
Cross-Domain Performance of
Automatic Tutor Modeling Algorithms

Rohit Kumar
Raytheon BBN Technologies

Cambridge, MA, USA

rkumar @ bbn.com

ABSTRACT

In our recent work, we have proposed the use of multiple solution

demonstrations of a learning task to automatically generate a tutor

model. We have developed a number of algorithms for this

automation. This paper describes the application of these domain-

independent algorithms to three datasets from different learning

domains (Mathematics, Physics, French). Besides verifying the

applicability of our approach across domains, we report several

domain specific performance characteristics of these algorithms

which can be used to choose appropriate algorithms in a

principled manner. While the Heuristic Alignment based

algorithm (Algorithm 2) may be the default choice for automatic

tutor modeling, our empirical finding suggest that the Path

Pruning based algorithm (Algorithm 4) may be favored for

language learning domains.

Keywords

Tutor Modeling, Automation, Domain Independence, STEM

domains, Language Learning

1. INTRODUCTION

Wide-scale transition of Intelligent Tutoring Systems (ITS) to the

real world demands a scalable ability to develop such systems.

The past decade has seen the first instantiations of

industrialization of ITS development in the form of commercial

products for different learning domains as well as diverse user

populations. In addition to addressing non-technical challenges

such as designing robust production processes around

multidisciplinary teams of domain and pedagogical experts [1],

the industrialization of this technology is enabled by technical

advancements such as the development of general purpose

authoring tools [2] which has allowed a scalable workforce to

contribute to ITS development.

In this paper, we extend our recent work [3][4] on automatically

developing Example-Tracing Tutors (ETTs) [5] using multiple

behavior demonstrations. Conventionally, ETTs are developed in

three stages by trained domain experts: (1) User Interface (UI)

development, (2) Behavior demonstration, (3) Generalization and

annotation of the behavior graph. As ITS are being deployed to a

large active user pool, it is now possible to pilot the UI with a

small sample of learners to collect multiple behavior

demonstrations. We can significantly reduce the Stage 3 effort of

ITS developers by using algorithms that can automatically create

a generalized behavior graph from multiple demonstrations.

Several algorithms to address this challenge have been proposed

and evaluated [4].

In this paper, we will study the applicability and performance of

these algorithms on publicly available datasets from three

different learning domains. Section 3 summarizes the key

characteristics of the four algorithms used in our study. Section 4

describes learning domains and the corresponding datasets used in

this work. Results and Analysis from our experiments are

presented in Section 5. Before diving into the algorithms, the next

section reviews related work on automation of tutor model

development.

2. RELATED WORK

Automation of tutor model development process has been

explored in different contexts using completely automated

methods as well as augmentation of authoring tools [6][7]. For

example, motivated by application in language learning, a series

of workshops on the problem of automatic question generation [8]

explored a number of information extraction and NLP techniques

that employ existing linguistic resources. Barnes and Stamper [9]

proposed a method that uses existing student solutions to generate

hint messages for the Logic Proof tutor. Recently, Eagle et al. [10]

have used clustering of interaction network states as an approach

to the same problem.

In the context of knowledge-tracing and example-tracing tutors,

McLaren et al. [11] proposed the use of activity logs from novice

users to bootstrap tutor model development. They developed

software tools that integrate access to novice activity logs with

authoring tools. The baseline algorithm (Interaction Networks)

used in our work is similar to the integrated data view used in this

prior work. Furthermore, the algorithms used in our work address

some of the shortcomings of their work (e.g. inability to identify

“buggy” paths).

In addition to tutor modeling, recent work has investigated

automated methods for improving domain and student models

[12] [13]. Sudol et al. [14] aggregated solution paths taken by

different learners to develop a probabilistic solution assessment

metric. Johnson et al. [15] are creating visualization tools for

interaction networks that combine learner traces from open-ended

problem solving environments. They have developed an algorithm

for reducing the complexity of combined networks to make them

more readable/navigable. In a similar spirit, work by Ritter et al.

[16] used clustering techniques to reduce the large feature space

of student models to assist in qualitative model interpretation.

3. GENERATING BEHAVIOR GRAPHS

Automatic Behavior Graph Generation (ABGG) algorithms

analyze the similarities and difference between multiple solution

demonstrations of a problem to induce a behavior graph that can

serve as a tutor model for the problem.

