 reports the sample means and their 95% confidence 
interval for parameter estimates 𝒂, 𝒃  and le𝒂rn respectively. 
We also report the Monte Carlo error (MC error) and sample 

standard deviation (s.d.) to assess the accuracy of the posterior 
estimates for each parameter. MC error, which is an estimate of 
the difference between the estimated posterior mean (i.e. the 
sample mean) and the true posterior mean, should be less than 
5% of the s.d. in order to obtain an accurate posterior estimate. 

 

Table 5. Estimates of skill-specific discrimination, difficulty, 
and learning rate (N = 100, T = 100, K = 4, J = 14) 

k a 𝒂 (95% C.I.) s.d. MC_error 
1 1.50 1.33 (0.36, 2.43) 0.65 0.03216 
2 1.20 1.23 (0.12, 2.43) 0.72 0.03561 
3 1.90 1.85 (0.22, 2.73) 0.64 0.03146 
4 1.00 0.98 (0.19, 2.12) 0.58 0.02870 
k b 𝒃 (95% C.I.) s.d. MC_error 
1 -0.95 -0.95 (-2.15, -0.04) 0.50 0.02339 
2 1.42 1.51(0.90, 2.21) 0.45 0.01936 
3 -0.66 -0.69 (-1.81, -0.63) 0.42 0.01990 
4 0.5 0.5 (0.05,1.18) 0.38 0.01691 
k learn 𝒍𝒆𝒂𝒓𝒏 (95% C.I.) s.d. MC_error 
1 0.8 0.81 (0.48, 0.99) 0.13 0.006599 
2 0.6 0.60 (0.52, 0.70) 0.05 0.002132 
3 0.5 0.57 (0.38, 0.84) 0.11 0.005432 
4 0.3 0.29 (0.25, 0.33) 0.02 7.79E-04 
     
We calculated Root Mean Squared Error (RMSE) of the 
estimates of the continuous variables𝒈𝒖𝒆𝒔𝒔 , 1- 𝒔𝒍!𝒑 , and   
𝜽. We report the accuracy of recovering the true value of the 
latent binary variable α in Table 6. 

Table 6. Estimation RMSE of skill-specific guess, not slip, 
and student specific proficiency; Prediction accuracy of a 

student mastering a subskill (N = 100, T = 100, K = 4, J = 14) 

 𝒈𝒖𝒆𝒔𝒔  1-𝒔𝒍!𝒑 𝜽 
RMSE 0.0103 0.0196 0.9183 
 𝜶 
Accuracy 99.38% 

    
From the results, we can see that the MCMC algorithm 
accurately recovered the parameters we used in generating the 
synthetic data for HOT-DINA. In addition to seeing how 
accurately it can estimate the parameters, we are also interested 
in finding out how many observations would be sufficient for 
the training algorithm to recover the hidden variables. Therefore, 
we conducted the study we now describe in Section 4.3. 

4.3 Study Design 
HOT-DINA requires data from enough students to rate the 
difficulty and discriminability of each skill, and data on enough 
skills to estimate the proficiency of each student. So we fixed 
the number of skills at K = 4, and varied the number of students 
N or the number of steps observed from each student T, to 
discover how many observations would be sufficient to estimate 
the parameters. In particular, we evaluated each model on how 
accurately it estimated the latent binary state α¸ which indicates 
if a student masters a skill. We generated the data by using the 
same parameters as in Section 4.1. Besides the general HOT-
DINA model that accounts for multiple skills, we also studied 
the single-skill model by shrinking the number of skills J to 
equal K, and set Q as an identity matrix. Thus we specified the 
HOT-DINA model to be a HO-KT model alternatively.  

We increased N, the number of students, from 10 to 1000, and 
T, the number of observations per student, from 5 to 100. Table 



7 and Table 8 respectively show the accuracy of estimating the 
latent state α in HO-KT and HOT-DINA. Both tables show a 
trend of increasing accuracy when N or T increases (though at 
the cost of longer training time, roughly O(N2×T)). 