3.1 Behavior Graphs

Behavior graphs [5] are directed graphs. The nodes in this graph

correspond to valid solution states. Non-terminal nodes represent

partial solutions. Edges in the graph represent solution paths some

of which are correct and lead to the next state while other are

incorrect and usually lead back to the same state. Edges are

annotated with the conditions that a behavior event must meet to

traverse the path.

Behavior graphs may contain multiple paths between two nodes.

Multiple paths are useful to facilitate learner’s exploration of

alternate solutions to a problem especially in ill-defined learning

domains. Behavior graphs may also include unordered groups. As

the name suggests, states within an unordered group may be

traversed in any order.

Well-constructed behavior graphs have several desirable

characteristics which motivate the design of metrics we use to

evaluate ABGG algorithms.

3.1.1 Effective

Since the purpose of the behavior graphs is to serve as a tutor

model, the primary metric for evaluating these models is their

learning efficacy measured via use of the models by a relevant

sample of learners. However, in this paper we focus only on the

use of automated metrics that do not require access to a learner

pool. Further, as we in section 5, the automatically generated

behavior graphs are not perfect. They require checking and

refinement by ITS developers before they can be used with

learners.

3.1.2 Readable

One of the key characteristics of behavior graphs that makes them

a popular model is that they are readable by ITS developers

without requiring a deep understanding of computational or

cognitive sciences. Automatically created behavior graphs should

be editable with existing authoring tools to facilitate necessary

manual annotation and modifications. Ideally, ABGG algorithms

should create concise graphs without losing other desirable

characteristics. This may involve collapsing redundant paths and

even pruning spurious or infrequent edges.

The conciseness of a graph can be measured using the number of

nodes and edges in the graph. Our primary readability metric,

Compression Ratio measures the rate at which an algorithm is

able to reduce behavior events into behavior states (i.e. nodes) by

finding similarities between events.

3.1.3 Complete

In order to minimize author effort, generated behaviors graphs

should be as complete for creating an ETT as possible. As a

minimal criterion, at least one valid path to the final solution

should be included♦. Additionally, complete behaviors graphs are

annotated with all the expected inputs by the learner. We use the

Rate of Unseen Events in held out demonstrations as the primary

metric to measure the completeness of our automatically

generated behavior graphs.

3.1.4 Accurate

Behavior graphs should be error free. This includes being able to

accurately capture the correct and incorrect events by learners

depending on the current solution state. Edge accuracy measures

the percentage of Correct & Incorrect edges that were accurately

generated by the algorithm. Error Rate is a frequency weighted

combination of edge accuracy that measures the fraction of learner

events that will be inaccurately classified by the automatically

generated behavior graph. We use the error rate of an automatically

generate behavior graph on held out demonstrations as the primary

accuracy metric.

3.1.5 Robust

One of the reasons for the success of expertly crafted ETTs is the

ability to use them with a wide range of learners under different

deployment conditions. Automatically generated behavior graphs

should retain this characteristic; e.g., by identifying alternate paths

and unordered groups. It is not unforeseeable that the use of a

data-driven approach could contribute to creating behavior graphs

that are more robust than those authored by a human expert.

Branching factor is the average number of data values available at

each UI element. A large branching factor indicates the capability

to process a large variety of learner inputs at each state. Also, the

number and size of unordered groups is indicative of flexibility a

graph affords to learners to explore the solution paths of a

problem.

Note that readability and robustness are complementary

characteristics of a behavior graph. For example, a highly

complex behavior graph may be very robust but may not be very

readable.

3.2 ABGG Algorithms

We use four algorithms, introduced in our previous work [4], to

generate behavior graphs using multiple solution traces of a

problem. The first algorithm (Algorithm 1) generates interaction

networks by sequentially collapsing identical events in solution

traces into a shared node and creating a branch whenever two

different events are found. Interaction networks have been used in

prior work [10][15].

Algorithm 2 uses a heuristic alignment technique [3] to align

similar events across multiple solution traces. The alignment is

used to obtain a sequence of traversal through the problem’s steps.

Furthermore, this algorithm is able to use the positional entropy of

a sequence of elements while obtaining the optimal sequence to

identify unordered groups.