Table 7. Accuracy of estimating the latent binary states α 
with different N and T (K = J = 4) 

T 
N 

5 10 20 50 100 

10 71.01% 80.81% 83.01% 93.11% 96.16% 

20 72.32% 82.74% 86.52% 94.06% 97.33% 

50 73.58% 83.79% 87.34% 95.27% 98.90% 

100 77.55% 84.43% 88.08% 95.81% 99.41% 

200 76.52% 84.02% 89.48%  97.26% NA  

500 78.13% 84.34% 92.50% NA  NA  

1000 80.10% 84.59%  NA NA  NA  
 
Due to the lack of sampling ability of OpenBUGS for high 
dimensional dynamic models, we have no available scores to 
show for N×T bigger than 10,000. We can see that the multiple 
skill model predicts better than the single-skill model because 
the average number of observations per skill in the former one is 
larger than the latter. As observed in both tables, it is more 
efficient to increase T, than N, to get a better estimate. Both of 
the models reach the best prediction accuracy score (> 99%) 
when N = 100 and T = 100. In order to obtain an accuracy > 
90% for K = 4 skills, the least amount of data we need for HO-
KT is N = 10 with T ≈ 50 observations as shown in Table 7, for 
HOT-DINA is N = 10 with T > 20 observations, as shown in 
Table 8. 

 
Table 8. Accuracy of estimating the latent binary states α 

with different N and T (K = 4, J = 14) 

T 
N 

5 10 20 50 100 

10 72.07% 75.57% 91.14% 96.90% 98.10% 

20 74.32% 83.60% 91.56% 97.46% 98.53% 

50 76.55% 84.71% 92.62% 97.52% 98.98% 

100 77.80% 86.82% 93.83% 97.67% 99.82% 

200 79.92% 88.78% 94.26% 99.41%  NA 

500 82.15% 89.95% 98.61%  NA  NA 

1000 83.58% 92.34%  NA  NA  NA 
 
Next we apply the proposed model to real data logged by an 
algebra tutor. We evaluate the model fit and compare it against 
two baselines. 

5. Evaluation on Real Data 
We apply HOT-DINA to a real dataset from the Algebra 
Cognitive Tutor® [25]. Because of limited time, we chose a 
subset of the data, by crossing out the “isolated” algebra tutor 
steps. An “isolated” step here means a step that requires one 
skill all its own. We grouped the remaining steps that require the 
same multiple skills into one skill, resulting in J = 15 distinct 
skills that require K = 12 subskills.  Following the study design 

in Section 4.3, we randomly chose N = 50 students with T = 100 
in order to obtain enough data for the MCMC estimation.  

Table 9. Data split of the Algebra Tutor data: training on I 
and IV, and testing on II and III  

 Skill group A Skill group B 
Student group A I II 
Student group B III IV 

We split the 50 students into two groups of 25, and split the 15 
skills into two groups of 8 and 7. As shown in Table 9, we 
combine data from I (student-group-A practicing on skill-group-
A) and IV (student-group-B practicing on skill-group-B) to 
obtain the training data. Accordingly, we combined the data 
from II and III to obtain the test data. As a benefit of the data 
split, we are able to test the models on unseen students for the 
same group of skills, and also test on the unseen skills for the 
same group of students. 

We compared HOT-DINA with the conjunctive minimum KT 
model [11] since it showed the best prediction accuracy among 
all the previous KT based methods [4]. It fits KT parameters by 
blaming each skill that is required at a step, predicts student’s 
performance by the weakest skill, and updates only the weakest 
skill. Accordingly, we updated the most difficult skill in HOT-
DINA as discussed in Section 3.2.3. As two baseline models, we 
fit per-skill KT and per-student KT. Comparing HOT-DINA 
with these two baselines also allows us to discuss some more 
interesting research questions later in this section.  

Table 10 and Table 11 respectively show the models’ prediction 
accuracy and log-likelihood on the test data. We report the 
majority class because of the unbalanced data. HOT-DINA beat 
the two baselines in predicting the student performance, and also 
obtained the maximum log-likelihood on the test data. The per-
student KT model obtained the worst scores on both measures. It 
predicted student performance almost as poorly as majority class 
because it misclassified almost all the data in the minority class. 