Similar to the above algorithm, Algorithm 3 finds the optimal

sequence between aligned events. However, this algorithm uses

the Center Star Algorithm [17] to align the multiple solution

traces instead of the heuristic used by Algorithm 2. The Center

Star Algorithm is a foundational algorithm used for aligning more

than two sequences of symbols. It is particularly suited for our

application because it is polynomial time in computational

complexity and it does not make any assumptions about the space

and relationship of symbols comprising the sequence.

First order transition matrix computed from solution traces can be

used to represent a directed graph. Algorithm 4 considers ABGG

as the process of finding multiple paths in a directed graph.

Specifically, the longest (non-repeating) path in this directed

graph represents the most likely path through the solution steps.

Since, the problem of finding longest paths in general graphs is

known to be NP-hard, we employ a combination of bounded

longest path finding and an algorithm for finding multiple shortest

paths [18] in a transformed transition matrix to obtain a number of

different paths through the directed graph. These paths are merged

to construct a behavior graph similar to the process of

constructing an interaction network.

Algorithm 2, 3 and 4 assume that if two or more events within a

trace were generated by the same UI element, the latter event

corresponds to a correction of the data value input at the former

events. In this case, we refer to the former events as retracted

events and data values entered at these events are assumed to be

incorrect values. Using this assumption, these three algorithms are

able to automatically generate incorrect paths in behavior graphs

unlike Algorithm 1. This assumption is not applied to Algorithm 1

to compare our work against prior work [11] on extracting tutor

models from multiple demonstrations.

3.3 Discussion

Table 1 characterizes the four algorithms described above based

on their capabilities. Incremental addition of demonstrations to

generate interaction networks does not identify incorrect input

data values. However, using the assumption about retracted

events, the other three algorithms are able to identify incorrect

inputs. Johnson et al. [15] used a similar assumption in their work

on reducing the visual complexity of interaction networks. We

notice that the Algorithms 2 and 3 are complementary in terms of

their ability to find alternate paths and unordered groups.

Algorithm 4 on the other hand offers both of these abilities.

Table 1. Comparison of Algorithm Capabilities

Capability▼ Algorithm► 1 2 3 4

Identifies incorrect answers N Y Y Y

Generates alternate paths N N Y Y

Finds unordered groups N Y N Y

Generalizes beyond training demonstrations N Y Y Y

Guarantees all training demnstrs. will pass Y N N N

Finds atleast one path to final solution♦ Y Y Y N

Discovers new/unseen data values N N N N

None of the algorithms discussed in this paper are capable of

discovering unseen inputs beyond those seen in the solution

traces. This type of generative ability is particularly useful for

learning tasks, such as language learning, where a large number of

different inputs may be expected from the learners. In our ongoing

work, we use a number of heuristics [7] as well as grammar

induction techniques [6] to generate unseen inputs for certain

nodes in the behavior graphs.

4. DATASETS

We use three datasets, accessed via DataShop1 [19], to study the

cross-domain applicability of ABGG algorithms. These datasets

were filtered to use only problems that had six or more traces and

had at least two UI elements. Also, we eliminated all events, such

as help requests, that did not correspond to user input at a solution

step. In this way, the datasets were transformed into solution

traces. As discussed in Kumar et al. [4], a solution

1 PSLC DataShop is available at http://pslcdatashop.org

trace/demonstration comprises of a sequence of user interface (UI)

events. Each event is represented as a 2-tuple e = (u, d) that

includes an identifier u of the UI element and data d associated

with the event. A UI element may be visited any number of times

within a trace. In general, data can include one or more attributes

of the event such as the event type, user input, event duration, etc.

In this paper, we assume single data attribute events where the

data captures the learner input at the UI element.

Table 2. Problems & Traces for the three learning domains

Math. Physics French

#Problems 1013 497 71

Max. #Unique Elements 33 62 10

Avg. #Unique Elements 4.6 9.7 2.5

Avg. #Training Traces 76.0 26.6 12.1

Avg. #Heldout Traces 38.0 13.3 6.1

Avg. #Events Per Trace 5.3 8.9 4.7

Figure 1. Example Math Problem from Assistments
Source: www.assistments.org, April 2014

Table 2 provides some statistics about the problem and traces for

each of learning domains used in this work. The Mathematics

traces were derived from three Assistments [20] datasets.

Assistments is a web-based learning platform, developed by

Worcester Polytechnic Institute (WPI), that includes a

Mathematics intelligent tutoring system for middle & high school

grades. Figure 1 shows an example math problem from the

Assistments system. Together, these datasets are the largest of the

three domains we use. Prior to filtering, these dataset comprised a

total of 683,197 traces and 1,905,672 events from 3,140 problems.

For our experiments, we treat the three datasets to be independent

of each other to account for change in UI designs of the problems

common to the three datasets.

We used 10 (out of 20) of the largest datasets released under the

Andes2 project [22] to build the collection of Physics problems

and traces. Andes2 is an intelligent tutoring system that includes

pedagogical content for a two-semester long college and advanced

high-school level Physics course. These ten datasets are based on

logs from several semesters of use of the Andes2 system at the

United States Naval Academy. Prior to filtering, these dataset

comprised a total of 81,173 traces and 1,162,581 events from

2,187 different problems. Note that, as is case with the Math

dataset, we treat the ten Andes2 datasets independently. Note that,

unlike typical domain independent example-tracing based tutor,

the Andes2 systems uses a model-tracing approach for tracking

learner’s solution of a problem and to provide feedback. The

domain knowledge dependent model tracer is able to match highly

inflected learner inputs (e.g. variable names) to its solution graph.

Despite this difference in tutoring approach used by the Andes2

system, we decided to include this domain in our experiments to

study the performance of our algorithms on such solution traces.

Finally, the French traces are based on two dataset from the

“French Course” project on DataShop. These datasets were

collected from logs of student’s use of the “French Online” course

hosted by the Open Learning Initiative (OLI) [22] at Carnegie

Mellon University. Figure 2 shows steps from couple of example

problems from this course. These datasets comprised a total of

37,439 traces and 253,744 events from 1,246 different problems.

Note that a significantly larger fraction of French problems were

eliminated due to the filtering criterion compared to Mathematics

or Physics.

Figure 2. Example Steps from Problem from the French

Online Course Source: oli.cmu.edu, April 2014

The datasets used in our experiments contain solution traces.

Traces are paths through an existing behavior graph, unlike

behavior demonstrations which are unconstrained by existing

tutor models. In addition to the fact that these are the only

available large scale collection of solution paths, we use these

datasets in our experiments because these traces have been

Table 3. Averaged Metrics for the Graphs Generated by ABGG Algorithms
*indicates significant (p < 0.05) difference with the other algorithms (within the same dataset)

 Mathematics (Assistments) Physics (Andes2) French (OLI)

Algorithm ► 1 2 3 4 1 2 3 4 1 2 3 4

#Nodes 79.2 5.4* 6.0* 6.6* 147.8 7.9* 11.5* 11.7* 25.6 3.8* 4.5* 4.5*

#Correct Edges 148.0 12.9* 18.3* 17.5* 182.2 43.5* 76.4 34.5* 37.2 6.9 9.8 9.5

#Incorrect Edges 23.9 33.5 19.5* 35.1 53.0 13.4* 4.2 11.0 8.0

Compression Ratio 6.7 76.8* 66.8 60.2 2.3 31.6* 21.9 21.7 2.2 14.6 12.8 12.8

% Accurate Correct Edges 39.1 41.9 42.5* 44.1* 61.4 80.2* 58.9 80.8* 22.5 27.7* 26.9* 29.8*

% Accurate Incorrect Edges 99.9* 97.2 99.5* 92.5* 67.3 85.5 97.8* 86.1 87.2

Training Error Rate 51.4 25.4 17.7* 17.5* 33.6 17.2* 25.8 24.3 75.2 56.1 22.3* 25.3*

Heldout Error Rate 42.8 23.5 16.1* 15.7* 29.1 25.5* 33.3 30.8 45.3 35.9 19.9* 18.5*

% Training Unseen Events 0.0* 10.7 2.2 6.8 0.0* 14.1 12.2 24.6 0.0* 13.4 5.2 4.5

% Heldout Unseen Events 10.2* 19.1 11.5* 13.9 35.9* 41.7 38.4* 42.6 31.7* 40.7 34.4* 34.3*

Branching Factor 2.2 10.9 12.6* 8.5 1.5 13.4* 12.9* 6.0 1.6 6.7* 9.4* 7.8*

#Groups 0.5* 0.0 0.8 1.4* 0.3* 0.1

Avg. Group Size 1.9* 0.0 2.0 2.0 0.6* 0.3

% Group Coverage 31.8* 0.5 27.2 30.6* 15.4* 6.1

collected from a large set of real users. They contain realistic

variations in learner inputs similar to demonstrations.