Table 10. Comparison of prediction accuracy on real test 
data 

 Overall 
Accuracy 

Accuracy on 
Correct Steps 

Accuracy on 
Incorrect Steps 

HOT-DINA 82.48% 96.63% 27.27% 
Per-skill KT  80.87% 94.02% 29.60% 
Per-student KT 79.63% 99.74% 1.20% 
Majority class 79.60% 100.00% 0.00% 

 
Table 11. Comparison of log-likelihood on real test data 

 Log-likelihood 
HOT-DINA -2021.04 
Per-skill KT  -2075.67 
Per-student KT  -2464.74 

     
We are also interested in three other hypotheses comparing 
HOT-DINA with KT. We describe them, test them, and show 
the results as follows. 

1. HOT-DINA should predict early steps more accurately than 
KT since its estimate of knew reflects both skill difficulty 
and student proficiency, not just one or the other.  In fact 
HOT-DINA beat KT throughout, as Figure 2 shows. 



 
Figure 2. Accuracy on student’s 1st, 2nd, 3rd, … test steps 

2. HOT-DINA should beat KT on sparsely trained skills 
thanks to student proficiency estimates based on other 
skills.  As Figure 3 shows, HOT-DINA tied or beat KT 
throughout. 

 

 
Figure 3. Skills sorted by amount of training data 

3. HOT-DINA should beat KT on sparsely trained students 
thanks to skill difficulty and discriminability estimates 
based on other students.  As Figure 4 shows, HOT-DINA 
beat KT throughout. 

 

 
Figure 4. Students sorted by amount of training data 

Thus, HOT-DINA outperformed the two baselines in model fit. 
It also beat them as specified by the three hypotheses above. 

 

 

 

6. Contributions, limitations, future work 
In this paper we make several contributions.  We defined a 5-
dimensional framework for student models.  We showed how 
numerous student models fit into it.  We described the new 
combination of IRT, KT, and DINA it suggests in the form of 
HOT-DINA. We specified how to train HOT-DINA by using 
MCMC, how to test it by predicting student performance, and 
how to update estimated skills based on observed performance.   

HOT-DINA uses IRT to estimate knew based on student 
proficiency and skill difficulty.  Thus it does not need training 
data on every <student, skill> pair, since it can estimate student 
proficiency based on other skills, and skill difficulty and 
discriminability based on other students.  Likewise, it should 
estimate knew more accurately than KT for skills and students 
with sparse training data.  HOT-DINA uses KT to model 
learning over time, and DINA to model combination of multiple 
skills underlying observed steps (unlike conventional KT and 
with fewer parameters than CKT [10] or LR-DBN [12]).   

Tracing multiple skills underlying an observed step requires 
allocating responsibility among them for its success or failure.  
DINA simply conjoins them, a common method but inferior to 
others.  Future work includes using the best known method [4], 
which we didn’t use here because the logistic regression it 
performs is non-trivial to integrate with MCMC. 

We evaluated HOT-DINA on synthetic and real data, not only 
showing that it predicts student performance better than previous 
methods, but analyzing when and why. 

We reported a simulation study to test if training could recover 
model parameters, and to determine the amount of data needed. 
HOT-DINA requires data on enough students and skills to 
estimate their proficiency and difficulty, respectively.  We 
explored how its accuracy varies with the number of test steps 
and the amount of training data per student and per skill.  These 
analyses were correlational, based on variations that happened to 
occur in the training data.  Future work should invest in the 
computation required to vary the amount of training data to 
establish its true causal effect on accuracy. 

Evaluation on real data from an algebra tutor showed that HOT-
DINA achieved higher predictive accuracy and log likelihood 
than KT with parameters fit per student or per skill.  This 
evaluation was limited to a single data set and two baselines (not 
counting majority class).  Future work should compare HOT-
DINA to other methods – notably the Student Skill model [8], 
which is similar in spirit – and on data from other tutors. 

We assumed that student proficiency is one-dimensional.  Future 
work can test if k dimensions capture enough additional variance 
to make it worthwhile to fit k times as many parameters. 

Finally, our choice of 5 dimensions is useful but limiting.  
Additional dimensions may provide useful finer-grained insights 
into the models covered by the current framework, and expand it 
to encompass other types of student models, e.g. where the 
cognitive model is unknown and must be discovered [18, 19]. 
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