5. EXPERIMENTS

We use a three-fold cross validation design that splits the

available traces into three different training and held out sets. The

readability metrics (i.e. number of nodes, number of edges and

compression ratio) as well as the robustness metrics (branching

factor, number of unordered groups, average group size and

coverage of graph within groups) are reported on the behavior

graphs generated by the algorithms. On the other hand, some

accuracy metrics such as the accuracy of correct and incorrect

edges are measured on generated graphs whereas others such as

error rate are measured on event sequences which could be the

training traces; i.e., sequences used to generate the graphs, or held

out traces. Similarly, our completeness metrics, i.e. the rate of

unseen events in a sequence, can be measured on both training as

well as held out traces. Note that the metrics computed on training

traces used to generate the graphs may not accurately indicate the

performance of an algorithm due to over-fitting. This is the

motivation for choosing the cross validation based experimental

design.

5.1 Results

Table 3 shows our results along 14 metrics for each of the four

algorithms applied to the three learning domains under

consideration. Reported metrics are averaged over three cross

validation splits as well as over all the problems for each domain.

The metrics are organized by the four desirable characteristics

discussed earlier. Primary metric for each characteristic is

highlighted.

Figure 3. Compression Ratio of Algorithm 2

5.1.1 Mathematics

As expected, the interaction networks comprise of a large number

of nodes and edges that lead them to have significantly smaller

compression ratio. Algorithm 2 (Heuristic Alignment)

outperforms all other algorithms on three of the readability

metrics. On the other hand, Algorithm 4 (Path Pruning)

significantly outperforms the other algorithms on three of the

accuracy metrics for this dataset and is not significantly worse on

the fourth metric. Because of their lossless nature, Algorithm 1

(Interaction Network) performs the best on Completeness metrics

(% unseen events). However, it is not significantly better than

Algorithm 3 (Center-Star Alignment). We find evidence of over-

fitting of the algorithms to training traces on this metric as

indicated by the approximately 9% higher rate of unseen events

for held out traces for all the algorithms. Algorithm 3 significantly

outperforms the other algorithms on the primary robustness metric

(Branching Factor) for this domain. Algorithm 2 is better than

Algorithm 4 for the metrics based on unordered groups.

Figure 4. Heldout Error Rate of Algorithms 2 and 4

5.1.2 Physics

On the primary readability metric (Compression Ratio), Algorithm

2 outperforms the others on the Physics dataset as was the case

with Mathematics. This is consistent with prior conclusion [4] on

the use of Algorithm 2 for readability. We note that the Physics

dataset has significantly lower compression ratio than the previous

dataset. Figure 3 shows a scatter plot and domain-specific

regression fits for the compression ratio of Algorithm 2 for

different problems with different number of training traces and UI

elements. We see that for equivalent number of training traces, the

compression ratio for Physics is actually slightly better than

Mathematics. However, as we know from Table 2, fewer training

traces are available for the Physics problems on average.

On the primary accuracy metric, we find that Algorithm 2 works

best for Physics unlike the case with the Mathematics domain. We

can note that the Algorithm 2 is significantly better on the

accuracy of incorrect edges. Figure 4 shows the relationship

between the error rate in heldout traces and the accuracy of

incorrect edges. We also see that the percentage of unseen events

in heldout traces is significantly higher for Physics. The lower

incorrect edge accuracy and higher percentage of unseen events

can be attributed to the differences in the tutoring approach

underlying the Andes2 system which uses domain-specific

knowledge to match a large variety of inputs from the learner at

each step of the solution. Because of this, Andes2 elicits

significantly diverse (& hence novel) inputs across traces.

Algorithms 2 and 3 are not significantly different in terms of the

primary robustness metric.

5.1.3 French

Figure 5. Accuracy of Correct Edges for Algorithm 4

The results for our non-STEM domain are largely consistent with

the Mathematics domain. This may be attributed to the similarities

of the underlying tutoring approach for the Assistments system

and the French Online course which has been developed using the

Cognitive Tutor Authoring Tools (CTAT) [2]. However, we can

notice two key differences. First, the accuracy of correct edges for

this domain is significantly lower. Because the French Online

Course is deployed on an publicly accessible platform, its likely

that a large number of the solution traces were generated by

beginners as well as non-serious users leading to the dataset

containing many incomplete solution traces containing no correct

answers. This is evidenced in Figure 5 as we see that correct edge

accuracy dramatically degrades for long traces which is contrary

to the case with the other two domains.

Second, we expect the branching factor to be higher for a

language learning domain, due to the high degree of linguistic

variation in learner inputs. The results in Table 3 do not indicate

this. However, Figure 6 verifies this intuition. Branching factor

for the French behavior graphs is higher than those for the STEM

domain for problems that have 10 or more traces.

Figure 6. Branching Factor of Algorithm 3

5.1.4 Automatically Generated Behavior Graphs

Figures 7, 8 and 9 showcase several qualitative characteristics of

automatically generated behavior graphs (truncated to fit) for the

problems in the three datasets used in this work. We use the

following visual convention: Circular nodes represent states and

are labeled with identifiers u of the corresponding UI element.

Edges are labeled with the data values d. Correct edges are labeled

with green rectangles and incorrect edges are labeled with red

rectangles. Unordered groups are shown using blue containers.

Figure 7 shows graphs generated by two different algorithms for

the same Mathematics problem in the Assistments dataset using

241 solution traces by learners. The graph generated by Algorithm

1 is dense and hardly readable due to the large number of nodes

and edges in this graph. Also, as discussed in Section 3, this

algorithm is unable to identify incorrect paths. Contrary to that,

the graph in Figure 7b is composed of only 6 nodes. The various

paths taken by learners are compressed into 46 correct and 39

incorrect edges. We can notice that not all paths are accurate.

However, the accurate paths are more frequent, as indicated by the

thicker arcs associated with the edge. In our ongoing work, we are

extending these algorithms to use this frequency attribute to

eliminate inaccurate paths (either automatically, or by providing

additional controls to model developers in authoring tools).

A behavior graph from the Physics dataset is shown in Figure 8.

As discussed earlier, the large variation in learner input at each

state is depicted in the edge labels of this graph. We notice that for

the last state (s6) which corresponds to the learners filling in the

answer to a problem, many minor variations of the correct answer

are accurately captured. Due to the domain independent nature of

our algorithms, these answers are treated as different string.

Integration of domain knowledge can lead to further compression

of these answers into a single path.

The linguistic variation in the inputs to a problem in the French

dataset is also noticeable in the two graphs for the same problem

in Figure 9. We can see the several wrong answers are marked as

correct answers (and vice versa), although the frequency-based

edge notation identifies the correct answer as was the case in

Figure 7b. In this problem, learners are asked to listen to an audio

file and type in the French word they hear. Learners are allowed

to go back and forth between these two steps. The first step has no

wrong answer. We notice that our assumption to consider

retracted events as incorrect fails in this case.

Figure 7a. Behavior Graph: Mathematics, Algorithm 1

Figure 7b. Behavior Graph: Mathematics, Algorithm 2

It is particularly interesting to note the differences in the way

Algorithm 2 and Algorithm 4 encode robustness into the learnt

tutor model. While Algorithm 2 identifies an unordered group

containing the listen and answer nodes which allows learners to

traverse these nodes in any order, Algorithm 4 identifies that the

listen step is optional and create two different way to reach the

answer step based on the solution behaviors exhibited by learners

in the traces.

Figure 8. Behavior Graph: Physics, Algorithm 2

Figure 9a. Behavior Graph: French, Algorithm 2

Figure 9b. Behavior Graph: French, Algorithm 4

6. CONCLUSIONS

In this paper, we have shared results from an empirical analysis of

application of ABGG algorithms to three different learning

domains. Several similarities and differences between the

performances of four algorithms on problems from these three

domains were discussed in the previous section.

We find that the accuracy of these algorithms suffers when they

are applied to solution traces collected from a tutoring system that

uses domain knowledge to process a large variety of inputs from

learners. While in our previous work [4], we have recommended

the use of Algorithm 2 as the default ABGG algorithm for use

within authoring tools, we find that for language learning

domains, Algorithm 4 may be preferable since it is the most

accurate on the French dataset and not significantly worse than the

other algorithms on the other primary metrics.

We identified multiple potential improvements to the ABGG

algorithms based on these analyses. There are several domain

specific nuances to the UI elements that comprise the problems in

each domain. For example, in the French domain, we found steps

that do not have any wrong answer. For broad use, ABGG

algorithms should identify these UI elements and selectively apply

the powerful assumption about retracted events. Furthermore, the

algorithms can exploit additional features computed from across

the multiple traces, such as the frequency of a data value at a

node, to improve the accuracy of the automatically generated

behavior graphs.

Finally, this paper extends our recent work on use of multiple

behavior demonstrations to automatically generate tutor models

using ABGG algorithms. While these algorithms can be improved

in specific ways discussed above, we find evidence for their

applicability to multiple domains.

ACKNOWLEDGEMENTS

This research was funded by the US Office of Naval Research

(ONR) contract N00014-12-C-0535.

7. REFERENCES

[1] Johnson, W. L., and Valente, A. 2008. Collaborative

authoring of serious games for language and culture. In

Proceedings of SimTecT (March 2008).

[2] Aleven, V., McLaren, B. M., Sewall, J., and Koedinger. K.

R. 2006. The cognitive tutor authoring tools (CTAT):

preliminary evaluation of efficiency gains. In Proceedings of

the 8th International Conference on Intelligent Tutoring

Systems (ITS'06), Ikeda, M., Ashley, K. D., and Chan, T.W.

(Eds.). Springer-Verlag, Berlin, Heidelberg, 61-70.

[3] Kumar, R., Roy, M.E, Roberts, R.B., and Makhoul, J.I. 2014.

Towards Automatically Building Tutor Models Using

Multiple Behavior Demonstrations. In Proceedings of 12th

Intl. Conf. on Intelligent Tutoring Systems (ITS 2014),

Honolulu, HI.

[4] Kumar, R., Roy, M.E, Roberts, R.B., and Makhoul, J.I. 2014.

Comparison of Algorithms for Automatically Building

Example-Tracing Tutor Models. In Proceedings of 7th Intl.

Conf. on Educational Data Mining (EDM 2014), Honolulu,

HI.

[5] Aleven, V., Mclaren, B. M., Sewall, J., and Koedinger. K. R.

2009. A New Paradigm for Intelligent Tutoring Systems:

Example-Tracing Tutors. Int. J. Artif. Intell. Ed. 19, 2 (April

2009), 105-154.

[6] Kumar, R., Sagae, A., and Johnson, W. L. 2009. Evaluating

an Authoring Tool for Mini-Dialogs. In Proceedings of the

2009 Conference on Artificial Intelligence in Education,

Dimitrova, V., Mizoguchi, R., du Boulay, B., and Graesser,

A. (Eds.). IOS Press, Amsterdam, The Netherlands, The

Netherlands, 647-649.

[7] Kumar, R., Roy, M.E, Pattison-Gordon, E. and Roberts, R.B.

2014. General Purpose ITS Development Tools. In

Proceedings of Workshop on Intelligent Tutoring System

Authoring Tools, 12th Intl. Conf. on Intelligent Tutoring

Systems (ITS 2014), Honolulu, HI.

[8] Question Generation Workshops. 2008-2011.

http://www.questiongeneration.org/

[9] Barnes, T. and Stamper, J. 2008. Toward Automatic Hint

Generation for Logic Proof Tutoring Using Historical

Student Data. In Proceedings of the 9th International

Conference on Intelligent Tutoring Systems (ITS '08). Woolf,

B. P., Aimeur, E., Nkambou, R., and Lajoie , S. (Eds.).

Springer-Verlag, Berlin, Heidelberg, 373-382.

[10] Eagle, M., Johnson, J., and Barnes, T., 2012. Interaction

Networks: Generating High Level Hints Based on Network

Community Clusterings, In Proceedings of the 5th

International Conference on Educational Data Mining

(EDM 2012). Yacef, K., Zaïane, O., Hershkovitz, H.,

Yudelson, M., and Stamper, J. (Eds.). 164-167

[11] McLaren, B.M., Koedinger, K.R., Schneider, M., Harrer, A.,

and Bollen, L. 2004. Bootstrapping Novice Data: Semi-

Automated Tutor Authoring Using Student Log Files. In

Proceedings of the Workshop on Analyzing Student-Tutor

Interaction Logs to Improve Educational Outcomes, 7th

International Conference on Intelligent Tutoring Systems

(ITS 2004). August 2004

[12] Pavlik, P.I., Cen, H., and Koedinger, K.R. 2009. Learning

Factors Transfer Analysis: Using Learning Curve Analysis to

Automatically Generate Domain Models, In Proceedings of

the 2nd International Conference on Educational Data

Mining (EDM 2009). Barnes, T., Desmarais, M., Romero, C.,

Ventura, S. (Eds.). 121-130

[13] Koedinger, K.R., Mclaughlin E.A., and Stamper, J.C. 2012.

Automated student model improvement, In Proceedings of

the 5th International Conference on Educational Data Mining

(EDM 2012). Yacef, K., Zaïane, O., Hershkovitz, H.,

Yudelson, M., and Stamper, J. (Eds.). 17-24

[14] Sudol, L.A, Rivers, K., and Harris, T.K. 2012. Calculating

Probabilistic Distance to Solution in a Complex Problem

Solving Domain, In Proceedings of the 5th International

Conference on Educational Data Mining (EDM 2012).

Yacef, K., Zaïane, O., Hershkovitz, H., Yudelson, M., and

Stamper, J. (Eds.). 144-147

[15] Johnson, M., Eagle, M., Stamper, J., and Barnes, T. 2013. An

Algorithm for Reducing the Complexity of Interaction

Networks, In Proceedings of the 6thInternational Conference

on Educational Data Mining, (EDM 2013). D’Mello, S. K.,

Calvo, R. A., Olney, A. (Eds.). 248-251

[16] Ritter, R., Harris, T.K, Nixon, T., Dickison, D., Murray,

R.C., and Towle, B. 2009. Reducing the Knowledge Tracing

Space, In Proceedings of the 2ndInternational Conference on

Educational Data Mining (EDM 2009). Barnes, T.,

Desmarais, M., Romero, C., Ventura, S. (Eds.). 151-160

[17] Gusfield, D. 1997. Algorithms on Strings, Trees and

Sequences. Cambridge University Press, New York.

[18] Yen, J. Y. 1971. Finding the K Shortest Loopless Paths in a

Network. Management Science 17(11). 712-716

[19] Koedinger, K.R., Baker, R.S.J.d., Cunningham, K.,

Skogsholm, A., Leber, B., and Stamper, J. 2010. A Data

Repository for the EDM community: The PSLC DataShop.

In Handbook of Educational Data Mining. Romero, C.,

Ventura, S., Pechenizkiy, M., Baker, R.S.J.d. (Eds.). Boca

Raton, FL: CRC Press

[20] Razzaq, L., Feng, M., Nuzzo-Jones, G., Heffernan, N. T.,

Koedinger, K. R., Junker, B., Ritter, S., Knight, A.,

Aniszczyk, C., Choksey, S., Livak, T., Mercado, E., Turner,

T. E., Upalekar. R, Walonoski, J.A., Macasek. M.A. and

Rasmussen, K. P. 2005. The Assistment project: Blending

assessment and assisting. In Proceedings of the 12th

International Conference on Artificial Intelligence in

Education, C.K. Looi, G. McCalla, B. Bredeweg, & J.

Breuker (Eds.) IOS Press. 555-562.

[21] VanLehn, K., Lynch, C., Schulze, K. Shapiro, J. A., Shelby,

R., Taylor, L., Treacy, D., Weinstein, A., and Wintersgill, M.

2005. The Andes physics tutoring system: Lessons Learned.

In International Journal of Artificial Intelligence and

Education, 15 (3), 1-47

[22] Strader, R. and Thille, C. 2012. The Open Learning

Initiative: Enacting Instruction Online. In Game Changers:

Education and Information Technologies. Oblinger, D.G.

(Ed.) Educause. 201-213.

